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Abstract

We examined the association between N-acetyltransferase 1 and 2 (NAT1 and NAT2) haplotype and
risk of pancreatic cancer by genotyping eight NAT1 and seven NAT2 single nucleotide
polymorphisms in 532 patients and in 581 healthy controls (all non-Hispanic white) who were
recruited at M. D. Anderson Cancer Center from January 2000 to December 2006. Haplotypes were
reconstructed by using an expectation-maximization algorithm. Odds ratios and 95% confidence
intervals were estimated by using unconditional logistic regression models. Covariates included age
(continuous variable), sex, pack-year of smoking (categorical), and history of diabetes when
appropriate. NAT1 and NAT2 genotype was mutually adjusted. The prevalence of haplotype
NAT1*10-NAT2*6A was 4.3% versus 2.7% (P = 0.06) and NAT1*11-NAT2*6A was 1.2% versus
0.4% (P = 0.05) in patients and controls, respectively. The diplotype NAT1*10/*10 or NAT1*10/
*11 and NAT2*6A/any slow allele was associated with a higher risk of pancreatic cancer compared
with other diplotypes (multivariate odds ratio, 4.15; 95% confidence interval, 1.15-15.00; P = 0.03).
NAT2 slow genotype were associated with increased risk of pancreatic cancer among heavy smokers
and among individuals with a history of diabetes. We for the first time found that rare NAT1*10 or
NAT1*11-NAT2*6A diplotype may be an “at-risk” genetic variant for pancreatic cancer. The
NAT2*6A/any slow acetylation genotype may be a predisposing factor for pancreatic cancer among
diabetics with smoking exposure. Our observations must be confirmed in larger independent studies.

Introduction

Pancreatic cancer is considered an “environmental” cancer in that cigarette smoking (1) and
red meat intake (2) have been linked with its etiology. Aromatic amines are putative
carcinogens in cigarette and heterocyclic amines in meat cooked at high temperature (3,4).
Aromatic amine and heterocyclic amine carcinogens require metabolic activation to induce
DNA damage. In humans, aromatic amine and heterocyclic amine are bioactivated in a two-
step process that includes oxidation by cytochrome P450 enzymes and subsequent acetylation
by the expression products of either of the arylamine N-acetyltransferase (NAT) genes (EC
2.3.1.5), NAT1 and NAT2 (5,6). This conjugation reaction can result in either detoxification
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(N-acetylation) or activation (O-acetylation) of these metabolites. The N-acetoxy metabolites
are unstable and react with DNA to form covalent adducts, which is believed to be the first
event in aromatic amine - induced carcinogenesis. Several studies have suggested that
acetylation polymorphism is a factor in genetic predisposition to cancers related to aromatic
amine and/or heterocyclic amine exposure (7). If NAT plays a role in metabolizing aromatic
amine/heterocyclic amine, we would expect genetic variants of NAT modify individual
susceptibility to pancreatic cancer.

In humans, NAT1, NAT2, and a pseudogene, NATP, are located at chromosome 8p21.3-23.1
(8), which is an unstable region of the human genome that is often deleted and sometimes
overrepresented in tumors (9). Human NAT1 and NAT2 loci are highly polymorphic. As of
May 2007, 26 NAT1 and 36 NAT2 alleles (or haplotypes) have been identified in human
populations (10,11).5 Most of the NAT1 and all of the NAT2 nucleotide polymorphisms are
present in the coding region. These nucleotide substitutions result in alterations of substrate
affinity, catalytic activity, protein degradation, or stability of the recombinant NAT allozymes
(12-14). Good concordance between NAT2 genotype and acetylator phenotype has been
established (15). Both NAT1 and NAT?2 are expressed in the human pancreas, but NAT1
expression is more predominant in this organ (16).

Our previous study showed that NAT1 genotype alone modified risk of pancreatic cancer and
both NAT1 and NAT2 genotype modified risk of pancreatic cancer among smokers, especially
among women. A possible interaction between NAT1 and NAT2 genotype was also observed
(17). In the current study, we examined NAT1 and NAT2 haplotypes and risk of pancreatic
cancer in a larger study population. We hypothesized that the combination of rapid NAT1 allele
(increased capacity to activate aromatic amine carcinogen via O-acetylation) and slow NAT2
allele (reduced capacity to detoxify aromatic amine carcinogens via N-acetylation) increases
the risk of developing pancreatic cancer. We also did hypothesis-generating analysis to explore
the interaction between NAT genotype, history of diabetes and pancreatitis, and family history
of cancer in addition to cigarette smoking.

Materials and Methods
Study Subjects

The study design, patient recruitment, and data collection methods have been described
previously (17). Written informed consent was obtained from each participant for an in-person
interview and donation of biological specimens. The research protocol was approved by The
University of Texas M. D. Anderson institutional review board.

All patients were recruited from the Gastrointestinal Cancer Clinic at M. D. Anderson Cancer
Center. The eligibility criteria were having pathologically confirmed primary pancreatic ductal
adenocarcinoma (International Classification of Diseases for Oncology code C25.3, WHO,
2000) and U.S. residency. Controls were recruited from healthy individuals (spouses, friends,
or other family members) who were escorting cancer patients during their visits to M. D.
Anderson and were not genetically related to their respective patients. A total of 1,716
participants (938 patients and 778 controls) were recruited from January 2000 to December
2006, with a response rate (recruited/approached) of 78.6% for patients and 80.0% for controls.
Among them, 760 (81.0%) cases and 654 (84.1%) controls donated biospecimens for
genotyping (including mouth wash samples from 18 patients and 121 controls). Sixty-nine
patients and one control were excluded because of prior history of cancer (except for
nonmelanoma cancer of the skin), yielding 691 patients and 653 controls. Fifteen controls were

5http://www.IouisvilIe.edu/medschool/pharmacology/NAT.htmI
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excluded because of incomplete questionnaire data. Because of the striking ethnic variation in
NAT1 and NAT?2 allele frequencies and the small number of participants in minorities, we did
risk association analyses in non-Hispanic whites only, including 597 patients and 582 controls
(accounting for 86.4% of the patients and 91.2% of the controls).

Exposure Data Collection

At the time of recruitment, trained interviewers conducted in-person interviews with patients
and controls to collect information on demographics and smoking exposure with the use of a
structured questionnaire. No proxy respondent or inducement was used. Definitions of the
smoking exposure variables have been described previously (17). Briefly, subjects were
classified as “ever smokers” or “never smokers” according to whether they had smoked >100
cigarettes in their lifetime. Pack-year of smoking was calculated from the average number of
cigarette smoked daily and the number of years of smoking. The median pack-year of controls
(22 pack-years) was used as the cutoff to define “light” and “heavy” smokers. Information on
family history of cancer, history of cancer, and history of pancreatitis and diabetes was also
collected. Body mass index (BMI; kg/m?) was calculated using self-reported height and weight
at age of 14 to 19, 20, 30, 40, 50, 60, and 70 years in 682 participants (322 patients and 360
controls) who were recruited after 2005. We used BMI at age of 40 years as the usual adult
BMI in the further analysis.

Laboratory Analysis

Methods used for DNA extraction and NAT genotyping have been described previously (17).
Eight single nucleotide polymorphisms (SNP; from 5’ to 3’) of the NAT1 gene (C97T, C190T,
G445A, G559A, G560A, A752T, T1088A, and C1095A) and seven SNPs of the NAT2 gene
(G191A, C282T, T341C, C481T, G590A, A803G, and G857A) were determined by using a
Tagman allele-specific assay at the University of Louisville (18,19). Ten percent of samples
were duplicated for each polymorphic site, and the genotype assignments were found to be
99.4% concordant. Any discrepancies were resolved by additional genotyping. Because the
aim of the current study was to examine the association between risk of pancreatic cancer and
NAT1/2 haplotype, we further excluded 65 patients and one control from the final analysis
because of incomplete genotyping data caused by inadequate quality or quantity of DNA. The
final sample size was 532 patients and 581 controls. NAT1 genotype data were available for
532 patients and 581 controls, and NAT2 genotype data were available for 526 patients and
564 controls. A total of 512 patients and 559 controls had complete data for all 15 SNPs.
Demographic characteristics (age, sex, and smoking status) of patients included in the analyses
were comparable with those being excluded because of incomplete genotyping data. The call
rate for single allele varied from 95% to 100% for adequate DNA samples (A260/A280 >1.70
and <1.85 with adequate quantity).

Statistical Analysis

SNPAlyze software (Dynacom Co. Ltd.) was used to test the Hardy-Weinberg equilibrium of
each genotype and to test the linkage disequilibrium of each two polymorphic loci of NAT1
and NAT2 genes. The pairwise linkage disequilibrium was measured by variables D’ and r2.
NAT1 and NAT2 haplotypes were inferred based on the subjects with complete genotyping data
by using an expectation-maximization algorithm (SNPAlyze software) and a Bayesian
algorithm (PHASE program, version 2.0; ref. 20). Both algorithms generated the same
haplotype inference, which was also shown by a previous study (21). When reconstructing the
NAT1-NAT2 combined haplotype, we excluded five SNPs (NAT1: C97T, C190T, G559A, and
AT52T; NAT2: G190A) because of little or no variation (less than five in count) in our study
subjects. Haplotypes for the NAT1 or NAT2 genes were represented as a string of “0” indicating
the common alleles and “2” indicating the minor allele for polymorphism from 5’ to 3'. The
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combined haplotype for the NAT1 and NAT2 gene was represented in the same manner.
Pearson’s 2 test was used to test the difference in the distribution of the haplotypes between
the patients and controls. Cornfield odds ratio (OR) and 95% confidence interval (95% CI)
were calculated. Multivariate ORs and 95% Cls were estimated to measure the strength of the
association between each genotype, diplotype, and pancreatic cancer risk by using
unconditional logistic regression models. For NAT1, *10 and *11 alleles were defined as the
“rapid” acetylator allele (22), and all others were combined as the reference group. The
presence of 445A and 1095A variants defined the NAT1*11 allele. For NAT2, subjects with
two slow acetylator alleles (*5, *6, *7, and *14B) were considered “slow acetylators”; those
with two rapid acetylator alleles (*4, *12A, and *13) were “rapid acetylators”; and those having
a combination of rapid and slow acetylator alleles were “intermediate acetylators” (12,23).
Because NAT2*6A allele was a putative “at-risk” allele revealed by the haplotype analysis, any
“slow acetylator” containing *6A was considered the at-risk group and all other alleles were
pooled as the reference group. Potential confounding factor was adjusted in the multivariate
model when its removal from the multivariate model caused the {3 estimate to change by >10%.
Consequently, age (as a continuous variable), sex, pack-year of smoking (categorical), and
history of diabetes were included as covariates in the multiple logistic regression models when
appropriate. NAT1 and NAT2 genotype was mutually adjusted in the model because of the
potential interaction between the two genes. For 682 participants, BMI at age of 40 years was
available and was evaluated as a potential confounder for the interaction of NAT polymorphism
and diabetes in modifying pancreatic cancer risk. We found that the addition of BMI
(categorical using WHO standard) in the model changed the risk estimated by 4.4%. Therefore,
we did not consider BMI as a significant confounder in the current analysis. Interaction between
NAT genotype and smoking status (ever versus never), pack-year of smoking (never, light, and
heavy), diabetes, pancreatitis, and family history of cancer in modulating risk of pancreatic
cancer was evaluated in a multiplicative scale using a Wald 2 test by including an interaction
term in the unconditional logistic regression models. The likelihood ratio test was used to test
the significance of the interaction term. All statistical analyses were done by using the Stata
software program (version 7.0; StataCorp). All tests were two sided with an o level of 0.05.
We estimated the false-positive report probability (FPRP) for the observed statistically
significant association using the methods described by Wacholder et al. (24). The FPRP
depends on the power of the study, the observed P value, and the prior probability that the SNP
or gene under investigation is involved in the disease. We considered that a prior probability
of 25% might be appropriate when there is biological plausibility and availability of previous
epidemiologic evidence for such an association and that a prior probability of 0.1% might be
appropriate when lack of both biological knowledge and epidemiologic data. The FPRP value
for noteworthiness was set as 0.5 for new findings or 0.2 for repeating previously observed
association.

The distributions of age, sex, and smoking status of 532 patients and 581 healthy controls were
similar to those described previously (17). Briefly, the age distribution (in 10-year intervals)
of patients and controls was equivalent (P = 0.28, 42 test). Men contributed 64.0% of the
controls and 60.0% of the patients (P = 0.12, 2 test). Cigarette smoking had a significant
positive association with the risk of pancreatic cancer (OR, 1.45; 95% Cl, 1.13-1.85; P =0.002).
Heavy smokers (>22 pack-years of smoking) were at significantly higher risk compared with
never smokers (OR, 1.68; 95% Cl, 1.28-2.21; P < 0.001). The family history of cancer-related
OR was 1.64 (95% Cl, 1.25-2.16; P = 0.003) and family history of pancreatic cancer-related
OR was 2.39 (95% Cl, 1.06-5.74; P = 0.02). Significantly more patients than controls reported
ever being diagnosed with diabetes (20.3% versus 8.9%; OR, 2.59; 95% CI, 1.80-3.77; P <
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0.001) and pancreatitis (8.1% versus 0.9%; OR, 10.1; 95% Cl, 3.95-32.8; P < 0.001). In 682
participants, BMI at age of 40 years was used in risk estimate. Compared with individuals with
BMI <25, those with BMI >30 were at a significantly higher risk of developing diabetes in
controls (OR, 7.90; 95% Cl, 2.59-24.2) and pancreatic cancer (OR, 1.61; 95% Cl, 1.01-2.55)
after adjustment for age, sex, and pack-years of smoking.

Single Nucleotide Polymorphism

Genotype

Haplotype

Diplotype

Table 1 presents NAT1 and NAT2 SNP information and variables of linkage disequilibrium
between alleles. Of the eight NAT1 SNPs investigated, C97T was monomorphic and three
others (190T, 559A, and 752T) were very rare (less than five in count) in our study subjects.
Of the seven NAT2 SNPs investigated, 191A was found in only one person. These SNPs are
not listed in Table 1. All observed genotype frequencies were in good agreement with the
expected frequencies deduced by the Hardy-Weinberg law in controls. For NAT1, the 1088A
and 1095A SNPs were the most prevalent and were in complete linkage disequilibrium (D’ =
1.0). For NAT2, frequencies of all SNPs except 857A were more than 25%, and considerable
linkage disequilibrium existed, with all D” values >0.95. Moderate linkage disequilibrium was
present between the two major NAT1 SNPs and all NAT2 SNPs except for G857A.

Table 2 presents the distribution of the NAT1 and NAT2 genotypes in patients and controls.
NAT1 rapid acetylation genotype (presence of *10/*10 and *10/*11) was associated with
significantly increased risk of pancreatic cancer. The adjusted OR was 1.97 (95% Cl, 1.02-3.82;
P =0.04) compared with the NAT1*4/*4 genotype and 1.96 (95% Cl, 1.03-3.73; P = 0.04)
compared with all other NAT1 genotypes in combination. We estimated the FPRP of this
observation to be 0.078 to 0.20 given a prior probability of 10% to 25% because data on both
epidemiologic association (17) and functional significance of NAT1 allele (25,26) were
available. The FPRP below threshold of 0.2 indicated noteworthiness. The distribution of
NAT2 genotype was comparable between patients and controls.

Table 3 shows the 12, 11, and 17 haplotypes that were inferred for the NAT1, NAT2, and NAT1-
NAT2 genes, respectively. For NAT1, haplotype 1 (wild-type *4 allele defined as no SNP) was
present in three quarters of the chromosomes tested. Haplotypes 1 and 2 (1088A/1095A,
NAT1*10 allele) accounted for 93.0% of the NAT1 haplotypes in the controls. For NAT2,
341C-481T-803G (*5B allele) was the most common haplotype followed by 282T-590A
(*6A allele) and the reference *4 (defined as no SNP). Among the NAT1-NAT2 haplotypes,
five were present at frequencies >5%, including NAT1*4-NAT2*5B, NAT1*4-NAT2*6A,
NAT1*4-NAT2*4, NAT1*10-NAT2*4, and NAT1*10-NAT2*5B.

The haplotype frequency was comparable between patients and controls for both NAT1 and
NAT2. However, we observed a higher frequency of NAT1*10-NAT2*6A (P = 0.06) and
NAT1*11-NAT2*6A (P = 0.05) in patients than in controls, although both are at borderline
significance. Compared with NAT1*4-NAT2*4, the Cornfield ORs were 1.61 (95% ClI,
0.93-2.82) for the NAT1*10-NAT2*6A and 2.94 (95% ClI, 0.88-12.6) for the NAT1*11-
NAT2*6A haplotype.

Table 4 shows diplotype (haplotype pair) analysis for combined NAT1-NAT2 genes. The

comparison group consisted of 15 people carrying the NAT1 homozygous haplotype *10/*10
or *10/*11 (rapid/rapid) and NAT2*6/any slow allele. All other diplotypes were pooled as the
reference group. Twelve of the 15 study subjects (1.3% of total) carrying the at-risk diplotype
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were patients, giving an OR (adjusted for age, sex, diabetes, and smoking pack-year) of 4.15
(95% Cl, 1.15-15.00; P = 0.03). The FPRP for this association was 0.36 if we set FPRP value
for noteworthiness as 0.50. A prior probability of 10% is appropriate because the association
is biologically plausible but there was no previous epidemiologic evidence.

Joint Effect of NAT2 Genotype and Smoking

NAT2 acetylator genotype interacted with smoking pack-years in modulating the risk of
pancreatic cancer (P value for likelihood ratio test = 0.04). Compared with never smokers who
carried the NAT2 rapid, the multivariate OR (95% CI) was 0.75 (0.53-1.06) for never smokers
who carried slow genotype, 1.34 (0.89-2.20) for heavy smokers who carried the NAT2 rapid,
and 1.54 (1.05-2.26) for heavy smokers who carried the NAT2 slow acetylator genotype. For
this observation, we considered FPRP below threshold 0.2 to be noteworthy. We estimated the
FPRP to be 0.15 given a prior probability of 25% because data on both epidemiologic
association (17) and functional significance of NAT2 allele (6,27) were available.

We did not observe significant interaction effect between NAT1 genotype and NAT2 genotype
(Pinteracﬁon = 0.23), SmOkIng (Pinteraction = 0.44), diabetes (Pinteraction = 0.22), panCreatitiS, or
family history of pancreatic cancer in modulating risk of pancreatic cancer.

Joint Effect of NAT2 Genotype and Diabetes

Table 5 shows a joint effect of NAT2*6A/any slow allele and diabetes in modulating risk of
pancreatic cancer. Compared with nondiabetics who had all other NAT2 genotype, diabetics
with the NAT2*6A/any slow allele had a multivariate OR of 3.51 (95% CI, 1.90-6.50; P <
0.001). Compared with nondiabetics with the NAT2 rapid/intermediate allele, diabetics with
the NAT2 slow allele had a multivariate OR of 3.10 (95% ClI, 1.90-5.05; P < 0.001). However,
this effect was present among smokers (OR, 4.65; 95% Cl, 2.29-9.42) but absent among
nonsmokers (OR, 2.07; 95% CI, 1.03-3.99). In the stratified analysis, the association between
NAT2*6A/any slow genotype and increased risk of pancreatic cancer was seen among diabetics
(multivariate OR, 2.28; 95% ClI, 1.02-5.10) but not among nondiabetics (multivariate OR, 0.86;
95% ClI, 0.65-1.14). Because recent onset of diabetes could be a manifestation of pancreatic
cancer, we did these analyses after excluding participants who had recent diagnosis of diabetes
(less than a year before recruitment). Compared with nondiabetics with all other NAT2
genotype, diabetics with all other NAT2 genotype had a multivariate OR of 1.23 (95% ClI,
0.69-2.19) and diabetics with NAT2*6A/any slow allele had a multivariate OR of 2.49 (95%
Cl, 1.21-5.12; P = 0.01).

Discussion

In this hospital-based case-control study, we found that NAT1*10-NAT2*6 and NAT1*11-
NAT2*6, with a prevalence of 3% in our study population, may be the at-risk haplotype in the
development of pancreatic cancer. Further, people carrying the diplotype NAT1*10/*10 or
NAT1*10/*11-NAT2*6A/any allele were more likely to have pancreatic cancer than those
carrying other diplotypes. We found carriers of the NAT2*6A/any slow allele to be a
predisposing factor for pancreatic cancer among smokers with a history of diabetes.
Meanwhile, we confirmed our previous observation that NAT1 rapid (*10 and *11) and
NAT2 slow acetylator alleles were associated with a significantly increased risk of pancreatic
cancer among the entire study population and among heavy smokers, respectively (17). These
replicated associations are likely to be true based on the FPRP calculation. Our study provides
further evidence supporting an important role of N-acetylation polymorphisms in the etiology
of pancreatic cancer.
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1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Jiao et al.

Page 7

The genotype analysis found a significantly increased risk for pancreatic cancer in NAT1*10
or NAT1*11 carriers. The genotype-phenotype relationship for NAT1*10 and NAT1*11 allele
has not been well elucidated (25,26,28) as for NAT2 gene (15). The NAT1*10 allele may be a
rapid acetylator allele because it has been associated with elevated NAT1 activity in bladder
and colon tissues (28) and higher levels of DNA adducts in urinary bladder mucosa (29) as
well as an increased risk of colorectal (28), bladder (30), and breast cancer (31). The
NAT1*11 allele may also be a rapid allele. One study found that the missense G445A
(Vall#91le) substitution yielded recombinant NAT1 proteins that were twice as active as the
wild-type protein in N-hydroxy-aromatic amine acetylation (32). The NAT1*11 allele has been
linked to an elevated risk of breast cancer associated with smoking or the consumption of well-
done meat (22). The study on phenotype of NAT2 alleles was done in a caffeine test; the
acetylation activity of *5/*6A was significantly lower than that of *5/*5 and the *6A/*6A
genotype was even less active (33) The current study confirmed our previous observation that
NAT?2 slow allele was associated with increased risk of pancreatic cancer among heavy
smokers.

To our knowledge, no haplotype analyses have been conducted on NAT1 and NAT2 SNPs in
relation to pancreatic cancer. In the current study, we found the following combined NAT1-
NAT2 haplotypes (in descending order of frequency): *4-*5B, *4-*6A, *4-*4, *10-*4, *10-
*5B, *10-*6A, *4-*5A, *4-*7B, and *11-*6A. We found that the rapid acetylator NAT1*10 or
NAT1*11 alleles in combination with the slow acetylator NAT2*6A allele conferred a
borderline significant higher risk of developing pancreatic cancer, and the risk was more than
3-fold higher among participants who carried the NAT1*10 or NAT1*11-NAT2*6A diplotype.
However, the low frequency of this diplotype limited the study power with regard to drawing
conclusions. Notably, we found that 12 of 15 NAT1*10/*11-NAT2*6A carriers were smokers
and 10 of the 12 smokers and 2 of the 3 nonsmokers were pancreatic cancer patients. Our
observations support the notion that haplotype structure rather than individual allozyme can
be the principal determinant of phenotypic consequences (21).

NAT1 is highly expressed in the human pancreas (16). Our observations may be explained by
an insufficient deactivation of carcinogens (N-acetylation) mediated by slow acetylator of
NAT?2 in the liver and higher-level NAT1-catalyzed activation (O-acetylation) within the
pancreas. It has been proposed that tissue-specific NAT-catalyzed O-acetylation of the N-
hydroxy-aromatic amines is an important determinant of DNA adduct formation (34). Previous
studies on NAT1 genotype and DNA adducts in the human pancreas have been limited (35,
36). The regulatory mechanisms of NAT1 in the human pancreas deserve further investigation.

We observed a possible effect of NAT2*6A/any slow acetylation genotype on risk of pancreatic
cancer among individuals with a history of diabetes and this effect seems to be present in
smokers but absent in nonsmokers. Interestingly, NAT2 slow allele (especially *6A,
282T-590A) was found to confer a 5-fold increased risk of type Il diabetes in a Turkish study
of 79 cases and 104 controls (37). Among nondiabetic Canadian people, those with the
NAT2 282T SNP had significantly higher plasma fasting glucose levels than those with the
282C SNP (38). In fact, C282T is a silent allele but it is in strong linkage with the G590A allele
that has been shown to reduce thermostability and level of soluble NAT2 protein (39).
However, the NAT2 slow acetylator genotype was not shown to be associated with diabetes
either in the same study (38) or in a Japanese study (40). Whether acetylation polymorphisms
affect the biotransformation of endogenous or exogenous substrates associated with diabetes
is unknown. Because smoking is associated with increased risk of diabetes and NAT is involved
in the metabolism of tobacco carcinogens, the observed effect of NAT2 genotype on diabetes-
associated risk of pancreatic cancer in the current study most likely is a confounding effect of
cigarette smoking. Because diabetes is such a common disease and ~35% of Caucasians are
*6A/slow NAT?2 acetylators, our finding deserves further replication in other studies.
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By genotyping several SNPs with a validated assay, our study minimized the bias produced
by misclassification of the NAT1 and NAT2 genotype (41,42). The NAT1 and NAT2 allele,
haplotype, and genotype frequencies were similar to or within the ranges previously reported
for Caucasians (15,33,43). The current study also had several limitations. First, because
different racial groups show large variations in slow and rapid acetylator distribution, our
findings may not be generalizable to other ethnicities. Second, selection bias is a potential
concern because patients and controls voluntarily participated in the study; however, it is
unlikely that genotype frequencies vary by willingness of participation (44). Third, this study
was underpowered in examining relationship between haplotype and pancreatic cancer risk
and the observed associations were largely borderline significant. For example, the difference
between NAT1-NAT2 haplotype frequencies is not statistically significant if multiple
comparisons are adjusted. Although FPRP report suggested our findings were noteworthy, it
only indicated that these observations deserve confirmation in larger independent studies.
Fourth, because obesity is involved in the etiology of diabetes and pancreatic cancer, its
confounding effect on NAT2 polymorphism and diabetes interaction on risk of pancreatic
cancer should be fully evaluated in future studies.

In summary, our findings provide further evidence that acetylation polymorphisms modify
susceptibility to pancreatic cancer especially among smokers and diabetics. These observations
need further replication.
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