Coupling of Methyl Coenzyme M Reduction with Carbon Dioxide Activation in Extracts of Methanobacterium thermoautotrophicum

JAMES A. ROMESSER[†] AND RALPH S. WOLFE*

Department of Microbiology, University of Illinois, Urbana, Illinois 61801

Received 10 May 1982/Accepted 12 July 1982

The stimulation of carbon dioxide reduction to methane by addition of 2-(methylthio)ethanesulfonate (CH₃-S-CoM) to cell extracts of *Methanobacterium thermoautotrophicum* was investigated. Similar stimulation of CO₂ reduction by CH₃-S-CoM was found for cell extracts of *Methanobacterium bryantii* and *Methanospirillum hungatei*. The CH₃-S-CoM requirement could be met by the methanogenic precursors formaldehyde, serine, or pyruvate, or by 2-(ethylthio)ethanesulfonate (CH₃CH₂-S-CoM), but not by other coenzyme M derivatives. Efficient reduction of CO₂ to CH₄ was favored by low concentrations of CH₃-S-CoM and high concentrations of CO₂. Sulfhydryl compounds were identified as effective inhibitors of CO₂ reduction. Both an allosteric model and a freeradical model for the mechanism of CO₂ activation and reduction are discussed.

Methanogens share in common the ability to oxidize hydrogen and reduce carbon dioxide to methane. Formate, formaldehyde, and methanol do not appear to be intermediates in CO₂ reduction (T. C. Stadtman, Ph.D. thesis, University of California, Berkeley, 1949; 13). Barker (1) proposed that the C₁ intermediates in methanogenesis are bound to one or more carriers. Evidence corroborating at least a portion of Barker's reductive reaction pathway was first provided by McBride and Wolfe (6) when they reported the partial purification of a heat-stable, acidic, dialyzable cofactor, CoM, which medi-ates C₁ transfer from [*methyl*-¹⁴C]methylcobala-min (14 CH₃-B₁₂) or from 14 CO₂ to form 14 CH₄ in cell extracts of Methanobacterium bryantii. Subsequently, Taylor and Wolfe (14) identified the active methyl acceptor as HS-CoM and the methylated form of the coenzyme was CH₃-S-CoM. CoM is presently believed to be the terminal C1 carrier in methanogenesis. Evidence also has been presented suggesting that CoM is the methanogenic C1 carrier at the formaldehyde level of oxidation (9). The C_1 carrier at the formyl and carboxyl levels of oxidation may be methanopterin, a new factor found in methanogens and characterized as a pterin in the laboratory of Keltjens and Vogels (4).

Recently, Gunsalus and Wolfe (3) showed that reduction of CH₃-S-CoM was coupled to the reduction of CO_2 in extracts of *Methanobacte*-

rium thermoautotrophicum. They found that the rate of CO_2 reduction to CH_4 was stimulated 30fold by the addition of CH_3 -S-CoM and that 11 mol of CO_2 was reduced for each mole of CH_3 -S-CoM reduced. Addition of HS-CoM, (S-CoM)₂, and (CH_3)₂-S⁺-CoM did not replace the requirement for CH_3 -S-CoM. Here we further characterize the nature of the coupling between CH_3 -S-CoM reduction and CO_2 activation in cell extracts of *M. thermoautotrophicum*. We refer to this phenomenon as the RPG effect (3).

MATERIALS AND METHODS

Abbreviations. CoM, coenzyme M; HS-CoM, 2mercaptoethanesulfonic acid; CH₃-S-CoM, methyl coenzyme M or 2-(methylthio)ethanesulfonic acid; (S-CoM)₂, 2,2'-dithiodiethanesulfonic acid; CH₃CH₂CH₂-S-CoM, 2-(ethylthio)ethanesulfonic acid; CH₃CH₂CH₂-S-CoM, 2-(propylthio)ethanesulfonic acid; (CH₃)₂-S⁺-CoM, 2-(dimethylsulfonium)ethanesulfonic acid; S=(CoM)₂, thiodiethanesulfonic acid; CHO-S-CoM, 2-(acetylthio)ethanesulfonic acid; HOOCCH₂-S-CoM, 2-(acetylthio)ethanesulfonic acid; adenosyl-S-CoM, S-(5'-deoxyadenosyl)mercaptoethanesulfonic acid.

M. thermoautotrophicum was grown anaerobically on 80% H₂:20% CO₂ at 60°C, and cell extracts were prepared by the procedures reported by Romesser and Wolfe (9). Assays for methane formation were performed in calibrated 5-ml reaction vials, and gas was measured chromatographically as described initially by Taylor and Wolfe (14) and modified by Romesser and Wolfe (9). A typical assay mixture for methane production contained 75 μ mol of PIPES buffer (1,4piperazinediethanesulfonic acid) at pH 6.6 and 60°C, 1.0 μ mol of ATP, 1.0 μ mol of MgCl₂, 0.5 μ mol of CH₃-

[†] Present address: Central Research & Development Department, Experimental Station, E. I. du Pont de Nemours & Co., Wilmington, DE 19898.

S-CoM, and 100 μ l of cell extract in a total volume of 350 to 400 μ l. The gas atmosphere was 80% H₂ and 20% CO₂, and each reaction was performed at 60°C. The amount of CO₂ reduced to CH₄ was determined by subtracting the micromoles of CH₄ expected to be formed by complete reduction of added CH₃-S-CoM from the total micromoles of CH₄ measured.

 $(S-CoM)_2$, and CH_3 -S-CoM were prepared as described by Romesser and Balch (8). CH_3CH_2 -S-CoM, $CH_3CH_2CH_2$ -S-CoM, and $S=(CoM)_2$ were synthesized as described by Gunsalus et al. (2). $(CH_3)_2$ -S⁺-CoM was prepared as described by Taylor and Wolfe (14).

CHO-S-CoM was prepared by a modification of the procedure described by Yamada et al. (16). HS-CoM (500 mg, 3.14 mmol) was mixed with 4.7 ml of N,N'dimethylformamide, 119 µl of 98% HCOOH (3.4 mmol), and 1.73 g of diphenylphosphorazidate (6.28 mmol; Aldrich Chemical Co.); the mixture was cooled in an ice bath, and 439 µl of triethylamine (3.14 mmol) was added. The mixture was stirred at 4°C for 3 days and then was poured into 630 ml of acetone. The mixture was stored at -20° C overnight; the precipitate which formed was filtered off and discarded. The filtrate was flash evaporated to an oil; 30 ml of acetone was added, and then ether was added to cause formation of a precipitate. The mixture was stored at -20° C overnight, and the acetone-ether solution was decanted from the clear gummy residue which formed. The liquid was flash evaporated to an oil; the oil was taken up in 15 ml of acetone, and ether was added to separate an oil. The gummy residue and oil were combined in 5 ml of water and applied to a Sephadex SP-C25 (Ca²⁺) column (2.5 by 20 cm) equilibrated with water. Fractions which gave a single spot when chromatographed on Eastman 6064 cellulose plates in acetone-water (16:3) and sprayed with silver fluoresceinate (12) were pooled and flash evaporated to dryness. CHO-S-CoM (145 mg, 23%) was crystallized from methanol-acetone. Analysis: calculated for $C_6H_{10}O_8S_4Ca \cdot H_2O$: C, 18.2; H, 3.1; S, 32.3; Ca, 10.1. Found: C, 18.1; H, 3.0; S, 32.6; Ca, 10.1.

To prepare CH₃CO-S-CoM, 101 mg of HS-CoM (0.634 mmol) was dissolved in 0.8 ml of formic acid in an ice bath; acetic anhydride (2 ml) was added, and the mixture was incubated for 24 h at 4°C. The reaction mixture was then flash evaporated to dryness, and CH₃CO-S-CoM (119 mg, 93%) was crystallized from methanol-diethyl ether. Analysis: calculated for C₄H₁₁NO₄S₂: C, 23.9; H, 5.5; N, 7.0; S, 31.9. Found: C, 24.0: H, 5.5; N, 6.5; S, 31.5.

HOOCCH₂-S-CoM (376 mg, 51%) was prepared by alkylation of HS-CoM (500 mg, 3.13 mmol) with ICH₂COOH (585 mg, 3.12 mmol) in 5 ml of NH₄OH. The NH₄OH was made anaerobic by bubbling with N₂ (10 ml/min for 20 min). The reaction was allowed to proceed overnight at 4°C in the dark. The reaction was stopped by pouring the mixture into 50 ml of acetone. The calcium salt was prepared by passing the oil down a Sephadex SP-C25 (Ca²⁺) column (2.0 by 35 cm) equilibrated with water. The effluent from the column was flash evaporated to dryness, and HOOCCH₂-S-CoM was crystallized from aqueous acetone. Analysis: calculated for C₄H₆O₃S₂Ca: C, 20.2; H, 2.5; S, 29.9; Ca, 16.8. Found: C, 20.2; H, 2.8; S, 30.0; Ca, 16.2.

Adenosyl-S-CoM was synthesized by a modification

of the procedure described by Wang and Hogenkamp (15). HS-CoM (1.11 g, 6.98 mmol) was dissolved in 12 ml of 2 N NaOH, and 1.0 g of 5'-chloro-5'-deoxyadenosine (3.5 mmol; gift of H. P. C. Hogenkamp) was added; the mixture was stirred vigorously at 80°C for 2 h. The mixture was cooled and acidified to pH 6.0 with dilute acetic acid and then was applied to a Dowex 50-X2 (H⁺, 2 by 30 cm) column equilibrated with water. The column was first washed with 150 ml of water, and then adenosyl-S-CoM was eluted with 1 M NH₄OH. The absorbance at 260 nm was measured, and each fraction with an absorbance >2 was pooled. The pooled fractions were flash evaporated to dryness, and then adenosyl-S-CoM (562 mg, 39%) was crystallized from hot water. Methanol was added to complete crystallization and to wash the crystals. Analysis: calculated for C₁₂H₁₇N₅O₆S₂ · H₂O: C, 35.3; H, 4.4; N, 17.2; S, 15.7. Found: Č, 35.7; H, 4.5; N, 17.3; S, 15.7.

The ¹H nuclear magnetic resonance spectra were recorded on a Varian HA-100 spectrometer and were in each case consistent with the assigned structure.

RESULTS

Optimal reaction conditions. Cell extracts of M. thermoautotrophicum reduced CO_2 to CH_4 at a rate of 39 nmol h^{-1} mg of protein⁻¹. The rate was increased to 1,084 nmol h⁻¹ mg⁻¹ by the addition of 0.5 µmol of CH₃-S-CoM; approximately 4 mol of CO₂ were reduced per mol of CH₃-S-CoM added. This stimulation of CO₂ reduction (RPG effect) could be repeated many times by further additions of CH₃-S-CoM. These results are consistent with those reported by Gunsalus and Wolfe (3), except that they obtained reduction of 11 mol of CO₂ per mol of CH_3 -S-CoM added. We have found the molar yield of CO₂ reduced per CH₃-S-CoM added to vary from 2 to 24 depending on the cell extract preparation and the reaction conditions used.

Reaction conditions for the RPG effect with cell extracts of *M. thermoautotrophicum* were optimized to give maximal conversions of CO₂ to CH₄ (Fig. 1). Maximal CO₂ reduction was observed at pH 6.2 and at buffer concentrations of 200 to 340 mM PIPES. Addition of less than 100 μ l of cell extract resulted in decreased CO₂ reduction. As reported previously (3), the RPG effect required ATP. Under the conditions used in these assays, the addition of 0.15 to 1.0 μ mol of ATP gave maximal activity. The ATP requirement was catalytic; 17 mol of CO₂ was reduced per mol of ATP added. Mg²⁺ was stimulatory, with optimal activity at an MgCl₂ to ATP ratio of 1:1. Inhibition of activity was observed as this ratio exceeded 10:1.

Distribution of the RPG effect in methanogens. Cell extracts of several methanogens were examined for the ability to display an RPG effect. Extracts of M. bryantii and Methanospirillum hungatei showed an increased rate of methanogenesis and an increase in the amount of CO₂

FIG. 1. Optimal reaction conditions for the RPG effect. Formation of CH₄ was measured as described in the text. Each reaction mixture contained (unless otherwise indicated): 48 μ mol of PIPES buffer (pH 6.6) at 60°C, 2.5 μ mol of MgCl₂, 1.25 μ mol of ATP, 0.5 μ mol of CH₃-S-CoM, and 100 μ l of cell extract. The gas atmosphere was 80% H₂ and 20% CO₂. The reaction volume was 350 μ l. (A) Effect of pH. (B) Effect of PIPES buffer concentration. (C) Effect of protein concentration (100 μ l of extract = 4.5 mg of protein).

reduced to CH_4 when CH_3 -S-CoM was added to the reaction mixture in the presence of an H_2 - CO_2 atmosphere (Table 1). With extracts of *Methanobacterium formicicum*, *Methanosar*- cina barkeri, and Methanobrevibacter ruminantium, on the other hand, little or no evidence of an RPG effect was found.

Induction of the RPG effect. When added to cell extract in the presence of an H_2 atmosphere, not only CH₃-S-CoM but also HCHO, serine, and sodium pyruvate provided precursors that were reduced to methane (Table 2); CH₃CH₂-S-CoM was reduced to C_2H_6 . In the presence of an H_2 and CO_2 atmosphere, these same compounds markedly stimulated the amount of CO₂ reduced to CH₄. Several other CoM derivatives were tested for their activity in cell extracts and for their ability to stimulate CO_2 reduction. The thiolesters CHO-S-CoM and CH₃CO-S-CoM were found to be enzymically hydrolyzed at 980 and 225 nmol h^{-1} mg of protein⁻¹, respectively. Adenosyl-S-CoM, $S=(CoM)_2$, $CH_3CH_2CH_2$ -S-CoM, and HOOCCH₂-S-CoM were not metabolized; none of these CoM derivatives caused an RPG effect when added to cell extracts, and it was shown previously (3) that HS-CoM (S-CoM)₂, and $(CH_3)_2$ -S⁺-CoM did not replace CH₃-S-CoM in eliciting the RPG effect. Additional compounds tested as methanogenic precursors and as inducers of the RPG effect which were inactive in both tests included calcium lactate, methanol, formate, acetate, homoserine, serinol, isoserine, and α -methylserine.

It was found (Table 2) that methanogenic precursors at the methyl (CH₃-S-CoM), hydroxymethyl (serine), and carboxyl (pyruvate) levels of oxidation were each able to induce the RPG effect. These results suggest that the stage of CO_2 reduction stimulated in the RPG effect is one preceding the point at which the carboxyl group of compounds such as pyruvate enter the methanogenic pathway.

Effect of CH₃-S-CoM concentration. Gunsalus and Wolfe (3) found that when sequential additions of CH₃-S-CoM were made to cell extracts of M. thermoautotrophicum, the amount of CO_2 reduced to CH₄ in the RPG effect was directly proportional to the amount of CH₃-S-CoM added, each micromole added resulting in the reduction of several micromoles of CO₂ to CH₄. We have studied the effect of CH₃-S-CoM concentration on both the rate of CH4 formation and on CH₄ yield (moles of CH₄ formed per mole of CH₃-S-CoM added) in the RPG effect (Fig. 2). When the rate of methanogenesis from CH₃-S-CoM (H₂ atmosphere) was compared with the rate of methanogenesis in the RPG effect (H₂- CO_2 atmosphere), it was found that CO_2 increased the overall rate of methane formation. Previously, Romesser and Wolfe (10) used partially purified components of the methanogenic system, which catalyzed the reduction of CH₃-S-CoM but not of CO_2 , to show that addition of CO_2 to the gas atmosphere increased the rate of

Organism	Protein content (mg)	Rate of CH ₄ producti	Additional		
		CH_3 -S-CoM + H_2	$H_2 + CO_2$	$\begin{array}{c} CH_3-S-CoM + \\ H_2 + CO_2 \end{array}$	nmol of CO ₂ reduced in RPG effect ^b
Methanobacterium bryantii	5.0	115	235	541	2,001
Methanospirillum hungatei	4.2	409	0	655	708
Methanobacterium formicicum	4.0	358	0	386	92
Methanobrevibacter ruminantium	5.0	288	0	228	24
Methanosarcina barkeri	4.8	105	77	72	0

TABLE 1. Survey of methanogens for the presence of the RPG effect

^{*a*} Each reaction mixture contained 37.5 μ mol of PIPES buffer (pH 6.9), 1.0 μ mol of ATP, 1.0 μ mol of MgCl₂, 0.25 μ mol of CH₃-S-CoM (where indicated), and 100 μ l of cell extract in a volume of 165 μ l.

^b Each reaction was performed at 40°C and allowed to continue to completion. The data are corrected for background CH₄ formation in the absence of added substrate. This value varied among extract preparations, between 30 and 60 nmol of CH₄ being formed per 100 μ l of extract during the reaction period.

 CH_4 formation from CH_3 -S-CoM. These results suggest that CO_2 is an allosteric effector of the methyl reductase.

At high concentrations of CH₃-S-CoM, at which the rate of methanogenesis was nearly maximal, the yield of CH₄ was directly proportional to the amount of CH₃-S-CoM added (Fig. 2), as previously reported (3). However, at low concentrations of CH₃-S-CoM, the CH₄ yield was inversely related to the initial concentration of CH₃-S-CoM added or to the observed rate of methanogenesis. This inverse relation of rate of methane formation and CH₄ yield also was found when substrates other than CH₃-S-CoM were used to induce the RPG effect (Table 2).

TABLE 2. Inducers of the RPG effect

Substrate ^a	CH ₄ formation (nmol h^{-1} mg of protein ⁻¹) in at- mosphere of: ^b		Total CH ₄ formed (nmol) ^c	
	H ₂	$H_2 + CO_2$	H ₂	$H_2 + CO_2$
CH ₃ -S-CoM	723	761	506	1,373
Formaldehyde	668	878	490	1,624
L-Serine	265	688	520	3,112
Sodium pyruvate	67	387	205	2,309
CH ₃ CH ₂ -S-CoM	0	356	0	1,212 ^d

^a Each reaction mixture contained 500 nmol of substrate, and each reaction was performed as described in the text.

^b Data are corrected for background CH₄ measured in a control reaction lacking added substrate or CO_2 as noted in Table 1, footnote b.

^c Measured after completion of the reaction.

^d CH₃CH₂-S-CoM was reduced to C₂H₆.

FIG. 2. Effect of CH₃-S-CoM concentration on methane formation in the RPG effect and in the methyl CoM reductase. Each reaction was performed as described in the text. The reaction volume was 400 μ l. Activity of the methyl CoM reductase was measured in an H₂ atmosphere (\oplus , \bigcirc). Activity of the RPG effect was measured in an 80% H₂:20% CO₂ atmosphere (\blacksquare , \square).

FIG. 3. Effect of CO_2 concentration on methane formation in the RPG effect. Each reaction was performed as described in the text. The reaction volume was 400 µl. The gas atmosphere was H₂; CO₂ was added in the amounts indicated.

CH₃-S-CoM and HCHO, which were rapidly reduced to CH₄, themselves gave CH₄ yields of 2.7 and 3.3, respectively, in the RPG effect. However, when compounds which themselves were reduced slowly were used to induce the RPG effect (e.g., serine or pyruvate), a high CH₄ yield was obtained (6 and 11 mol of CO₂ reduced per mol of substrate, respectively.)

The rate of reduction of the substrate inducing the RPG effect is not the sole factor to be considered, however. By measuring the appearance of C_2H_6 in the gas atmosphere, it was determined that cell extracts reduced 500 nmol of CH₃CH₂-S-CoM to C_2H_6 at the relatively slow rate of 145 nmol h⁻¹ mg of protein⁻¹. Accordingly, a high CH₄ yield in the RPG effect was expected. The CH₄ yield obtained, however, was only 2.4. These results suggest that the CH₄ yield in the RPG effect is affected not only by the rate of reduction of the inducer but also by the concentration of CH₃-S-CoM (or CH₃CH₂-S-CoM) in the reaction mixture.

Effect of CO₂ concentration. Previously it was shown that addition of 500 nmol of CH₃-S-CoM to the reaction mixture resulted in maximal activity of the methyl reductase. When increasing amounts of CO₂ were added to the gas atmosphere (Fig. 3), it was found that the rate of methanogenesis increased, again supporting the idea that CO₂ acts as an allosteric effector for the methyl reductase. Maximal rates of methanogenesis were achieved in an atmosphere of approximately 2% CO₂. Maximal yield of methane from CO_2 was not obtained until the atmosphere was 10% CO_2 , however. This suggests that CO_2 not only is an allosteric effector for the methyl reductase but also stabilizes the RPG effect.

Inhibition of the RPG effect. CoM derivatives inhibited both the methyl reductase and the RPG effect (Table 3), although inhibition of the RPG effect was greater. None of the CoM derivatives inhibited recovery of CH₄ from CH₃-S-CoM. However, those CoM derivatives that could be easily reduced to HS-CoM [(S-CoM)₂ or CH₃CO-S-CoM] or which had sulfhydryl groups themselves significantly inhibited the efficiency of CO₂ reduction in the RPG effect.

Gunsalus et al. (2) demonstrated that HS-CoM (>10 mM) inhibited the rate of CH₃-S-CoM reduction by cell extracts. Similar inhibition of the methyl reductase was observed here (Fig. 4); however, the RPG effect was more strongly inhibited by HS-CoM. HS-CoM markedly decreased both the rate of methanogenesis and the amount of CO₂ reduced to CH₄. In a similar fashion, cysteamine (25 mM) had no effect on the methyl reductase, but decreased the rate of the RPG effect by 40% and the amount of CO₂ reduced to CH₄ by 60%. With 57 mM glutathione, the methyl reductase was not inhibited, but the RPG effect showed a 13% inhibition in rate and a 29% decrease in the amount of CH₄ produced.

DISCUSSION

McBride presented the first evidence of an RPG-like effect in cell extracts of a methanogen

TABLE 3. Inhibition of methanogenesis by CoM derivatives

	% Inhibition ^a with:			
Inhibitor	CH ₃ -S-CoM + H ₂ ^b		$\begin{array}{c} CH_3-S-CoM + \\ H_2 + CO_2 \end{array}$	
	Rate	Total CH₄	Rate	Total CH
(S-CoM) ₂	64.1	0	71.3	38.5
CH ₃ CO-S-CoM	39.4	0	62.6	23.9
$S = (CoM)_2$	5.5	0	47.6	2.6
COOHCH ₂ -S-CoM	33.3	0	33.3	0
3-Mercaptopropane- sulfonate	32.4	0	52.6	14.6
4-Mercaptobutane- sulfonate	20.1	0	54.5	26.3

^a Each reaction mixture contained 48 μ mol of PIPES buffer (pH 6.9), 2.5 μ mol of ATP, 2.5 μ mol of MgCl₂, 2.5 μ mol of CH₃-S-CoM, 20 μ mol of inhibitor, and 200 μ l (9.2 mg of protein) of cell extract in 370 μ l total volume. The data for total CH₄ were corrected for background CH₄ measured in a control reaction lacking the substrates CH₃-S-CoM or CO₂ as noted in Table 1, footnote b.

^b Each reaction mixture was preincubated for 10 min at 60° C before CH₃-S-CoM was added.

(B. C. McBride, Ph.D. thesis, University of Illinois, Urbana, 1970). He found that in extracts of M. bryantii only 50% of the ¹⁴C added as ¹⁴CO₂ was reduced to ¹⁴CH₄. However, when serine was added, 100% of the ¹⁴CO₂ was reduced to ¹⁴CH₄. This stimulation occurred whether serine was added initially or after the original CH₄ formation ceased. Acetate, pyruvate, glycine, glyoxalate, or glycolate could not replace serine. The results presented here with M. thermoautotrophicum clearly demonstrate that the presumed end products of CH₃-S-CoM reduction, CH₄ and HS-CoM or (S-CoM)₂, are not directly involved in the RPG effect. Instead, the finding that CH₃-S-CoM or CH₃CH₂-S-CoM, but not other CoM derivatives, stimulate CO₂ reduction suggest that the RPG effect is caused either by an allosteric effect of CH₃-S-CoM (or CH₃CH₂-S-CoM) or by generation of some previously undescribed chemical intermediate during the metabolism of CH₃-S-CoM. It appears that any compound which can itself be reduced to CH₄ also is able to induce an RPG effect in cell extracts of M. thermoautotrophicum. McBride and Wolfe (7) have shown that C-3 of serine and C-1 of pyruvate are reduced to CH₄ in cell extracts of *M. bryantii*. Metabolism of these methanogenic precursors is expected in M. thermoautotrophicum; Zeikus et al. (17) have demonstrated coenzyme A-dependent pyruvate dehydrogenase activity in extracts of M. thermoautotrophicum.

Any proposed model for the RPG effect must explain several features: (i) What is the nature of the stimulation event itself? (ii) By what mechanism is CO_2 reduction eventually stopped so that restimulation of CO_2 reduction is required? (iii) Why are sulfhydryl compounds effective inhibitors of the RPG effect? Finally, the model must be consistent with the observation that the yield of CH_4 from CO_2 is higher not only at high concentration of CO_2 but also when the rate of reduction of the inducer is slow or when low concentrations of CH_3 -S-CoM are used.

At least two models appear to satisfy these requirements. In the first model, CH₃-S-CoM is required by cell extracts as an allosteric effector for CO₂ activation. In the second model, CH₃-S-CoM is metabolized by cell extracts to form a compound required for activation of CO₂. The allosteric model for the RPG effect requires not only that CH₃-S-CoM be a substrate for the methyl reductase but also be an effector for the binding or activation of CO_2 for its subsequent reduction to CH₄. In this system CO₂ would continue to be reduced as long as the rate of CH₃-S-CoM reduction was less than the rate of CO_2 activation, or as long as other methanogenic precursors were added to the extract to regenerate CH_3 -S-CoM. If the K_m for CO_2 bind-

FIG. 4. Inhibition of the RPG effect and the methyl CoM reductase with HS-CoM. Each reaction was performed as described in the text. The reaction volume was 370 μ l. Activity of the methyl CoM reductase (MR) was measured in an H₂ atmosphere (\bullet , \bigcirc). Activity of the RPG effect was measured in an 80% H₂:20% CO₂ atmosphere (\blacksquare , \square).

ing or activation were relatively high, then high CO_2 concentrations would be expected to improve CH₄ yield. Low concentrations of CH₃-S-CoM and the subsequent lower rate of CH₃-S-CoM reduction would also favor larger CH₄ yields. In the allosteric model CH₃CH₂-S-CoM might be expected to have sufficient chemical similarity to CH₃-S-CoM to provide allosteric activity. HS-CoM, on the other hand, might be a competitive inhibitor of CH₃-S-CoM. The sulf-hydryls cysteamine and glutathione would be inhibiting in a different fashion, however, since they do not block the methyl reductase.

The results presented here are also consistent with a model which proposes that the RPG effect is due to an unstable intermediate generated during the reduction of CH₃-S-CoM. The observed high CH₄ yield at high concentrations of CO₂ suggests that the RPG intermediate is stabilized by CO₂, perhaps by reaction with it. The intermediate is strongly inhibited by sulfhydryl compounds and may be self-quenching, since at high concentrations of CH₃-S-CoM, at which high concentrations of the intermediate would be expected, the observed CH₄ yield was low.

One type of compound which would satisfy these observations is a free radical. For example, the thiyl free radical of CoM, \cdot S-CoM, could be generated in the reduction of CH₃-S-CoM

$$CH_3$$
-S-CoM + $H_2 \rightarrow \cdot$ S-CoM + H \cdot + CH₄.

FIG. 5. Proposed model for the RPG effect and for the reduction of CO_2 to CH_4 in extracts of *M. thermoautotrophicum*.

The CoM thivl free radical formed could then react with CO₂ directly or, alternatively, · S-CoM could abstract a proton from another molecule to form a new free radical which could react with CO₂. Formation of a free radical would allow part of the energy derived from the reduction of CH₃-S-CoM with H₂ to be conserved in the activation of CO₂. A candidate for an alternative carrier may be methanopterin, a pterin molecule recently identified by Keltjens and Vogels (4), which appears to carry a C_1 unit at the carboxyl level of oxidation. John Leigh (personal communication) found that methanopterin was required for methanogenesis from CO₂ by resolved cell extracts of M. thermoautotrophicum, but he did not determine that it actually carried a C_1 moiety.

If a free radical is involved in the RPG effect, competing reactions such as disulfide formation or condensation of the thiyl radical and the hydrogen atom to form HS-CoM could account for the observed instability of the RPG intermediate. Similarly, it would be predicted that the addition of free radical scavengers to the system would reduce the rate of methanogenesis from CO₂ and decrease the amount of CO₂ reduced to CH₄. These predictions are consistent with the observations made when sulfhydryls, such as HS-CoM, cysteamine, glutathione, or 3-mercaptopropanesulfonate, were added to cell extracts. Sulfhydryls are known to be good free radical scavengers (5), presumably acting by a process of hydrogen donation.

The Barker scheme (1) for the reduction of CO_2 to CH_4 has been reexamined in view of the observations made on the RPG effect in cell extracts of *M. thermoautotrophicum*. A pathway for CO_2 reduction in this methanogen is proposed (Fig. 5). As in the Barker model, the

 C_1 moieties are bound throughout, CoM being a carrier at the methanol and formaldehyde levels of oxidation: methanopterin may be a carrier at the formate and carboxyl levels (4). Reduction of CH₃-S-CoM and activation of CO₂ are coupled reactions. In this pathway, the RPG effect would be elicited by adding any methanogenic precursor to cell extracts, including those which enter the pathway via decarboxylation of RCOOH (e.g., pyruvate). This pathway is proposed only as a working hypothesis for future experimentation. Blocking the RPG effect with spin-trapping reagents, generating free radicals by photolysis or chemical means, or demonstrating free radical formation by electron spin resonance may be useful techniques for evaluating intermediates in the RPG effect.

ACKNOWLEDGMENTS

The excellent technical assistance of V. Gabriel, D. Szurgot, R. Mangoff, P. Erazo, and C. Hovde is gratefully acknowledged. Special thanks are given to Y. Wang and H. P. C. Hogenkamp for assisting in the synthesis of adenosyl-S-COM and to W. Whitman for helpful discussions.

This work was supported by National Science Foundation grant no. PCM 78-25141 and Public Health Service grant no. AI 12277 from the National Institutes of Health. J.A.R. was the recipient of Public Health Service traineeship no. GM07-283(603).

LITERATURE CITED

- Barker, H. A. 1956. Biological formation of methane, p. 1– 27. In Bacterial fermentations. John Wiley & Sons, Inc., New York.
- Gunsalus, R. P., J. A. Romesser, and R. S. Wolfe. 1978. Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase system of *Methanobacterium thermoautotrophicum*. Biochemistry 17:2374– 2377.
- Gunsalus, R. P., and R. S. Wolfe. 1977. Stimulation of CO₂ reduction to methane by methyl-coenzyme M in extracts of *Methanobacterium*. Biochem. Biophys. Res. Commun. 76:790-795.
- Keltjens, J. T., and G. D. Vogels. 1981. Novel coenzymes of methanogens, p. 152–158. In G. Dalton (ed.), Microbial growth on C₁ compounds. Heyden Publishers, London.
- Kice, J. L. 1973. Sulfur center radicals, p. 711-740. *In L.* Koche (ed.), Free radicals, vol. 2. John Wiley & Sons, Inc., New York.
- McBride, B. C., and R. S. Wolfe. 1971. A new coenzyme of methyl transfer, coenzyme M. Biochemistry 10:2317– 2324.
- McBride, B. C., and R. S. Wolfe. 1971. Biochemistry of methane formation. Adv. Chem. Ser. 105:11-22.
- Romesser, J. A., and W. E. Balch. 1980. Coenzyme M: preparation and assay. Methods Enzymol. 67:545-552.
- Romesser, J. A., and R. S. Wolfe. 1981. Interaction of coenzyme M and formaldehyde in methanogenesis. Biochem. J. 197:565-571.
- Romesser, J. A., and R. S. Wolfe. 1981. CDR factor, a new coenzyme required for carbon dioxide reduction to methane by extracts of *Methanobacterium thermoautotrophicum*. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 70:99-109.
- Slater, T. F. 1972. Free radical mechanisms of tissue injury, p. 50-52. Pion Limited, London.
- Stahl, E. (ed). 1969. Thin-layer chromatography. Springer-Verlag, Berlin.

Vol. 152, 1982

- Taylor, G. T., D. P. Kelley, and S. J. Pirt. 1976. Intermediary metabolism in methanogenic bacteria (*Methanobacterium*) p. 173–180. *In* H. G. Schlegel, G. Gottschalk, and N. Pfennig, (ed.), Microbial production and utilization of gases (H₂, CH₄, CO). E. Goltze, K.G., Gottingen, Germany.
- Taylor, C. D., and R. S. Wolfe. 1974. Structure and methylation of coenzyme M (HSCH₂CH₂SO₃⁻). J. Biol. Chem. 249:4879–4885.
- Wang, Y., and H. P. C. Hogenkamp. 1978. A reinvestigation of the synthesis of 2'-deoxyadenosylhomocysteine. J. Org. Chem. 43:998-999.
- Yamada, S., Y. Yokoyama, and T. Shiori. 1974. A new synthesis of thiolesters. J. Org. Chem. 39:3302-3303.
 Zeikus, J. G., G. Fuchs, W. Kenealy, and R. K. Thauer.
- Zeikus, J. G., G. Fuchs, W. Kenealy, and R. K. Thauer. 1977. Oxidoreductases involved in cell carbon synthesis of *Methanobacterium thermoautotrophicum*. J. Bacteriol. 132:604–613.