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ABSTRACT We have proposed that the gap junctions between amphibian 
blastomeres are comprised of voltage-sensitive channels. The kinetic properties 
of the junctional conductance are here studied under voltage damp. When the 
transjunctional voltage is stepped to a new voltage of the same polarity, the 
junctional conductance changes as a single exponential to a steady-state level. 
The time constant of the conductance change is determined by the existing 
transjunctional voltage and is independent of the previous voltage. For each 
voltage polarity, the relations between voltage, time constant, and steady-state 
conductance are well modeled by a reversible two-state reaction scheme in 
which the calculated rate constants for the transitions between the states are 
exponential functions of voltage. The calculated rate constant for the transition 
to the low-conductance state is approximately twice as voltage dependent as 
that for the transition to the high-conductance state. When the transjunctional 
voltage polarity is reversed, the junctional conductance undergoes a transient 
recovery. The polarity reversal data are well modeled by a reaction scheme in 
which the junctional channel has two gates, each with opposite voltage sensitiv- 
ity, and in which an open gate may close only if the gate in series with it is 
open. A simple explanation for this contingent gating is a mechanism in which 
each gate senses only the local voltage drop within the channel. 

I N T R O D U C T I O N  

As described previously, the conductance  of  the junct ions  between blastomeres 
of  early amph ib i an  embryos is strongly dependent  on t ransjunct ional  voltage 
(Harris, 1979; Spray et al., 1979 and  1981). The  steady-state conductance  for 
each polari ty of t ransjunct ional  voltage is well fit by equat ions describing 
equi l ibr ium behavior  of  a two-state system in which the energy difference 
between the states is a linear function of  t ransjunct ional  voltage and  transit ions 
between states occur by a reversible first-order process. We therefore proposed 
tha t  there are channels th rough the junc t iona l  me mb r a n e  tha t  can exist in 
either a high- or a low-conductance state, depending  on the t ransjunct ional  
voltage (Spray et al., 1979 and  1981). 

The  present paper  examines the junct ional  conductance  dur ing  transitions 
between equi l ibr ium states at different voltages. For t ransjunct ional  voltages 
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of one sign, the conductance changes are well described by first-order kinetics. 
The time-course of transitions when transjunctional potentials are reversed in 
sign suggests that there are two mirror symmetrical gates in series in the 
junctional channels, each of which is affected by the transjunctional voltage 
only when the apposed gate is open. 

M E T H O D S  

Blastomeres from early axolotl (Ambystoma mexicanum) embryos were mechanically 
dissociated as pairs, impaled with microelectrodes, and voltage clamped as described 
in the preceding paper (Spray et al., 1981). Each cell of a pair was voltage clamped 
to a common holding potetial, and the voltage of one cell of the pair (Vb) was stepped 
to various levels. Junctional current (I$) was measured as the current delivered to the 
other cell to hold its potential (Va) constant. 

R E S U L T S  

Time-Course of the Jumtional Conductance Changes 

During a small transjunctional voltage step of either polarity, the junctional 
current was constant (Fig. 1 A), but, for larger voltage steps, junctional 
currents declined (Fig. 1 B; see also Fig. 3 of Spray et al. [1981]). The 
relaxation of the junctional conductance g from its initial level go to its steady- 
state level g| was well fit by an exponential of the form (see Appendix) 

g = g| + ( g o -  go) exp (-t/~'). (1) 

For Fig 1 C and D, the junctional conductances during three transjunctional 
voltage steps were calculated from digitized junctional currents and trans- 
junctional voltages, and the changes were plotted semilogarithmically with 
respect to time (Fig. 1 C). The relations are linear, with a negative slope that 
is steeper for larger transjunctional voltages. These data  support the assertion 
that the conductance changes for voltages of a single polarity are produced by 
a simple first-order process. 

There was no detectable delay in the onset of  the decline of junctional 
conductance within 3 ms after a voltage step, the settling time of the current 
record. Furthermore, the conductances calculated from extrapolation to time 
zero are nearly identical. Identity would obtain if there were no delay in the 
effect of  transjunctional voltage on the conductance or if the delay were 
proportional to the time constant of decline of the conductance at all voltages, 
which would suggest that it was part of  the same kinetic process. 

The recovery of the junctional conductance when the transjunctional 
voltage was returned to zero after a large voltage step also followed an 
exponential time-course (Fig. 2). The increase in conductance was monitored 
by following the large step with shorter test pulses at various delays (Fig. 2, 
inset). The junctional current flowing at the onset of the test pulse reflected 
the instantaneous junctional conductance. These data are plotted in Fig. 2 as 
In [(go, -- g)/g| vs. time after return to zero transjunctional voltage and are 
well fit by a straight line. The exponential time-course of conductance recovery 
is also consistent with a first-order process. 



H A R R I S  E T  A L .  

A 
Vb 

Voltage-dependent Junctional Conductance: Kinetic Properties 

B 
I I I I I I  - -  

I 

t 

m 

I I 

I 

97 

I I r  

m 

150. ,v  
. . . _  I IO0"A 

O.S,' 

C2L Df __ 

-'1 \ - , . . v  j .... 
\ 

, . ,  q 

FIGURE 1. Exponential decay of junctional conductance. A pair of cells were 
voltage clamped and stepped to various voltages, and junctional currents were 
measured as described in the preceding paper (Spray et al., 1981). The voltages 
of the two cells are V, and Vb, and the junctional current Ij is that supplied to 
one to keep its voltage (Va) constant. (A) During a small transjunctional voltage 
step, the junctional current remained constant. (B) During a larger transjunc- 
tional voltage step, the junctional current fell to a low steady-state level over 
several hundred milliseconds (from Fig. 4 of Spray et al. [1981]). (C) Semilog 
plot of junctional conductance for various transjunctional voltages. Junctional 
currents during transjunctional voltage steps were digitized, and plots of these 
values are shown in D. Current, divided by the transjunctional voltage, yielded 
junctional conductance. For each voltage, the steady-state conductance g** was 
subtracted from the changing conductance g and In (g - g**) was plotted against 
time. The slope a n d y  intercept, In (go - g| where go is conductance at time 
zero, was evaluated by linear regression. The value of go was determined from 
In (go - g| and g**. The same data and regression lines were then plotted in C 
as In (g - g**) + In [go/(go - g| vs. time, which gives In (go) as they intercept. 
The points are well fit by straight lines, indicating that junctional conductance 
declined as simple exponential function of time. The rate of decay of the 
junctional conductance increased with larger transjunctional voltages, and the 
computed values of go are nearly identical. 
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Effect of Previous History on the Relaxation Time Constant 

If  the conductance changes were due to a reversible first-order process in 
which the forward and reverse rates were solely a function of voltage, the 
relaxation time constant at a given voltage would be independent of the 
previous voltage history of the junction. Thus, the relaxation of the current to 
its steady-state level should occur with the same rate, whether the transjunc- 
tional voltage is stepped to a given level from larger or smaller potentials. 
Experiments of the type shown in Fig. 3 showed that the time constant of the 
relaxation at a given voltage after a step from higher or lower voltages was 
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FIGURE 2. Exponential recovery of conductance after termination of a trans- 
junctional voltage step. After identical long lasting voltage steps that lowered 
the junctional conductance, shorter voltage steps were given in successive trials 
at various times thereafter to assess the recovery of junctional conductance 
(inset). The difference between the instantaneous conductance g at the beginning 
of each of the shorter steps and its (steady-state) value for long intervals between 
conditioning and test pulses g| was determined. Then In [(g| - g)/g| was 
plotted against time. A fit determined by linear regression fits the points well, 
which indicates that junctional conductance recovers in an exponential fashion. 

the same, whether the conductance increased or decreased (all voltages being 
of  the same sign; the transitions when polarity was reversed are considered 
below). In the plots of In I g - g| I against time, the slopes are equal, indicating 
that a single time constant characterized the relaxation at each transjunctional 
voltage. 

Voltage Dependence of the Relaxation Time Constant 
The ability to measure the time constant independent of previous history 
facilitated measurement of the time constant over a wide range of transjunc- 
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tional voltages. For large steps from zero voltage, the conductance decrease 
was large, and its time-course readily measured. For small voltage steps, the 
conductance change was small, and its time-course more difficult to measure. 
In stepping to a small voltage from a large one, large increases in conductance 
were obtained whose time-courses were more readily measured. Using such a 
stimulation paradigm (Fig. 3, inset), the relaxation time constants were deter- 
mined over a wide range of transjunctional voltages. The time constants are 
plotted as a function of voltage in Fig. 4 A (• and filled circles are the 
experimentally determined values for decreasing and increasing conductances, 
respectively). 
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FIouRF. 3. Lack of effects of previous history on relaxation time constant. The 
inset shows the stimulation paradigm used to step to a given voltage from zero 
voltage and from a large prepulse voltage. The relaxations of the conductance 
to its steady state value [ g - g| [ were plotted semilogarithmically as a function 
of time for pulses with (O) and without (• a prepulse. The slopes of these lines 
are equal, indicating that the rate of relaxation of the currents is not influenced 
by the previous voltage history of the junction. 

Calculation of Rate Constants 

The kinetic data  presented in Figs. 1-4 are consistent with the conductance 
changes mediated by a first-order process dependent on voltage. Such a 
process may be modeled assuming that the conductance changes are due to 
the distribution of a population of channels between high- and low-conduct- 
ance states according to the free energy difference between the states, where 
the energy difference is a function of transjunctional voltage. The rate of the 
transition of a population of channels from one conductance state to the other 
is determined by the difference between the free energy of the initial state and 
the free energy of the transition state through which the channel must pass to 
reach the other state (Glasstone et al., 1941). These energy differences are the 
activation energies and, for a voltage-dependent system such as this, are 
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FIGURE 4. Experimental and calculated time and rate constants. (A) Depen- 
dence of the time constant on voltage. The time constants of conductance 
changes were measured with the stimulation paradigms shown in Fig. 3. and 
plotted as a function of voltage. The • represent values derived from relaxa- 
tions during decreasing conductance (no prepulse), and the filled circles values 
from relaxations during increasing conductance (larger preputse). The contin- 
uous curve was calculated according to ~" = 1/(a + •), where a and j8 were 
determined by Eqs. 6 and 7. (B) Dependence of rate constants on voltage. The 
values for opening and closing rate constants were calculated from Eqs. 2 and 
3. The continuous curves are exponentials determined by linear regression fits 
to semilog plots (Eqs. 6 and 7). The calculated curves for time and rate constants 
closely approximate the data, which indicates that the kinetics of this system are 
consistent with the model proposed. 

changed  by voltage due  to the in terac t ion  of  charges in the  channe l  molecule  
with the electric field (see Discussion). T h e  react ion m a y  be represented  by  

O~ 

open --~ closed, 
B 
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where a and fl are voltage dependent. For such a system, at a given voltage, 
a and fl are calculable from the time constant ~" and the normalized steady- 
state conductance G| (see Eqs. A3 and A4 in Appendix): 

a = G| (2) 

and 

/3  = (1 - ( 3 )  

In these equations, G. can be considered an activation parameter  representing 
the fraction of the voltage-sensitive component of the conductance reached at 
steady state for a given voltage. According to a model in which the activation 
energies are linear functions of transjunctional voltage (see Discussion), the 
relation between the rate constants and voltage should be described by 

a -- X exp [ - A , , ( V -  Vo)] (4) 

and 

/7 - X exp [Aa(V-  V0)], (5) 

where A, and Aa are the respective voltage sensitivities of  the rates, V0 is the 
voltage at which the steady-state conductance is half maximal, and X is a 
constant, the rate for which a =/3,  reached at V = V0. 

For the experiment whose time constant data  are shown in Fig. 4 A, a and 
/7 were calculated from Eqs. 2 and 3 using the values of 1" shown and values 
of G| determined by the equilibrium modeling procedure described in the 
preceding paper (Spray et al., 1981). The calculated rates are plotted as a 
function of voltage in Fig. 4 B and are well fit by exponentials determined 
from linear regression of semilogarithmic plots of a and /3  (not illustrated). 
The slopes of the semilogarithmic relations give the voltage sensitivities, and 
the coordinates of their point of intersection are V0 and X. From these data  

and 

ct -- 0.0013 exp [ - 0 . 0 7 7 ( V -  14.7)] (6) 

B ~ 0.0013 exp [0 .14(V-  14.7)]. (7) 

The voltage dependence of the closing rate is approximately twice that of  the 
opening rate. 

From Eqs. 6 and 7, "r was calculated as 1/(a + fl) (Eq. A4) and plotted as 
a continuous line in Fig. 4 A. The adequacy of the fit of  the calculated curves 
to the experimentally derived values for time constants and rate constants 
indicates that for either polarity of applied voltage the kinetics are consistent 
with a two-state model in which the activation energies for the transitions 
depend linearly on voltage. As discussed in the next section, transitions 
between voltages of opposite sign require a more complicated reaction scheme. 

Voltage Polarity Reversal 
Because voltages of either polarity affected the junctional conductance, it was 
of interest to investigate the conductance changes when the transjunctional 
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voltage was switched from one polari ty to the other. Junc t iona l  currents 
obta ined  dur ing a voltage step of  constant  magn i tude  when given alone and  
when preceded by voltage steps of  various magni tudes  of  the opposite polari ty 
are shown in Fig. 5, When  the test pulse was preceded by a prepulse of  
opposite polari ty that  reduced the junct ional  conductance  (Fig. 5, middle 
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FIGURE 5. Transient recovery of junctional conductance with voltage polarity 
reversal. For the upper current trace, a transjunctional voltage step was given 
during which junctional current declined exponentially to a steady-state value. 
For the second and third current traces, the same voltage step was given, but 
was preceded by voltage steps of opposite polarity. In both traces, junctional 
current during the test pulse showed a transient recovery from the initial values 
(arrows) before declining to its steady-state level. The transient increase indicates 
that in moving between two low-conductance states induced by voltages of 
opposite polarity, the junctional membrane passed through a state of higher 
conductance. The patterns of voltage application are superimposed in the 
bottom trace. 
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traces), the current  dur ing  the test pulse underwent  a transient  it~crease and  
then decreased to the value appropr ia te  for the test pulse. This  f inding 
indicates tha t  at least some of  the conductance  elements pass th rough  a high- 
conductance  state when transi t ing between low-conductance states caused by 
opposite voltage polarities. In superimposed current  records (Fig. 6 A), the 
current  flowing after a prepulse significantly "overshoots" that  in response to 
a test pulse alone. T h a t  is, for a major  port ion of  the relaxation of  the currents,  
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FIGURE 6. Comparison of polarity reversal data with calculated conductances 
for contingent and independent gating. (A) Polarity reversal data (from Fig. 5). 
The junctional currents during the test pulse are photographically superimposed 
to allow comparison of the currents flowing when stepped to the test voltage 
from zero voltage and from prepulses of the opposite voltage polarity. (B) Time- 
courses calculated from the contingent gating model (Eqs. 8-1 I). The contingent 
gating model requires that with polarity reversal the gate closed by the prepulse 
must open before the gate in series with it senses the transjunctional voltage. (C) 
Time-courses calculated from the independent gating model (Eqs. 12-13). The 
independent gating model requires that each gate respond to the transjunctional 
voltage independently of the other. The conductance time-courses in B and C 
were calculated for the test voltage and prepulse voltages that produced the 
junctional currents shown in A. For both B and C, in addition to the limitation 
of oq described in the text, the voltage dependence of the rates defined by Eqs. 
6 and 7 was scaled by factor of 0.925 to achieve closer fit to the equilibrium 
conductances. The form of the data is best reproduced by the contingent gating 
model. 
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the current during the test pulse after polarity reversal exceeds that during 
the test pulse given alone. Furthermore, the overshoot is greater for larger 
prepulse voltages. 

To account for the conductance changes after polarity reversal, the system 
was modeled as if there were two mirror symmetrical gates in the junctional 
channel, each responding to voltage with the first-order relation described 
above. Mirror symmetry allows for the two gates on a channel to close in 
response to voltages of opposite sign. The operation of the two gates may be 
independent of or contingent upon one another, possibilities considered below. 

Contingent Gating 
Assume that each gate senses local voltage within the channel and that the 
gates have zero conductance when closed. Then in the presence of a voltage 
that closes one gate, the entire transjunctional voltage is developed across that 
gate, and the voltage across the open gate is zero. When the voltage polarity 
is reversed, the closed gate must open before the voltage acts on the other 
gate. The operation of one gate is, therefore, contingent on the state of the 
other. This hypothesis can be closely modeled by a three-state reaction scheme: 

closed1 ,-- a-k open ---,~ closed2, 
B2 

where the rates are given by Eqs. 6 and 7, and the subscripts refer to the 
operation of gates 1 and 2, which have voltage sensitivities of  opposite 
polarities. The general solution for this system is given by Arndt and Roper 
(1975). 

We will consider the case in which the voltage is stepped to a test value V2 
of the polarity that closes gate 2 from zero voltage and from various voltages 
V1 of the polarity that closes gate 1. The contribution of the rate constant 
governing the closing of gate 1 (ill) may be reasonably neglected in calculating 
the conductance during V2, because/71 is already small at zero voltage (see 
Fig. 4 B). 

The solution for the normalized conductance during the test pulse V2 is the 
sum of three normalized components, so for channels initially open, sa for 
channels initially closed by gate 1 and s2 for channels initially closed by gate 
2, the contribution of each component being weighted by its fraction of  the 
total number  of channels. The solutions for the normalized components are: 

so = - -  + 1 exp [ - (a2  + B2)t], (8) 
a2 + B2 a2 + B2 

S 1 ----- - -  

G2 GI~2 

exp (-alt), (9) 
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and 

s2 = (1 - e x p  + ( l o )  
ol2 + ~2 

where a2 and ~2 are evaluated at V = V2, and al at V = -V2 (because its 
voltage sensitivity is of the opposite polarity). The component  so is a simple 
exponential decay reflecting relaxation to the new equilibrium condition 
where a fraction of channels are closed by gate 2; sl is the sum of two 
exponentials according to the opening of gate 1 and subsequent closing of a 
fraction of gate 2; and s2 is the exponential relaxation of channels initially 
closed by gate 2 to the new equilibrium where more of these channels are 
open. The normalized conductance is 

G = poso + plsl + p2s2, (11) 

where pi is the fraction of channels in each state at the potential before the 
test pulse according to p0 = 1/(1 + /~l/Oq + f12/a2), pl = (~l /a l ) / (1  + 
~1/al + ~2/a2), andp2 = (~ /a2) / (1  + ~X/al + ~2/ol2), where the rates are 
evaluated at V =  Vl, andp0 + p l  + p2 = 1. 

In the preceding sections, the voltage dependence of the rate constants for 
voltages of a single polarity was characterized. In the contingent gating model, 
the rates calculated according to Eqs. 6 and 7 were applied to each gate of a 
channel, where positive voltages increased the closing rate and decreased the 
opening rate of one gate, and negative voltages had the same effects on the 
other gate. In the polarity reversal experiments, the field across gates that 
closed in response to a voltage of polarity V1 was reversed during the test 
pulse, and V~ was of opposite sign to the voltages used to determine Eqs. 6 
and 7. The method of determining the rate constants did not allow investi- 
gation in this voltage range because of the closing of the series gate, and the 
value used in the calculations was an extrapolation of the computed line in 
Fig. 4 B to the other sign of voltage. For the rates determined according to 
Eqs. 6 and 7, the calculated current fit the data  for the test pulse alone, but 
the calculated currents after a prepulse rose and fell too rapidly and reached 
too large a peak value. The fit was greatly improved by requiring al to 
saturate at the value predicted by Eq. 6 at V = - 5  mV rather than at the full 
magnitude of Vs. Thus, polarity reversal allows investigation of voltage 
sensitivity of the gates in a region otherwise inaccessible. 

The solutions incorporating the limiting value of al are graphed in Fig. 6 
B and agree well with the time-courses of Fig. 5 shown superimposed in Fig. 
6 A. In both experimental and calculated curves, the later portion of the 
current during a test pulse after a prepulse significantly exceeds that when no 
prepulse is given, and the magnitude of this difference is greater for larger 
prepulses. For the voltage steps shown, the overshoots are much larger than 
those predicted by independent gating (Fig. 6 C; see below). 

It can be shown analytically for the contingent gating model that the 
overshoot of current after polarity reversal occurs for any values of the rate 
constants and increases with magnitude of the prepulse. As an example, 
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consider the case of large prepulses of polarity V1 and test pulses of polarity V2 
in which essentially all the gates are initially open without a prepulse (P0 
1), all the gates on one side are closed at the end of  the prepulse (pl = I), and 
all the gates on the opposite side are closed at the end of  the test pulse (P2 = 
1). Since the integrals of sl and so from t = 0 to t = 00 are equal, the current 
during the test pulse after the prepulse, which initially is zero, must later 
become larger and exceed so, which decreases exponentially. The equality of  
the current integrals follows simply from consideration of the original model. 
If  the open gates on one side do not detect transjunctional potential until the 
closed gates in series are open, then the channels will remain open for the 
same length of  time and pass the same amount  of  current, whether the series 
gates start open or closed. 

The voltage sensitivity of the gates is such that near V = 0, some of the 
conductance elements are closed by gate 1 (due to voltage sensitivity of 
polarity /11) and some are closed by gate 2 (due to voltage sensitivity of  
polarity V2). For V = 0, these two populations are equal and are each - 3 %  of 
the total number  of  channels. During a pulse of  polarity V2 the channels 
closed by gate 1 will open according to Eq. 9, causing the relaxation of the 
current to deviate from exponentiality. The deviation is too small to be 
resolved by present techniques. The channels closed by gate 2 also reduce the 
initial number  of  open channels, but relax exponentially with the same time 
constant as open channels and, therefore, do not alter the time-course of the 
conductance. In addition to these deviations predicted by the model, one 
would expect that near V = 0 some channels would be closed by both gates 1 
and 2. This fraction would presumably be no greater than the product of pl 
and p2 near V = 0, and therefore would be quite small. 

Independent Gating 

An alternative model for voltage reversal that should be considered is that 
each gate sees the entire transjunctional voltage independent of whether the 
other gate is open or closed. This model may be represented by the following 
reactions for each gate occurring simultaneously and independently: 

0tl or2 
closed1 ~,~ open1 open2 ~ closed2, 

/b 

where the rate constants are voltage dependent as described above. 
Each gate will exhibit the first-order kinetics described by Eq. A9: 

Gi = Gi= + (Gio- Gi| exp (-t/ri), (12) 

where the subscript i refers to gate 1 or 2, and the other symbols have their 
previous meanings. Because each gate is independent, the fraction of channels 
open is the product of the fraction of  channels with gate 1 open (G1) and the 
fraction of channels with gate 2 open (G2). For a step of  polarity Vz preceded 
by a prepulse of  polarity //'1, the conductance is described by (neglecting a~ as 
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before): 

G = {1 + [G10- 1] exp [-(alt)]){C~| 

[C,m - G2| exp [-(a2 + fl2)t]), (13) 

where G2| = a2/(a2 + ~2), the rates are evaluated at V2, and the fractions of 
each gate initially open, G10 = al/(ax + 81) and G~ = a~_/(a2 + f12), are 
evaluated at V1. 

This solution is graphed in Fig. 6 C, with the same limit on al as for the 
contingent gating. It was necessary to limit al to obtain approximately the 
same peak current following a prepulse. The calculations do not fit the 
experimental data as well as those from the contingent gating model. In 
particular, the current after a prepulse does not noticeably exceed that without 
a prepulse. We conclude that independent gating as modeled does not account 
for the data. 

D I S C U S S I O N  

Phenomenology of the Conductance Changes 

The form of the junctional currents during transjunctional voltage steps of a 
single polarity allows certain conclusions regarding the underlying processes. 
The currents change with an essentially exponential time-course during a 
transjunctional voltage step, but deviation from exponentiality soon after 
onset of the voltage step is not ruled out. The absence of S-shaped kinetics or 
delay seen, for example, in sodium and potassium conductances in squid 
axons (Hodgkin and Huxley, 1952 a and 1952 b) implies the absence of 
cooperative interaction between the elements controlling the conductance 
changes, and suggests a first-order reaction mechanism for voltages of each 
polarity. 

The conclusion that a first-order process underlies the conductance changes 
could be drawn from modeling of the steady-state conductances without 
reference to kinetic data (Spray et al., 1981). This simple conductance-voltage 
relation is seen in a number of natural and artificial conductance systems. 
Potassium channel inactivation in skate electroplaques (Grundfest, 1973) and 
slow sodium inactivation in squid axons (Chandler and Meves, 1970; Rudy, 
1978) show similar simple dependence on voltage, as does excitability inducing 
material (EIM) in oxidized cholesterol bilayers (Ehrenstein et al., 1974) and 
voltage-dependent anion channel (VDAC) inserted into phospholipid bilayers 
(Schein et al., 1976). Several elements, each of which exhibits reversible first- 
order kinetics, could interact cooperatively to give the more complex activation 
kinetics of sodium and potassium channels (cf. Hodgkin and Huxley [1952 c]). 
This possibility is supported by the finding that the charge movement 
associated with the activation of sodium gates ("gating currents") in the squid 
axon shows a first-order voltage dependence (Keynes and Rojas, 1974). 

The conductance changes of junctions between amphibian blastomeres are 
relatively slow (hundreds of milliseconds) compared with many other voltage- 
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FICURE 7. Free energy diagrams for voltage-dependent transitions in gap 
junction channels. A shows the energy barrier profile for a gate in the absence 
of a field, where the relationships between the energies of the open, closed, and 
transitions states are due to the conformational energies of the molecule alone. 
The activation energies for channel closing and opening are AUr and AU~, 
respectively. Because AUa > AU~,, the opening rate is faster than the closing 
rate, and the open state is favored. B shows the energy profile in the presence of 
an applied voltage field (V > I10). The activation energies have been changed 
due to the contributions of the voltage-dependent energy term to each state (see 
text). Because the activation energy for closing is less than that for opening, the 
closing rate is faster than the opening rate, and the closed state is favored. At V 
= I10 (C), the change in energy of each state is such that the activation energies 
are equal. Therefore, the rate constants are equal, and the channels have equal 
probabilities of being in either state. The energy diagrams are drawn for a gate 
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dependent conductances. There are, however, similar or slower conductance 
changes reported from biological membranes (slow inactivation of sodium 
conductance [Rudy, 1978]) and from biological material studied in artificial 
bilayers (matrix protein [Schindler and Rosenbusch, 1978], VDAC [Schein et 
al., 1976], Colicin K [Schein et al., 1978], EIM [Ehrenstein et al., 1974] and 
hemocyanin [Lattore et al., 1975]). 

Significance of the Kinetic Modeling 

In the first-order reaction scheme that we propose, channels can exist in high- 
and low-conductance states: 

open ~-~ closed, 
B 

where ~ and 13 are functions of voltage. Conventionally, one designates the 
free energies Wo and Wc for open and closed states and Wt for the free energy 
at the peak of the barrier (or transition state) between them. From reaction 
rate theory (Glasstone et al., 1941): 

a -- ua exp [ - ( W t -  Wo)/kTI (14) 

and 

13 ~, vpexp [ - ( W t -  Wo)/kT],  (15) 

where ~,, and uo are frequency factors, k is Boltzmann's constant and T is 
absolute temperature. The expressions Wt - We and Wt - Wo represent the 
activation energies for opening and closing, respectively. For each state, the 
free energy W of a voltage-sensitive molecule can be divided into two 
components, the conformational free energy in the absence of an applied field, 
U, and a field-dependent component/~E, where E is the effective field strength 
and ~ is the equivalent dipole moment  of the molecule normal to the field. 
The / ~  term is the energy supplied by the applied field to the channel 
molecule. 

The energy relations may be clarified by reference to the diagram of Fig. 7. 
In the absence of the field, the energy of the open state is lower than that of  
the closed state (Fig. 7 A). Since Wt - Wc < Wt - Wo, the opening rate a is 
faster than the closing rate fl, and most of  the channels are open. When a 
large field is applied, the relative energy of the closed state becomes lower 
(Fig. 7 B). Now, since Wt - Wo < Wt - Wc,/3 is faster than a, and most of  the 
channels assume the closed configuration. At an intermediate field where V 

V0, the energies of the two states are equal (Fig. 7 C). At this voltage, Wt 

closed by a positive voltage, and are aligned arbitrarily at the energy of the 
transition state, which is also likely to be voltage dependent. The dotted lines in 
the diagrams where a field is applied show the relative energy relations in the 
absence of a field. Due to the differing voltage sensitivities of the rates, for a 
given voltage the activation energy of the closed state is changed less than that 
of the open state. 
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- Wc z Wt - Wo, a equals /3, and the channels are equally distributed 
between the two states. Because Wo , ,  Wc at V0, the sum of the values of  the 
voltage-dependent energy terms added to each state is equal to the difference 
in energy between the states in the absence of a field. 

Magleby and Stevens (1972) have argued that # is likely to be field 
independent for a protein molecule embedded in a membrane,  and, therefore, 
may be considered a purely state-dependent parameter. We will propose 
below that only a fraction of the total field may be developed across a 
particular part of  the channel molecule and that this fraction need not be the 
same in each state. We therefore allow E to be a state-dependent parameter  
as well. For each state i, then 

Wi - Ui + #~Ei. (16) 

The  field strength may be defined by Ei ~ V/Mi (assuming constant field for 
the portions of  the voltage drop under consideration), where V is the trans- 
junctional voltage and Mi is the effective membrane thickness over which V 
is developed. Therefore, at a given V, we may write 

W~ .~ Ui + V(#JM~). (17) 

The units of  #i/Mi are of  charge, and this term represents the equivalent 
amount  of  charge acted on by the entire membrane voltage in state i. 
Substituting into Eqs. 14 and 15: 

a - p~ exp (--[AU~ + VA(gl M)~ ]/k T)  (18) 

and 

where 

f l - -  po exp (--[AU~ + VA(#IM)~]/kT),  

AUo=U,-U:,  
Au~= u,-Uo, 

A ( # I M ) :  i= # t l M t  - #~/M~, 

and 

(19) 

A(tUM)p = ~,IM, - tMMo,  

where the dipole moments of open and closed states are of opposite sign. Since 
at V0 the rate constants are equal, we may define a new constant, X, as their 
value at V0: 

== p~ exp (--[AU~ + VoA(#/M),~]/kT) 

and 

- J,~ exp {--[AUo + VoA(#IM)~]IkT), 

from which we obtain 

a = )~ exp [ - -A(# /M)a(V-  Vo)/kT] 
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and 

or, as used above, 

and  

== h exp [ -A(p lM)~(V-  Vo)lkT], 

a = ~, exp [-A=(V- Vo)] (4) 

where 

and 

]3 = h exp [Ao(V- Vo)], 

A. = A(g/M)a/kr 

(5) 

(20) 

A B = -A(p/M)o/kT. (21) 

Eqs. 4 and 5 are exponentials that  accurately describe the voltage depen- 
dence of a and ]3 in Fig. 4 B. The  accuracy of this description requires that  A~ 
and A~ be field independent  over the range of interest, which would be true 
if each of the state-dependent variables, gi and Mi, were field independent .  
However, because A~ and At~ are proportional  to the difference between two 
I, ti/Mi terms, equal field dependence of these terms would still result in field 
independence of A, and Ao. Thus,  an exponential relation between voltage 
and rate constant does not require that  dipole moments  be independent  of 
field. 

The  contingent gating modeling of polarity reversal (Fig. 6B) requires that  
the opening rate al be limited. Evidently, its value saturates for moderate  
negative voltages, thus deviating from exponential dependence on voltage. 
Moreover, it is possible that  the closing rate ]3 begins to saturate within the 
voltage range shown in Fig. 4 B; the experimental  points lie below the 
exponential  relation at the higher voltages. These possible deviations from 
exponential  of the voltage dependence of the rate constants could be accounted 
for by a field dependence of the A(p/M) term. Tha t  is, outside the relatively 
narrow range of voltages for which rates were determined (5-25 m V  for each 
polarity of voltage sensitivity), the dipoles may orient within the imposed 
voltage field such that  A(g /M)  changes. A recent report states that  for high 
voltages applied to the ACh channel  in one species of Rana (but not another),  
the logari thm of the closing rate is not linearly related to voltage, which can 
be interpreted as arising from the voltage dependence of the relevant A(g /M)  
term (Neher and Stevens, 1979). 

The  adequacy of the equations of the two-state kinetic model in describing 
the relation of t ime constant,  steady-state conductance,  and  rate constants as 
a function of voltage of a single polarity shows that this system behaves 
kinetically as if it were first order. The  different voltage dependencies of the 
two rate constants indicates that an applied voltage affects the energy of the 
closed state more than that  of the open state. This finding is not unique (cf. 
Hodgkin  and Huxley [1952 c] and Rudy  [1978]). 
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Significance of the Equilibrium Modeling 

The preceding development allows the determination of a number  of param- 
eters from the equilibrium data (Spray et al., 1981) that have physical 
meaning in the context of the two-state model. Since G| ~= a / (a  + ~), as 
noted in the Appendix, we can substitute the expressions for a and fi of Eqs. 
4 and 5 to obtain 

G| -- 1/{1 + exp [ A ( V -  Vo)]), (22) 

where 

A -- As + Ar (23) 

This equation is one form of the Boltzmann relation (Eq. 6 of the preceding 
paper [Spray et al., 1981]). Since the units o f # / M  are units of charge, we can 
set A -- nq/kT, where n is the equivalent number  of electron charges q that 
move through the entire transjunctional field in the transition between open 
and closed states. 

From the equilibrium data of the preceding paper, A = 0.20 to 0.25, and it 
follows that n = 5.0 to 6.3 (Spray et al., 1981). This amount  of charge 
movement corresponds to an e-fold change in the ratio Of open to closed 
channels for every 4-5 mV. For the sodium channel, voltage sensitivity due to 
the movement  of a similar amount  of charge was modeled as the result of 
three separate but identical processes (Hodgkin and Huxley, 1952 c). 

The  difference in energy of the open and closed states AU may be readily 
calculated from V0 and A. Since at V0 the energies of open and closed states 
are equal, it follows from Eq. 17 that 

AU = U o -  Uc = ( ~ / M o  + I~c/M,)Vo, 

and, substituting from Eqs. 20, 21, and 23 

A U  = A V o k T .  (24) 

Since V0 is 14-15 mV (Spray et al., 1981), AU is ~2 kcal/mol. 

An Explicit Model 

The combination of morphological and physiological data allows the proposal 
of a more detailed model. From the structure of the gap junction (cf. Bennett 
and Goodenough [1978]) and the symmetry of the voltage dependence of the 
conductance, it is plausible that there are two gates per channel, one in each 
membrane  but oppositely oriented. The two-gate hypothesis is consistent with 
the effects of  voltage reversal, where each channel appears to pass through the 
open state before it closes. A simple mechanism that provides for contingent 
gating as indicated by Fig. 6 would be one in which each gate senses local 
voltage drop along its portion of the channel. When both channels were open, 
the voltage across each gate would be something less than half the total 
voltage; when one gate was closed, the entire transjunctional voltage would 
be developed across that gate (for the closed gate, EdEo >- 2), and no voltage 
would be seen by the open gate. The greater voltage sensitivity of the closing 
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rate indicates that I~oEo is about  two times greater than/~cEc (see Eqs. 6 and 
7). Because for each gate Ec is likely to be greater than Eo by a factor of  at 
least two,/Xo should be more than four times as great as/xc. In other words, the 
difference in dipole moments between open and transition states should be 
more than four times as great as that between closed and transition states. In 
the diagram of Fig. 8 we have indicated this difference by a greater redistri- 
bution of charge in moving from transition to open state than in moving from 
transition to closed state. The diagram arbitrarily shows zero dipole moment  
for the gating charges in the transition state. Because differences in charge 

"t- 

open transition closed 

FIGURE 8. Proposed model for gating of the gap junction channel. Each 
channel is composed of two oppositely oriented hemichannels, each containing 
a gating structure sensitive to local voltage within the channel. The action of a 
large voltage of appropriate polarity on dipoles of the hemichannel affects the 
energy of the molecule such that it is more stable in the conformation that closes 
the channel. Furthermore, when in the closed conformation, the component of 
the dipole normal to the field is reduced, so that the energy contributed to a 
closed hemichannel by a field of a given strength is less than that contributed 
to an open channel. This accounts for the greater voltage sensitivity of the 
closing rate. The orientation of the dipole in the transition state is arbitrarily 
drawn parallel to the field. 

distribution are the relevant point, this assumption causes no loss of  generality. 
Also, for the figure, we have assumed that the gate that closes is in the 
membrane on the side of  positive voltage. We have no evidence as to which 
gate is affected by a given polarity of voltage. 

In the modeling of contingent gating that follows from the diagram of Fig. 
8, we have implicitly assumed that the channels closed completely. If  con- 
ductance in the closed state had a nonzero value (which could be no greater 
than the "voltage-insensitive" component  G~.~, i.e., <5%), a small fraction of 
the transjunctional voltage would be developed across the open gate when the 
gate in series was closed. The field seen by the open gate would not be zero, 
and the open gates would therefore close more rapidly than predicted by 
contingent gating. Similarly, the field at the closed gate would be less than if 
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it closed completely, but this difference would already have been included in 
rates calculated from voltage sensitivity of one polarity. We have yet to 
calculate how large the effect of incomplete closing would be, but we doubt 
that we could detect it with our present measurements given the small value 
of the residual conductance. 

One might ask whether both gating mechanisms of the channel could sense 
the transjunctional voltage drop through the walls of  the channel molecule, 
even when one gate was closed. This possibility seems unreasonable from the 
geometric relations of the hemichannels in each membrane;  the wall is narrow 
compared with the length of the molecule (Makowski et al., 1977; Unwin and 
Zampighi, 1980). Furthermore, as shown in the preceding paper (Spray et al., 
1981), there is no effect on the steady-state conductances of voltages between 
the inside and outside of the cells. Such voltages would be likely to produce a 
field component within the walls of the channels that would act on voltage 
sensors within them. Calculations indicate that the access resistance to the 
portion of the channel molecule exposed to the extracellular space between 
the coupled cells is at least two orders of magnitude less than the resistance of 
an area of cell membrane of the same size as the junction. Therefore, the 
potential between the extracellular space within the junctions and the interior 
of the cells would have been changed during this set of  experiments. We 
conclude that the gates respond only to voltages within the channels. 

The two-gate model is not the only possibility for a three-state system that 
accounts for the effects of voltage reversal. We can conceive of a turnstile or 
toggle model in which a single gating entity has a central open position and 
oppositely oriented closed positions. Such a structure might be more plausible 
for voltage-dependent channels in single membranes that exhibit contingent 
gating. VDAC (Schein et al., 1976) and EIM (Ehrenstein et al., 1978) may 
show such behavior, but detailed studies of the kinetics of conductance change 
with voltage reversal for these channels have not been reported. The model 
we propose is attractive because of membrane symmetry, although there could 
be a single gating structure formed at the junction of the hemichannels. 
Unwin and Zampighi (1980) have proposed a model for closing of gap 
junction channels by a torsion that shuts the cytoplasmic end of the channel. 
Such a torsion could be produced by a transjunctional voltage provided the 
dipole changes were appropriate. For convenience, the charge movements 
diagrammed in Fig. 8 are in the radial rather than in the circumferential 
direction suggested by the Unwin and Zampighi model. Details of  the 
mechanism may come with greater knowledge of the molecular structure. 

A P P E N D I X  

Equations Derived from First-Order Kinetics 
Consider a population of channels that can exist in either of two states, an open state 
of high conductance and a closed state of low conductance: 

O~ 
open ~-~ closed, 

/3 
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where  a a n d  ,8 are ra te  constants  tha t  are  functions of  vol tage independen t  of  pr ior  
condit ions.  

Let  n be the fraction of  open channels  and  1 - n the fraction of  closed channels.  I f  
kinetics are first order,  the rate  of  change  of  n at  a constant  vol tage is given by  

dn/dt  = - f i n  + a ( l -  n). (AI)  

T h e  solut ion of  this equa t ion  is 

n = n| + (no - n| exp ( - t / z ) ,  (A2) 

where no and  n| are the ini t ial  and  final values of  n, respectively,  and  z is the t ime 
constant .  T h e  pa ramete r s  n~ and  z are re la ted to a and  ~ as follows: 

~= = ,x/(a + B) (A3) 
and  

~" -~ 1 / (a  + B). (A4) 

If  yo and  yc are conductanees  of  single open and  closed channels ,  respectively,  and  N 
is the total  n u m b e r  of  channels ,  the  conduc tance  g is given by  

g ..~ yonN + y,(1 - n)N. (A5) 

T h e  m a x i m u m  conduc tance  gr~x and  the m i n i m u m  conduc tance  gmi~ will be yoN and  
y ,N ,  respectively. F rom Eqs. A2 and  A5 

g = g= + ( g o -  g| exp ( - t / z ) ,  (A6) 

where go and  g~ are ini t ia l  and  final values ofg.  
We may  define G as the voltage-sensit ive componen t  of  the conduc tance  normal ized  

to its m a x i m u m  value:  

G -~ (g - g~c~)/(gmax -- gmi,). (A7) 

And,  subs t i tu t ing  in terms of  single channel  conductances ,  

G = (yonN + yc(l - n ) N -  y e N ) / ( y o N -  y c N ) =  n. (AS) 

Thus,  the normal ized  value of  conduc tance  G can be subst i tu ted  for the fraction of  
channels  open. In  par t icu la r ,  

G = G= + (Go - G~) exp ( - t /T)  (A9) 

I f  there  is a voltage-insensi t ive leakage  componen t  gl in para l le l  wi th  the  voltage- 
sensitive component ,  this value must  be a d d e d  to each term in Eq. A6. Thus,  g + gl 
= (g~ + gl) + [(go + gl) - (g~ + g x ) ] e x p  ( - t / z ) ,  which can be w r i t t e n g *  -- 
go* + (go* - g| exp ( - t / z ) ,  where asterisks represent  observed values, e.g., g* -- 
g + gl.  T h e  equa t ion  has the same form as Eq. A6, and ,  therefore,  we cannot  
dis t inguish from conduc tance  measurements  alone one set of  voltage-sensit ive channels  
tha t  close incomple te ly  from two sets of  para l le l  channels ,  one of  which is voltage 
sensitive and  one of  which closes completely .  
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