Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 Feb 1;83(2):213–232. doi: 10.1085/jgp.83.2.213

Delayed basal hyperpolarization of cat retinal pigment epithelium and its relation to the fast oscillation of the DC electroretinogram

PMCID: PMC2215628  PMID: 6716089

Abstract

Previous work has shown that the cat retinal pigment epithelium (RPE) is the source of two potential changes that follow the absorption of light by photoreceptors: a hyperpolarization of the apical membrane, peaking in 2-4 s, which leads to the RPE component of the electroretinogram (ERG) c-wave, and a depolarization of the basal membrane, peaking in 5 min, which leads to the light peak. This paper describes a new basal membrane response of intermediate time course, called the delayed basal hyperpolarization. Isolation of this response from other RPE potentials showed that with maintained illumination the hyperpolarization begins approximately 2 s after light onset, peaks in 20 s, and slowly ends as the membrane repolarizes over the next 60 s. The delayed basal hyperpolarization is very small for stimuli less than 4 s in duration and grows with duration, becoming approximately 15% as large as the preceding apical hyperpolarization with stimuli longer than 20 s. Extracellularly, this response contributes to the transepithelial potential (TEP) across the RPE. In response to light the TEP first rises to a peak, the c-wave, as the apical membrane hyperpolarizes. For stimuli longer than approximately 4 s, the decline of the TEP from the peak of the c-wave results partly from the recovery of apical membrane potential and partly from the delayed basal hyperpolarization. For long periods of illumination (300 s) the delayed basal hyperpolarization leads to a trough in the TEP between the c-wave and light peak. This trough is largely responsible for a corresponding trough in vitreal recordings, which has been called the "fast oscillation." The term "fast oscillation" has also been used to denote the sequence of potential changes resulting from repeated stimuli approximately 1 min in duration. In addition to the delayed basal hyperpolarization, such responses also contain a basal off-response, a delayed depolarization.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN K. T. OPTICAL STIMULATOR, MICROELECTRODE ADVANCER, AND ASSOCIATED EQUIPMENT FOR INTRARETINAL NEUROPHYSIOLOGY IN CLOSED MAMMALIAN EYES. J Opt Soc Am. 1964 Jan;54:101–109. doi: 10.1364/josa.54.000101. [DOI] [PubMed] [Google Scholar]
  2. GOURAS P., CARR R. E. LIGHT-INDUCED DC RESPONSES OF MONKEY RETINA BEFORE AND AFTER CENTRAL RETINAL ARTERY INTERRUPTION. Invest Ophthalmol. 1965 Jun;4:310–317. [PubMed] [Google Scholar]
  3. Griff E. R., Steinberg R. H. Changes in apical [K+] produce delayed basal membrane responses of the retinal pigment epithelium in the gecko. J Gen Physiol. 1984 Feb;83(2):193–211. doi: 10.1085/jgp.83.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Griff E. R., Steinberg R. H. Origin of the light peak: in vitro study of Gekko gekko. J Physiol. 1982 Oct;331:637–652. doi: 10.1113/jphysiol.1982.sp014395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. IWAMA K., JASPER H. H. The action of gamma aminobutyric acid upon cortical electrical activity in the cat. J Physiol. 1957 Oct 30;138(3):365–380. doi: 10.1113/jphysiol.1957.sp005856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karowski C. J., Proenza L. M. Relationship between Müller cell responses, a local transretinal potential, and potassium flux. J Neurophysiol. 1977 Mar;40(2):244–259. doi: 10.1152/jn.1977.40.2.244. [DOI] [PubMed] [Google Scholar]
  7. Kikawada N. Variations in the corneo-retinal standing potential of the vertebrate eye during light and dark adaptations. Jpn J Physiol. 1968 Dec 15;18(6):687–702. doi: 10.2170/jjphysiol.18.687. [DOI] [PubMed] [Google Scholar]
  8. Kolder H., Brecher G. A. Fast oscillations of the corneoretinal potential in man. Arch Ophthalmol. 1966 Feb;75(2):232–237. doi: 10.1001/archopht.1966.00970050234017. [DOI] [PubMed] [Google Scholar]
  9. Kolder H., North A. W. Oscillations of the corneo-retinal potential in animals. Ophthalmologica. 1966;152(2):149–160. doi: 10.1159/000304963. [DOI] [PubMed] [Google Scholar]
  10. Linsenmeier R. A., Steinberg R. H. A light-evoked interaction of apical and basal membranes of retinal pigment epithelium: c-wave and light peak. J Neurophysiol. 1983 Jul;50(1):136–147. doi: 10.1152/jn.1983.50.1.136. [DOI] [PubMed] [Google Scholar]
  11. Linsenmeier R. A., Steinberg R. H. Origin and sensitivity of the light peak in the intact cat eye. J Physiol. 1982 Oct;331:653–673. doi: 10.1113/jphysiol.1982.sp014396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller S. S., Steinberg R. H. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977 Sep 15;36(4):337–372. doi: 10.1007/BF01868158. [DOI] [PubMed] [Google Scholar]
  13. Nikara T., Sato S., Takamatsu T., Sato R., Mita T. A new wave (2nd c-wave) on corneoretinal potential. Experientia. 1976 May 15;32(5):594–596. doi: 10.1007/BF01990182. [DOI] [PubMed] [Google Scholar]
  14. Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
  15. Oakley B., 2nd Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977 Oct;70(4):405–425. doi: 10.1085/jgp.70.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rodieck R. W. Components of the electroretinogram--a reappraisal. Vision Res. 1972 May;12(5):773–780. doi: 10.1016/0042-6989(72)90003-x. [DOI] [PubMed] [Google Scholar]
  17. Rodieck R. W., Ford R. W. The cat local electroretinogram to incremental stimuli. Vision Res. 1969 Jan;9(1):1–24. doi: 10.1016/0042-6989(69)90028-5. [DOI] [PubMed] [Google Scholar]
  18. Rohde N., Täumer R., Bleckmann H. Examination of the fast oscillation of the corneoretinal potential under clinical conditions. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1981;217(2):79–90. doi: 10.1007/BF00418982. [DOI] [PubMed] [Google Scholar]
  19. Schmidt R., Steinberg R. H. Rod-dependent intracellular responses to light recorded from the pigment epithelium of the cat retina. J Physiol. 1971 Aug;217(1):71–91. doi: 10.1113/jphysiol.1971.sp009560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Skoog K. O. The directly recorded standing potential of the human eye. Acta Ophthalmol (Copenh) 1975 Mar;53(1):120–132. doi: 10.1111/j.1755-3768.1975.tb01144.x. [DOI] [PubMed] [Google Scholar]
  21. Steinberg R. H., Oakley B., 2nd, Niemeyer G. Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980 Nov;44(5):897–921. doi: 10.1152/jn.1980.44.5.897. [DOI] [PubMed] [Google Scholar]
  22. Steinberg R. H., Schmidt R., Brown K. T. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature. 1970 Aug 15;227(5259):728–730. doi: 10.1038/227728a0. [DOI] [PubMed] [Google Scholar]
  23. Täumer R., Hennig J., Wolff L. Further investigations concerning the fast oscillation of the retinal potential. Bibl Ophthalmol. 1976;(85):57–67. [PubMed] [Google Scholar]
  24. Valeton J. M., van Norren D. Intraretinal recordings of slow electrical responses to steady illumination in monkey: isolation of receptor responses and the origin of the light peak. Vision Res. 1982;22(3):393–399. doi: 10.1016/0042-6989(82)90155-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES