Abstract
A vibrating probe was used to study a steady electric current generated by isolated, whole lumbrical muscles of the rat. Spatial mapping showed that current leaves the muscle in the synaptic region and re-enters in the flanking extrajunctional regions. The point of maximum outward current coincided precisely with the endplate region. As the probe was moved radially away from the endplate region, the current declined monotonically, and the results could be fit with a simple model. As the probe was moved axially away from the endplate region, the current declined and became inward over a distance of approximately 0.5 mm. The physiological mechanism by which the current is generated was also studied. alpha-Bungarotoxin and tetrodotoxin had no significant effect on the current, which suggests that acetylcholine channels and gated sodium channels are not involved in the generation of the current. Ouabain produced a slowly developing, partial inhibition of the current, reducing it by approximately 40% over a period of 30-40 min. Carbachol produced a large inward current at the endplate region. After the carbachol action was terminated with alpha-bungarotoxin, an outward current reappeared, and a transient "overshoot" developed. During the overshoot, which lasted approximately 30-40 min, the outward current was approximately doubled. This overshoot was completely abolished by ouabain. The overshoot is interpreted as reflecting the increased activity of electrogenic sodium pumping in the endplate region, caused by the influx of Na ions during carbachol application. Because of the very different actions of ouabain on the normal current and on the overshoot after carbachol application, we concluded that the normal outward current is not produced by electrogenic sodium pumping in the endplate region.
Full Text
The Full Text of this article is available as a PDF (773.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Betz W. J., Caldwell J. H. Mapping electric currents around skeletal muscle with a vibrating probe. J Gen Physiol. 1984 Feb;83(2):143–156. doi: 10.1085/jgp.83.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betz W. J., Caldwell J. H., Ribchester R. R., Robinson K. R., Stump R. F. Endogenous electric field around muscle fibres depends on the Na+-K+ pump. Nature. 1980 Sep 18;287(5779):235–237. doi: 10.1038/287235a0. [DOI] [PubMed] [Google Scholar]
- Betz W. J., Caldwell J. H., Ribchester R. R. The size of motor units during post-natal development of rat lumbrical muscle. J Physiol. 1979 Dec;297(0):463–478. doi: 10.1113/jphysiol.1979.sp013051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Detweiler D. K. Comparative pharmacology of cardiac glycosides. Fed Proc. 1967 Jul-Aug;26(4):1119–1124. [PubMed] [Google Scholar]
- Jaffe L. F., Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol. 1974 Nov;63(2 Pt 1):614–628. doi: 10.1083/jcb.63.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The permeability of frog muscle fibres to lithium ions. J Physiol. 1959 Oct;147:626–638. doi: 10.1113/jphysiol.1959.sp006265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. An endplate potential due to potassium released by the motor nerve impulse. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):497–507. doi: 10.1098/rspb.1982.0088. [DOI] [PubMed] [Google Scholar]
- Plonsey R. The active fiber in a volume conductor. IEEE Trans Biomed Eng. 1974 Sep;21(5):371–381. doi: 10.1109/TBME.1974.324406. [DOI] [PubMed] [Google Scholar]
- Thesleff S., Vyskocil F., Ward M. R. The action potential in end-plate and extrajunctional regions of rat skeletal muscle. Acta Physiol Scand. 1974 Jun;91(2):196–202. doi: 10.1111/j.1748-1716.1974.tb05676.x. [DOI] [PubMed] [Google Scholar]
- Yoshioka K., Miyata Y. Changes in the distribution of the extrajunctional acetylcholine sensitivity along muscle fibers during development and following cordotomy in the rat. Neuroscience. 1983 Jun;9(2):437–443. doi: 10.1016/0306-4522(83)90306-8. [DOI] [PubMed] [Google Scholar]