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Abstract

Psychological stressors have a prominent effect on sleep in general, and rapid eye movement (REM)
sleep in particular. Disruptions in sleep are a prominent feature, and potentially even the hallmark,
of posttraumatic stress disorder (PTSD) (Ross et al., 1989). Animal models are critical in
understanding both the causes and potential treatments of psychiatric disorders. The current review
describes a number of studies that have focused on the impact of stress on sleep in rodent models.
The studies are also summarized in Table 1, summarizing the effects of stress in 4-hr blocks in both
the light and dark phases. Although mild stress procedures have sometimes produced increases in
REM sleep, more intense stressors appear to model the human condition by leading to disruptions
in sleep, particularly REM sleep. We also discuss work conducted by our group and others looking
at conditioning as a factor in the temporal extension of stress-related sleep disruptions. Finally, we
attempt to describe the probable neural mechanisms of the sleep disruptions. A complete
understanding of the neural correlates of stress-induced sleep alterations may lead to novel treatments
for a variety of debilitating sleep disorders.
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Stress, although a potentially confusing term (see Day, 2005), is believed to be a significant

factor in a variety of health problems (Korte et al., 2005). A reasonable definition of stress is
a stimulus or situation that challenges homeostasis and induces a multi-system response (Day,
2005). Stress research historically has focused on physiological changes in an organism after
exposure to some stress-inducing procedure. Levels of corticosterone, the major adrenocortical
glucocorticoid hormone in rodents, are often used as an index of acute stress (Brennan et al.,
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2000; Ottenweller etal., 1989), as are plasma levels of epinephrine (Lundberg, 2005). Exposure
to stress in humans is related to increased incidences of a number of psychiatric illnesses,
including posttraumatic stress disorder [PTSD] (Brady & Sinha, 2005) and other anxiety
disorders, mood disorders, and substance-related disorders.

While other anxiety disorders and depression may be induced or exacerbated by stress, PTSD
by definition only occurs after exposure to a severe stressor (DSM-1V, 1994). This is not to
say that stress alone leads to the development of psychiatric disorders. For example,
approximately only one-third of patients who have been exposed to a traumatic stressor develop
long-term PTSD (Zatzick et al., 1997). Animal models can provide an understanding of how
organisms respond to stress, and the nature of inter-individual differences in the stress response.
Given the importance of sleep disturbances in the PTSD symptom complex, both animal and
pre-clinical studies of the effects of stress on sleep may have particular relevance to this
disorder.

PTSD isan Axis | anxiety disorder that can develop after exposure to a traumatic event (Schnurr
& Green, 2004). It has a number of clinical features, and it can be severely debilitating. The
Diagnostic and Statistical Manual of the American Psychiatric Association, 4™ Edition-
Revised (1994) lists a number of major diagnostic criteria, which include autonomic,
behavioral, and somatic symptoms. Of all the chronic symptoms associated with PTSD, the
changes in sleep may be the most debilitating. We have previously argued that the sleep
disturbance in PTSD is, in fact, the hallmark of the disorder (Ross et al., 1989). This is based
on several related pieces of evidence; first, the prevalence of anxiety dreams in patients with
PTSD is high (Harvey et al., 2003). Second, no other psychiatric disorder is characterized by
repetitive, stereotypical anxiety dreams. Since dreams with the highest emotional and
aggressive content occur during rapid eye movement (REM) sleep (McNamara et al., 2005),
itis logical to look for REM sleep abnormalities in PTSD patients, and these have been reported
by our group (Ross et al., 1994) and others (e.g., Mellman et al., 1997). It should be noted that
the sleep disturbances in PTSD are not limited to REM sleep (see Neylan et al., 2006).

A report from Mellman and colleagues (1995) is particularly interesting in that PTSD patients
showed reductions in REM sleep time, while patients with major depression did not. This
suggests that REM sleep changes may be a divergent marker for these two disorders, which
otherwise have many overlapping features. Apart from a reduction in the total amount of REM
sleep, there have been reports of other changes in REM sleep. Mellman et al. (1995) and Ross
etal. (1994) reported an increase in REM density (number of rapid eye movements/REM sleep
time) in combat-related PTSD. Interestingly, REM density appears to be related to the intensity
of mental activity during sleep (Smith et al., 2004). A decrease in average REM sleep episode
length within a month of psychological traumatization has been shown to predict the severity
of symptoms of PTSD at follow-up in one study (Mellman et al., 2002). This suggests that
understanding the changes in sleep that occur early in the pathogenesis of the disorder may
lead to prevention strategies and perhaps improved therapies.

Our plan in the current paper is to review the literature on stress-induced changes in sleep in
rats and mice. We will first review studies using immobilization, a common stress procedure,
before considering studies that utilized electric shock. Next we will describe some of our work
and the work of others on how conditioned stimuli associated with stressors produce changes
in sleep similar to the stressors themselves. Finally, we will review some potential
physiological mechanisms that may mediate the sleep changes.

Rodent Models of Stress-Induced Changes in Sleep

In recent years there have been a number of studies of the effects of stress on sleep in rats and
mice. We have chosen to review the studies by stressor type, before drawing global conclusions.
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Further, we have chosen not to address the significant number of studies that have used either
total sleep or REM sleep deprivation as a stressor (see McEwen, 2006, for a review). This is
because a sleep or REM sleep rebound could confound the direct effect of stress. In fact,
investigations of the effects of stress on sleep evolved from sleep deprivation studies. Jouvet
(1994) noted that a prominent hypothesis explaining the increase in sleep following sleep
deprivation needed to take account of the stress inherent in the deprivation procedure. It was
therefore in his laboratory (Rampin et al., 1991) that an early study was conducted looking
directly at the effect of stress on sleep.

Since Rampin’s seminal study in 1991, there have been numerous investigations of the effects
of stress on the sleep of rodents. The primary stressors used in these studies have been
immobilization and mild electric shock, with few reports using other modalities. More recently,
this work has been expanded to include not only unconditioned stressors but conditioned
stressors as well. Numerous strains of both rats and mice have been used, and laboratories
generally have not utilized identical or even highly similar stressor paradigms. As this field
moves forward, it will become important to understand the differences that strain and stressor
paradigms play in the sleep/wakefulness [S/W] response of rodents to stress. To begin to define
the current landscape, we have summarized the salient methods and results from all studies of
which we are aware. This summary is presented as Table 1. For clarity, we have decided to
describe the significant results of each study in a uniform manner whenever possible. Thus,
we divided both the light and dark phases of the S/W cycle into 4-hour blocks (early, mid, and
late), and we describe changes in terms of these periods for each study.

Immobilization Stress

A common procedure for inducing stress in rodents is immobilization (Table 1).
Immobilization is considered primarily as a “psychological” stressor because there is no pain
involved,; it is the inability to escape that induces psychological stress. In the initial report
(Rampin et al., 1991), 2 hr of immobilization at the beginning of the dark phase produced an
increase in REM sleep. A subsequent study replicated this finding, with 1 hr of immobilization
leading to increases in both slow-wave sleep [SWS] and REM sleep (Gonzalez et al., 1995).
The increase in sleep was reduced, but not eliminated, by chemical lesions of the noradrenergic
nucleus, the locus coeruleus [LC] (Gonzalez et al., 1995), indicating a role for the noradrenergic
system in stress-induced increases in sleep.

The finding that immobilization stress increases sleep has been replicated a number of times
(Table 1). Bonnet et al. (1997) also reported increases in both SWS and REM sleep for up to
8 hr after the termination of the stressor. However, this may simply represent recovery sleep,
as the stressed animals did not sleep at all during the restraint while the controls slept during
this period (Bonnet et al., 1997). This raises the inverse of the question first posed by Jouvet:
are stress effects on sleep simply a result of sleep deprivation?

One study has examined the effect of restraint stress on the sleep of BALB and C57BL mice
(Meerlo et al., 2001). BALB mice are more anxious and sleep less at baseline than C57BL
mice (Tang et al., 2005). Following restraint stress, there was a decrease in REM sleep for 2—
3 hr in both mouse strains, followed by an increase, which was greater in C57BL mice than in
BALB mice. Interestingly, the increases in plasma corticosterone [CORT] levels for both
strains in response to restraint stress were similar, while the increase in plasma prolactin level
was greater in the C57BL strain.

Bouyer et al. (1998) classified rats as either High Responding [HR] or Low Responding [LR]
based on their activity in a mildly stressful open field test. HR animals slept less and had less
slow-wave sleep [SWS] than LR animals at baseline. REM sleep was increased for both groups
after a 1-hr restraint session. HR animals showed a longer corticosterone recovery and
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increased REM sleep compared to baseline. LR animals, on the other hand, showed a decrease
in sleep (Bouyer et al., 1998). These data indicate, as might be expected, that animals’ initial
stress reactivity may influence how stress affects their sleep.

Marinesco etal. (1999) manipulated the length of time that rats were immobilized before having
their sleep recorded. Animals immobilized for up to 2 hr showed the typical increase in SWS.
However, a group restrained for 4 hr showed no subsequent SWS increase. These investigators
made a strong case for involvement of the HPA axis in the absence of a sleep increase in the
4-hr group. First, adrenalectomized animals compared to controls showed a significantly larger
increase of SWS after 1 hr of restraint. Second, animals that were exposed to the 4-hr
immobilization had higher CORT levels than animals exposed to the 1-hr session. The more
intense stress, associated with longer restraint and higher CORT levels, eliminated the sleep
increase.

Bodosi et al. (2000) exposed rats to ether for 1 min. Their S/W in the first hour after exposure
was not different from their S/W at the same clock time on any other day. Rats exposed to ether
at the start of either the light or the dark period displayed increases in REM sleep throughout
the remainder of the light or dark period, respectively. As there was no sleep loss induced by
the brief stressful ether exposure itself, the REM sleep increase can be attributed to stress and
not sleep deprivation in this paradigm. Bodosi et al. (2000) also demonstrated that there is an
increase in the cerebrospinal fluid [CSF] level of prolactin following ether exposure. Such
increases have also been observed following immobilization (Akema, 1995). Furthermore,
Bodosi et al. (2000) showed that immunoneutralization of central prolactin prevented the ether-
induced increase in REM sleep. However, immunoneutralization of central prolactin also
decreased REM sleep in non-ether-exposed animals, and this complicates interpretations of
the role of prolactin in ether-mediated increases in REM sleep.

Subsequent papers have teased apart different aspects of the immobilization stress/sleep
relationship. Vazquez-Palacios and Velazquez-Moctezuma (2000) reported a typical increase
in both SWS and REM sleep in the period after immobilization, while exposure to electric
footshocks led to no increase in either REM sleep or SWS. Interestingly, footshock led to longer
latencies to both SWS and REM sleep, while immobilization did not. Finally, a third group
was injected with CORT to simulate the rise associated with stress. CORT injections had little
effect on sleep, except for an increase in REM sleep latency similar to that produced by
footshock. It was subsequently shown that the increases in SWS and REM sleep induced by
immobilization are completely blocked by the opioid antagonist naltrexone. Naltrexone alone
had no effect on sleep (Vazquez-Palacios et al., 2004). Further, naltrexone had no effect on the
CORT response to stress, although it completely eliminated the sleep changes. These data
suggest that the increases in sleep associated with relatively brief periods of restraint stress are
mediated by endogenous opioid systems.

Other studies have focused on various parametric issues pertaining to restraint and sleep. Koehl
etal. (2002) reported that 1 hr of immobilization at either light onset or offset led to an increase
in REM sleep, always in the subsequent dark period. Tiba et al. (2003) demonstrated that rat
pups exposed to early handling, which often reduces adult stress responses (see Champagne
and Meaney, 2001, for a review), had sleep changes similar to those of controls after 1 hr of
immobilization. This provides further support for the notion that brief restraint is not highly
stressful to an animal. Dewasmes et al. (2004) reported that the increase in REM sleep after a
90-min immobilization was due to enormous increases in sequential REM sleep episodes
(SREM). REM sleep in the rat can be bimodally divided into REM sleep periods that are
separated by less than 3 min (SREM), and REM sleep periods separated by more than 3 min
away from another REM sleep period (isolated, iIREM)(Amici et al., 2005).

Neurosci Biobehav Rev. Author manuscript; available in PMC 2009 January 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Pawlyk et al.

Page 5

Finally, a recent paper from Papale et al. (2005) supports our contention that stress intensity
influences subsequent sleep alterations. Rats were subjected to 22 hr of immobilization stress
each day for 4 consecutive days. The subjects were allowed only two 1-hr periods each day to
move about freely, eat and drink. Under this highly stressful condition, the animals showed
large decreases in sleep efficiency (total sleep time/total recording time), SWS, and REM sleep.
These changes persisted through the four days of recording. Thus, extremely long periods of
immobilization were associated with decreases in REM sleep and SWS.

Shock Stress

Exposure to electric shock is another very common method for inducing stress in rodents (Table
1). Exposure to shock has typically been associated with a decrease in subsequent REM sleep
(Kant et al., 1995;Palma et al., 2000;Vazquez-Palacios and Velazquez-Moctezuma, 2000).
Kant and colleagues (1995) carried out a long-term study of the effects of chronic stress on
physiology and behavior. Their animals lived for two weeks in operant chambers and were
required to pull a chain to escape or avoid shock. There was also a yoked group that could not
control shock termination, but was “yoked” to an escape animal. The procedure continued 24
hr/day for two weeks. Both stress groups showed a reduction in total sleep and REM sleep
times during the first day. Further, the group that could control shock had reduced REM sleep
on days 2 and 3. This appears contrary to the voluminous literature showing that controllable,
compared to uncontrollable, stress in general has smaller physiological effects (reviewed in
Peterson et al., 1993). It may be that the stress associated with the intense performance
requirement (24 hr of responding) overwhelmed any positive effects of controllability.
Alternatively, the decrease in sleep may be a primary response due to the necessity of
maintaining a high level of wakefulness throughout a 24 hr period. A combination of the two
is also possible.

Vazquez-Palacios and Velazquez-Moctezuma (2000) exposed rats to 5-min of intermittent,
uncontrollable footshock. Sleep was recorded over the subsequent 24 hr. Both sleep latency
(time to sleep onset) and REM sleep latency (time from sleep onset to the onset of the first
REM sleep period) were increased, and REM sleep percent (REM sleep time as a percent of
total sleep time) was significantly reduced for 9 hr in the shocked group. Our group has also
previously reported that there is a REM sleep-selective suppression of sleep in the period
immediately following a training session with light—shock pairings in rats (Sanford et al.,
2001).

Palma et al. (2000) exposed animals to either 1 hr of immobilization or 1 hr of intermittent
footshock. The two procedures produced mirror image sleep patterns. Restraint caused the
typical increases in SWS and REM sleep. Intermittent shock led to decreases in total sleep time
and total REM sleep time. Separate groups of animals were sacrificed immediately after the
stress procedures. Although both groups compared to controls showed CORT elevations
(approximately 20-25 pg/dl), no difference in CORT was evident between immobilized and
shocked animals. However, shocked animals had significantly higher ACTH levels, indicating
stronger HPA activation.

ACTH levels can differ due to the number of different compounds that elicit ACTH release
(Romero & Sapolsky, 1996). Data from our laboratory indicated that 2 hr of immobilization
leads to plasma CORT levels of approximately 10 pg/dl, while 2 hr of intermittent footshock
produces levels of approximately 30 pg/dl (Brennan et al., 2006). Comparing the results of
Palma et al. (2000) and Brennan et al. (2006) indicates that the CORT response to 1 hr of
immobilization stress is greater than the response to 2 hr of immobilization.

Decreases in REM sleep also have been reported in the period immediately following passive
avoidance learning (Mavanji et al., 2003). Sanford and colleagues (2003) have described the
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effects of electric shock presentation in several mouse strains. Within the first 24 hr following
tone—shock pairings, REM sleep suppression was observed. Thus, it appears that across species
the direct effect of shock exposure, unlike that of immobilization, is to suppress REM sleep
for a number of hours. The difference is likely related to stressor intensity.

Fear-Conditioned Changes in Sleep

Although it is interesting that the stress of mild electric footshock transiently suppresses REM
sleep, a viable animal model of the sleep changes after stress should also address the long-term
changes that can persist for years after exposure to traumatic stress in humans. PTSD symptoms
appear to be maintained at least in part by classical conditioning (see Mineka and Zinbarg,
2006, for a review). To that end, we have utilized a fear conditioning procedure to study the
effect of cues associated with stress on sleep parameters. We have reported similar REM sleep
reductions in rats with reexposure to either a cue associated with shock (Jha et al., 2005) or to
situational reminders of the context in which shock had been administered in the absence of
any explicit cues (Pawlyk et al., 2005). Situational reminders evoked a change in sleep
architecture that resembled the immediate effects of footshock in rats (Sanford et al., 2001;
Vazquez-Palacios et al., 2000).

In our contextual fear conditioning study (Pawlyk et al., 2005) a group of rats was first
habituated to the cable hookup over a number of days. On the training day, subjects were
exposed to 5 mild electric footshocks (0.5 mA, 0.5 sec) every 3—6 min, over the course of 30
min in a different, training context. No shocks were given during the animal’s initial 3 min in
the training chamber so that contextual conditioning could occur (see Lattal and Abel, 2001).
Twenty-four hr later, rats were exposed to situational reminders (specific lighting intensity,
previous day’s bedding). The data are presented in Figure 1. There were striking decreases in
REM sleep percent, total time spent in REM sleep, and sleep efficiency. These were
accompanied by corresponding increases in REM sleep latency and amount of wake time. We
studied three of the seven shock-trained animals for a second day in the presence of situational
reminders of the training context. This small number of rats also displayed REM sleep
suppression. This suggests that the fearful memory is not extinguished during the first exposure
to situational reminders of the training context.

A separate group of animals was trained identically except that they were studied in a
neutral context 24 hr after training. This control group was run to verify that the dramatic
effects we had observed were due to fear conditioning and was not a residual effect of shock
exposure. Somewhat surprisingly, as displayed in Figure 2, this group showed significant
increases in sleep efficiency and time in REM sleep, and a decrease in wake, which led us to
study the animals again 48 hr after training. On the second day following the training procedure,
there was a non-selective increase in sleep. The increase in REM was roughly the same as that
24 hr post-training, but greater variability precluded significance.

We postulated several possible explanations for the total sleep and REM sleep increases in the
group studied in the neutral context. As described above, exposure to immobilization leads to
a rebound in sleep in general and REM sleep in particular. It is possible that shock exposure
led to a decrease in sleep immediately after training and that what we observed in the group
studied in the neutral context was a sleep rebound. It is conceivable that exposure to the fearful
context disrupted this rebound.

However, another possibility exists. Returning an animal to a chamber where it received
footshocks the previous day induces freezing and other measures indicative of conditioned
fear. Thus, the decrease in REM sleep and increase in wake that we have seen in such animals’
likely result from conditioned fear of the chamber. This stimulates an interesting interpretation
of the animals studied in the neutral context, which showed large increases in REM sleep and
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total sleep. It is possible that the increases in REM sleep in animals returned to a neutral context
reflect an inhibitory conditioning process. Moving an animal is presumably a powerful cue
that elicits memories of the previous day’s shock session. When the animal is then placed in
the neutral chamber, where shock was never received, a REM rebound results. We will describe
this idea more fully in the description of our next study.

We conducted another experiment using a conditioned fear procedure with a discrete, as
opposed to contextual, CS (Jha et al., 2005). So-called cued fear conditioning is mediated by
neural systems different from those underlying contextual fear conditioning (Phillips &
LeDoux, 1992). Subjects were habituated to the cable hookup over a period of days, and a
baseline sleep recording was carried out. On the training day, subjects received five pairings
of atone CS and a co-terminating 1-sec footshock. A control group also experienced five tones
and five shocks, but in an explicitly unpaired manner. Twenty four hr later all subjects were
placed in a neutral environment and were presented with five tones. Strikingly, the fear-
conditioned group showed a decrease in REM sleep percent from baseline, while the unpaired
group showed an increase. These data are similar to the contextual fear conditioning data and
raise analogous interpretative issues. The unpaired procedure may be producing inhibitory
conditioning, in that the tones specifically predict a shock-free period. However, the fact that
our other study (Pawlyk et al., 2005) demonstrated that recording in a neutral context also
elevates REM sleep does not permit us to argue definitively that the tones were the cause of
the REM sleep increase in the absence of other control groups. These data still support the
notion that the decreases in sleep in both fear-conditioned groups, cued and contextual, result
from conditioned fear, while the increases in sleep in the unpaired and neutral context groups,
respectively, may result from inhibitory conditioning. Future studies to definitively determine
whether inhibitory conditioning is relevant to the increased REM sleep in the group studied in
the neutral context may be important for guiding behavioral therapy interventions.

PTSD is a disorder that can persist for decades after the trauma(s) which initiate it (Roy-Byrne
etal., 2004). To begin to model these long-term effects, we have in recent studies reexposed
the animals to the fearful cues both 24 hr and 2 weeks after initial training (Madan et al.,
2007). Figure 3 depicts sequential REM sleep data, as well as REM percent. Of particular note,
even though there were no changes in REM sleep percent (bottom right) both SREM sleep and
clusters of SREM sleep (which includes the NREM sleep periods in between the REM sleep
periods) were reduced from baseline to Day 1, and significantly reduced on Day 14. Both the
number of SREM sleep episodes and clusters were reduced, as well as the amount of both, and
the average time of a cluster (Figure 3). The changes were larger on Day 14 than on Day 1,
despite Day 1 being essentially an extinction session. These data appear to indicate that we
have a model of the long-term changes in sleep characteristic of PTSD, which can be examined
at longer intervals after initial insult.

Sanford and colleagues (2003) have performed a number of experiments looking at reexposure
to fear-inducing cues in mice (see Table 1). They found that reexposure to a tone previously
paired with shock reduced REM sleep to a degree comparable to that seen after tone-shock
pairings (Sanford et al., 2003). These data, in association with our findings in rats, point to the
importance of conditioned factors in sleep changes and provide a possible mechanism for the
changes in sleep that occur long after stressor termination. In the Conclusions, we discuss the
potential relationship of long-term, conditioned changes in sleep in animals to PTSD symptoms
in humans.

Neural and Pharmacological Mechanisms of S/W Changes

Elucidation of the neural and pharmacological mechanisms responsible for the observed
changes in sleep following stress is clearly a way to develop treatments for the myriad sleep
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disorders that are influenced by stress. We will, therefore, attempt to synthesize information
from studies of the neurobiology of the stress-sleep relationship.

The standard index of the stress response in animals is activation of the HPA axis, as indicated
by plasma CORT level. CORT levels have been measured during stress procedures used to
alter sleep, and the evidence indicates that for mild stressors CORT is not causally linked to
the sleep changes. We make this statement in part because systemic injections of CORT
intended to produce hormone levels associated with stress had little impact on sleep (Vazquez-
Palacios & Velazquez-Moctezuma, 2000). Also, it has been shown that post-immobilization
changes in REM sleep are completely eliminated by systemic injection of the opioid antagonist
naltrexone (Vazquez-Palacios et al., 2004) and naltrexone had no effect on CORT changes,
appearing to preclude HPA activation as a mechanism for the increase in REM seen after
immobilization stress. It appears that the relatively mild stress associated with brief
immobilization leads to opioid and noradrenergic activation, which then produces a rebound
in REM post-stressor (Vazquez-Palacios et al., 2004). Several reports have also implicated
stress-induced prolactin release as potentially mediating the effect of stress on sleep (e.qg.,
Bodosi et al., 2000). We hope the current review will prompt research into the potential roles
for these systems that have received less attention.

The picture changes significantly with more intense, and therefore perhaps more PTSD-
relevant stressors. Exposure to longer immobilization or to footshock stress leads to the
activation of a plethora of sleep-related neurotransmitter systems, including corticotrophin-
releasing factor [CRF], dopamine, serotonin [5-HT], and norepinephrine (McEwen, 2004).
CRF, apart from being the initial component of the peripheral HPA response, also functions
centrally as a neurotransmitter (Owens & Nemeroff, 1991). CRF may be the key compound in
mediating stress-induced changes in sleep (Opp, 1995). We have recently reported that a low
dose (1 ng) of CRF infused bilaterally into the main output nucleus of the amygdala, the central
nucleus, reduced REM sleep over the subsequent 4 hr (Pawlyk et al., 2006). Thus, the central
effects of CRF may be as important as its role in HPA axis activation and the stimulation of
CORT release.

Opp and colleagues have extensively studied the role of CRF in sleep changes (see Chang &
Opp, 2001, for a review). Astressin, an antagonist at the CRF; receptor, injected i.c.v. reduced
the increase in wake, but not the decrease in REM sleep, induced by a period of restraint stress
(Chang & Opp, 2002). Of interest for the following discussion, i.c.v. pretreatment with the
CRF antagonist a-helical CRF blocked 5-HT-induced changes in temperature, but did not alter
the effect of 5-HT on S/W in rats (Imeri et al., 2005). This suggests that 5-HT affects S/W
systems independently of CRF, and leads us to a discussion of the role of 5-HT in stress-induced
sleep changes.

5-HT is an excellent candidate for a neurotransmitter at least partially responsible for the REM
sleep changes associated with stress. Beginning with the classic lesion work of Jouvet
(reviewed in 1999), 5-HT has been accorded a prominent role in sleep. 5-HT neurons in the
dorsal raphé nucleus [DRN] decrease their firing rate from wake through non-REM sleep into
REM sleep, when they are basically silent (Ursin, 2002). The absence of 5-HT activity may
allow cholinergic REM sleep generating cells to initiate REM sleep. Thus, overactive 5-HT
systems should have an inhibitory effect on REM sleep. Our group has shown that infusions
of the 5-HT;, agonist 8-OH DPAT into the pedunculopontine tegmental [PPT] region of cats
reduced entrances into REM sleep; Sanford et al. (1994) proposed that postsynaptic 5-HT1,
receptor mechanisms act to inhibit REM sleep.

Serotonergic systems are also known to be activated during stress (reviewed in Chaouloff et
al., 1999). Rueter and Jacobs (1996) reported an increase in 5-HT release in the amygdala of
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rats (the precise region was unspecified) with a variety of behavioral/environmental
manipulations, including tail pinch. Exposure to footshock stress in rats induced a 70% increase
in 5-HT in the cortex (Dazzi et al., 2005). In another study in rats, 5-HT was elevated in the
amygdala both after a conditioning session involving tone-shock presentations and after
reexposure to the tone alone the following day (Yokoyama et al., 2005). Although Rueter and
Jacobs (1996) suggested that there was little specificity to the 5-HT response to environmental
perturbations, subsequent work has shown differences. Inescapable shock in rats produced
large increases in 5-HT release in projection areas including the basolateral amygdala, while
physically identical escapable shock did not (Amat et al., 1998). Studies measuring expression
of immediate early genes such as c-fos indicate that exposure to tailshock (Takase et al.,
2004), immobilization (de Medeiros et al., 2005), or even social defeat (Gardner et al., 2005)
activate dorsal raphé neurons. On the basis of these data it is not surprising that exposure to
stress, particularly intense stress, is associated with REM sleep disturbances (Akerstedt,
2006). This work suggests that activation of the DRN plays a key role in mediating 5-HT
increases in target regions rather than pre-synaptic auto or heteroreceptor modulation.

Summary and Conclusions

Stress can modulate sleep, both directly as well as by contributing to the development of
depressive and anxiety disorders. The development of animal models of stress-induced changes
in sleep is critical to both fully understand the disorders, as well as to pre-clinically evaluate
potential treatments. Of particular interest to our group has been the etiology of PTSD as a
consequence of exposure to intense stress in humans (Brady & Sinha, 2005). Of all the chronic
symptoms associated with PTSD, the changes in sleep may be the most debilitating. Thus, the
primary purpose of this review has been to describe and assess potential animal models of
stress-induced changes in sleep over the last 16 years since the seminal work of Rampin et al.
(1991), with a particular emphasis on their potential application as models of the sleep
disturbances of PTSD.

Immobilization is a frequently used stressor in rodents and was the first stressor applied in
sleep studies. Relatively brief (<4 hr) periods of immobilization are associated with subsequent
increases in sleep (e.g., Rampin et al., 1991). The changes in sleep associated with mild
stressors appear to be associated with noradrenergic (Gonzalez et al., 1995) and endogenous
opioid activation (Vazquez-Palacios et al., 2004), and not CORT. A longer, and presumably
more stressful, 4-hr immaobilization is associated with higher CORT levels, and no subsequent
increase in SWS or REM sleep. Finally, 22 hr of immobilization is associated with a prominent
decrease in all sleep parameters observed (Papale et al., 2005). Although the extended
immobilization produced decreases in REM, it appears that overall immobilization stress is a
poor model for PTSD.

Exposure to electric shock reliably reduces REM sleep (Kant et al., 1995; Palma et al., 2000;
Vazquez-Palacios and Velazquez-Moctezuma, 2000), and thus seems like a more viable model
of the sleep changes in PTSD than immobilization. Electric shock and other more intense
stressors activate CRF and 5-HT neurotransmission, as well as other systems that are inhibitory
to sleep in general and REM sleep in particular (McEwen, 2004). Further, we (Madan et al.,
2007; Sanford et al., 2003) have demonstrated the powerful role of conditioned aversive stimuli
in maintaining the sleep disturbance over several weeks. A conditioning model provides one
mechanism whereby the effects of PTSD could persist for a long time after the initial trauma.
In PTSD the sleep disruption is chronic, often persisting for decades after the trauma (Harvey
et al., 2003). Conditioning, together with a deficit in extinction, has received a great deal of
attention recently as a causal factor in PTSD (e.g., Quirk, 2006). Thus, we feel it is the shock
paradigms that have the greatest potential for animal models relevant to the sleep disturbances
of PTSD.

Neurosci Biobehav Rev. Author manuscript; available in PMC 2009 January 1.
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Understanding the neurobiology of the sleep changes induced by stress, as well as the changes
induced by conditioned stimuli associated with stress, will enable us to better understand and
treat the sleep problems associated with routine stress in humans as well as the development
of depressive and anxiety disorders in humans. We believe that this review has summarized
the current work in the field and highlights areas of needed preclinical future research. We
believe the most needed area of research in this area is to elucidate further the pharmacological
and neural substrates involved in mediating stress’ effects on sleep by applying a combination
of pharmacological, lesion, and transgenic approaches to the behavioral paradigms that have
been described. This will greatly enhance preclinical research in potential
pharmacotherapeutics, and possibly enable a significant number of psychiatric patients to
regain normal sleep patterns, and lead more normal lives.
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Figure 1.

The effect of reexposure to the shock context 24 hr after conditioning on REM sleep percent
(of total sleep time) and sleep efficiency (total sleep time/total recording time). N = 7. Data
analyzed via a repeated measures ANOVA, * p < 0.05, different from baseline.
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The effect of exposure to the neutral context 24 hr and 48 hr after conditioning on REM sleep
percent (of total sleep time) and sleep efficiency (total sleep time/total recording time). N = 8.
Data analyzed via a repeated measures ANOVA, * p < 0.05, different from baseline.
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Figure 3.

The effect of reexposure to the shock cues 24 hr and 14 days on: [A] sequential REM amount
(min); [B] sequential REM count; [C] sequential REM cluster amount (min); [D] sequential
REM cluster count; [E] sequential REM cluster episode length (min); [F] REM sleep amount
(percent of total sleep time). N = 6. Data analyzed via a repeated measures ANOVA, * p <
0.05, ** p < 0.01, different from baseline.
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