Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1987 May 1;89(5):791–813. doi: 10.1085/jgp.89.5.791

The response to monochromatic light flashes of the oxygen consumption of honeybee drone photoreceptors

PMCID: PMC2215925  PMID: 3598560

Abstract

Local measurements of the fall in oxygen pressure on stimulation of slices of the retina of the honeybee drone by flashes of light were made with oxygen microelectrodes and used to calculate the kinetics of the extra oxygen consumption (delta QO2) induced by each flash. The action spectrum for delta QO2 was obtained from response-intensity curves in response to brief (40 ms) monochromatic light flashes. The action spectrum of receptor potentials was obtained with the same experimental conditions. The two action spectra match closely: they deviate slightly from the photosensitivity spectrum of the drone rhodopsin (R). The deviation is thought to be due to wavelength- dependent light scattering and absorption in the preparation. In these experiments, the visual pigment was first illuminated with orange light, which is known to convert the bistable drone photopigment predominantly to the R state from the metarhodopsin (M) state. When long (300-900 ms) light flashes were used to elicit delta QO2, the responses to different wavelengths could not be matched in time course (as for the short flashes). Flashes producing large R-to-M conversions produced a prolonged delta QO2. The prolongation did not occur after double flashes, which produced both large R-to-M and M-to-R conversions. Similar changes in the length of afterpotentials in the photoreceptor cells and in a long-lasting decrease in photoreceptor intracellular K+ activity were found after long single or double flashes. The results are interpreted to show that the initial event for stimulation by light of metabolism in the drone retina is the same as that for stimulation of electrical responses (i.e., absorption of photons by R). Absorption of photons by M can produce an inhibitory effect on this stimulation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacigalupo J., Lisman J. E. Single-channel currents activated by light in Limulus ventral photoreceptors. Nature. 1983 Jul 21;304(5923):268–270. doi: 10.1038/304268a0. [DOI] [PubMed] [Google Scholar]
  2. Baumann F. Slow and spike potentials recorded from retinula cells of the honeybee drone in response to light. J Gen Physiol. 1968 Dec;52(6):855–875. doi: 10.1085/jgp.52.6.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baylor D. A., Hodgkin A. L. Detection and resolution of visual stimuli by turtle photoreceptors. J Physiol. 1973 Oct;234(1):163–198. doi: 10.1113/jphysiol.1973.sp010340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertrand D., Fuortes G., Muri R. Pigment transformation and electrical responses in retinula cells of drone, Apis mellifera male. J Physiol. 1979 Nov;296:431–441. doi: 10.1113/jphysiol.1979.sp013014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coles J. A., Tsacopoulos M. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation. J Physiol. 1979 May;290(2):525–549. doi: 10.1113/jphysiol.1979.sp012788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cronin T. W., Goldsmith T. H. Quantum efficiency and photosensitivity of the rhodopsin equilibrium metarhodopsin conversion in crayfish photoreceptors. Photochem Photobiol. 1982 Oct;36(4):447–454. doi: 10.1111/j.1751-1097.1982.tb04401.x. [DOI] [PubMed] [Google Scholar]
  7. Goldsmith T. H., Wehner R. Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J Gen Physiol. 1977 Oct;70(4):453–490. doi: 10.1085/jgp.70.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamdorf K., Kirschfeld K. Reversible events in the transduction process of photoreceptors. Nature. 1980 Feb 28;283(5750):859–860. doi: 10.1038/283859a0. [DOI] [PubMed] [Google Scholar]
  9. Hillman P., Hochstein S., Minke B. Transduction in invertebrate photoreceptors: role of pigment bistability. Physiol Rev. 1983 Apr;63(2):668–772. doi: 10.1152/physrev.1983.63.2.668. [DOI] [PubMed] [Google Scholar]
  10. Hochstein S., Minke B., Hillman P., Knight B. W. The kinetics of visual pigment systems. I. Mathematical analysis. Biol Cybern. 1978 Jul 14;30(1):23–32. doi: 10.1007/BF00365480. [DOI] [PubMed] [Google Scholar]
  11. Larrivee D., Goldsmith T. H. Spectral dimorphism of crayfish visual pigment in solution. Vision Res. 1982;22(7):727–737. doi: 10.1016/0042-6989(82)90003-7. [DOI] [PubMed] [Google Scholar]
  12. Levy S., Fein A. Relationship between light sensitivity and intracellular free Ca concentration in Limulus ventral photoreceptors. A quantitative study using Ca-selective microelectrodes. J Gen Physiol. 1985 Jun;85(6):805–841. doi: 10.1085/jgp.85.6.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lisman J. The role of metarhodopsin in the generation of spontaneous quantum bumps in ultraviolet receptors of Limulus median eye. Evidence for reverse reactions into an active state. J Gen Physiol. 1985 Feb;85(2):171–187. doi: 10.1085/jgp.85.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Munoz J. L., Deyhimi F., Coles J. A. Silanization of glass in the making of ion-sensitive microelectrodes. J Neurosci Methods. 1983 Jul;8(3):231–247. doi: 10.1016/0165-0270(83)90037-7. [DOI] [PubMed] [Google Scholar]
  15. Muri R. B., Jones G. J. Microspectrophotometry of single rhabdoms in the retina of the honeybee drone (Apis mellifera male). J Gen Physiol. 1983 Oct;82(4):469–496. doi: 10.1085/jgp.82.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Naka K. I., Rushton W. A. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):536–555. doi: 10.1113/jphysiol.1966.sp008001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paulsen R., Hoppe I. Light-activated phosphorylation of cephalopod rhodopsin. FEBS Lett. 1978 Dec 1;96(1):55–58. doi: 10.1016/0014-5793(78)81061-8. [DOI] [PubMed] [Google Scholar]
  18. Perrelet A. The fine structure of the retina of the honey bee drone. An electron microscopical study. Z Zellforsch Mikrosk Anat. 1970;108(4):530–562. doi: 10.1007/BF00339658. [DOI] [PubMed] [Google Scholar]
  19. Schmidt W., Butler W. L. Flavin-mediated photoreactions in artificial systems: a possible model for the blue-light photoreceptor pigment in living systems. Photochem Photobiol. 1976 Jul;24(1):71–75. doi: 10.1111/j.1751-1097.1976.tb06799.x. [DOI] [PubMed] [Google Scholar]
  20. Shaw S. R. Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 1969 Sep;9(9):999–1029. doi: 10.1016/0042-6989(69)90044-3. [DOI] [PubMed] [Google Scholar]
  21. Stavenga D. G. Derivation of photochrome absorption spectra from absorbance difference measurements. Photochem Photobiol. 1975 Feb;21(2):105–110. doi: 10.1111/j.1751-1097.1975.tb06636.x. [DOI] [PubMed] [Google Scholar]
  22. Stern J., Chinn K., Robinson P., Lisman J. The effect of nucleotides on the rate of spontaneous quantum bumps in Limulus ventral photoreceptors. J Gen Physiol. 1985 Feb;85(2):157–169. doi: 10.1085/jgp.85.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tomita T., Kaneko A., Murakami M., Pautler E. L. Spectral response curves of single cones in the carp. Vision Res. 1967 Jul;7(7):519–531. doi: 10.1016/0042-6989(67)90061-2. [DOI] [PubMed] [Google Scholar]
  24. Tsacopoulos M., Orkand R. K., Coles J. A., Levy S., Poitry S. Oxygen uptake occurs faster than sodium pumping in bee retina after a light flash. Nature. 1983 Feb 17;301(5901):604–606. doi: 10.1038/301604a0. [DOI] [PubMed] [Google Scholar]
  25. Tsacopoulos M., Poitry S., Borsellino A. Diffusion and consumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness. J Gen Physiol. 1981 Jun;77(6):601–628. doi: 10.1085/jgp.77.6.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tsacopoulos M., Poitry S. Kinetics of oxygen consumption after a single flash of light in photoreceptors of the drone (Apis mellifera). J Gen Physiol. 1982 Jul;80(1):19–55. doi: 10.1085/jgp.80.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vandenberg C. A., Montal M. Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes. Biochemistry. 1984 May 22;23(11):2347–2352. doi: 10.1021/bi00306a004. [DOI] [PubMed] [Google Scholar]
  28. Wong F. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature. 1978 Nov 2;276(5683):76–79. doi: 10.1038/276076a0. [DOI] [PubMed] [Google Scholar]
  29. Wong F., Wu C. F., Mauro A., Pak W. L. Persistence of prolonged light-induced conductance change in arthropod photoreceptors on recovery from anoxia. Nature. 1976 Dec 16;264(5587):661–664. doi: 10.1038/264661a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES