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Abstract

Background: Human genetic variations primarily result from single nucleotide polymorphisms
(SNPs) that occur approximately every 1000 bases in the overall human population. The non-
synonymous SNPs (nsSNPs) that lead to amino acid changes in the protein product may account
for nearly half of the known genetic variations linked to inherited human diseases. One of the key
problems of medical genetics today is to identify nsSNPs that underlie disease-related phenotypes
in humans. As such, the development of computational tools that can identify such nsSNPs would
enhance our understanding of genetic diseases and help predict the disease.

Results: We propose a method, named Parepro (Predicting the amino acid replacement
probability), to identify nsSNPs having either deleterious or neutral effects on the resulting protein
function. Two independent datasets, HumVar and NewHumVar, taken from the PhD-SNP server,
were applied to train the model and test the robustness of Parepro. Using a 20-fold cross validation
test on the HumVar dataset, Parepro achieved a Matthews correlation coefficient (MCC) of 50%
and an overall accuracy (Q2) of 76%, both of which were higher than those predicted by the
methods, such as PolyPhen, SIFT, and HydridMeth. Further analysis on an additional dataset
(NewHumVar) using Parepro yielded similar results.

Conclusion: The performance of Parepro indicates that it is a powerful tool for predicting the
effect of nsSNPs on protein function and would be useful for large-scale analysis of genomic nsSNP

data.
Background 4]. Therefore, the identification of nsSNPs that affect pro-
Almost 90% of human genetic variations result from sin-  tein function and relate to disease will be a challenge in

gle nucleotide polymorphisms (SNPs) [1]. Among SNPs  the coming years [3,5-8].

resulting in amino acid changes, non-synonymous SNPs

(nsSNPs) are an important source of individual variation =~ A variety of methods have been developed to identify
and can result in inherited diseases and drug sensitivity [2- ~ whether an nsSNP is detrimental to protein function in
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vitro. Most of these methods utilize evolutionary data
[3,8-17], protein structure information [2,18,19], or both
[2,7,20-22]. Ng and Henikoff [8,16,23] developed the
software SIFT (Sorting Intolerant from Tolerant) to predict
the effect of nsSNPs on protein function; SIFT is based on
sequence conservation and scores from position-specific
scoring matrices. Some studies [24-26] have used phylo-
genetics to identify functionally critical residues within a
protein. The MAPP (Multivariate Analysis of Protein Pol-
ymorphism) [18] software exploits the physicochemical
variation between wild-type amino acid residues and
newly introduced residues to identify nsSNPs that impair
protein function. The method Align-GVGD [9] uses both
genetic biochemical variation and genetic distance
between the wild-type residue and newly introduced resi-
due to predict the effects of an nsSNP. Some methods
[2,20-22] take advantage of three-dimensional structural
information to analyze the impact of amino acid changes
on protein function. Wang and Moult [4] found that the
vast majority of nsSNPs that are related to diseases affect
protein stability rather than function. Specific factors that
determine stability of a protein were then used to predict
the effects of nsSNPs. Chen et al. [27] used solvent acces-
sibility of residues to predict deleterious mutations.

Support vector machine (SVM) has gained popularity over
other machine learning methods for interpreting biologi-
cal data [28-35] because of their ability to very effectively
handle noise and large datasets/input spaces [36,37].
Then, some methods [2,7,10,21] have been designed
based on the SVM [38] to predict the effect of nsSNPs.
Capriotti et al. [10] developed a method that depends
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only on the evolutionary information around the nsSNP.
Peng Yue and John Moult [2] also proposed a method that
uses the conservation and type of residues observed at a
base change position within a protein family. Karchin et
al. [7] and Bao et al. [21] introduced two methods based
on structural and evolutionary information. The structural
information mainly concerns areas in the protein that are
buried, as well as the fraction polar secondary structure,
solvent accessibility, z-score and buried charge. The evolu-
tionary information mainly uses Hidden Markov model
PHC score, Hidden Markov model relative entropy, SIFT
score and the biochemical difference between the wild-
type residue and newly introduced residue.

Here, we propose a method that predicts nsSNPs based on
the SVM [38]. This method, named Parepro (Predicting
the amino acid replacement probability) uses evolution-
ary information surrounding an nsSNP. In addition, prop-
erties from the AAindex [39,40] and from evolutionary
information are combined to determine the dissimilarity
between the wild-type and newly introduced residues.
Parepro predicted the total number of nsSNPs with higher
accuracy than other methods and was not dependent on
structural information. In this study, two independent
datasets, HumVar and NewHumVar, taken from the PhD-
SNP server [10], were applied to train the model and test
the robustness of Parepro, respectively.

Results

The nsSNP prediction performance of Parepro

Figure 1 presents a flowchart illustrating the procedure of
Parepro. Homologous sequences of a protein containing
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Brief flow chart illustrating the prediction procedure of Parepro. First, the position-specific amino acid probabilities
(PSAP) of the target sequence are calculated. Second, three attribute sets are constructed using the PSAP information in com-
bination with the RD, M, and IE properties of the amino acids. Finally, the complex vector of Parepro is integrated and used to

predict the effect of an nsSNP.
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Table I: The prediction performance of the Parepro attribute sets when applied alone or in combination

Attribute set Sensitivity Specificity Q2 MCC
RD 0.78 0.68 0.75 0.46

M 0.79 0.66 0.74 0.46

IE 0.75 0.56 0.67 0.32
RD+MI 0.8l 0.67 0.75 0.49
RD+IE 0.80 0.68 0.75 0.47
MI+IE 0.80 0.66 0.75 0.47
Parepro 0.82 0.67 0.76 0.50

Q2: the overall accuracy
MCC: Matthews correlation coefficient

the target nsSNPs were selected from the Swiss-Prot data-
base, aligned, and weighted. Position-specific amino acid
probabilities (PSAP) of the amino acids surrounding
mutation position were then estimated. Next, three
attribute sets, namely residue differences (RD), mutation
position information (MI), and information on the envi-
ronment around the mutation position (IE) were con-
structed and combined. In this study, the attribute set IE
was calculated from the six residues on either side of the
mutation, because this was the smallest number of resi-
dues that produced accurate results. To evaluate the per-
formance of different attribute sets, a 20-fold cross-
validation test on the HumVar dataset was carried out. All
variants in the HumVar dataset could be predicted by
using different attribute sets.

Table 1 shows the performance of the three attribute sets
when applied individually or in various combinations.
The prediction performance of attribute set IE was the
poorest among the three. By comparison, the perform-
ance of the other attribute sets (RD or MI) was high. Nev-
ertheless, association of the attribute set RD or MI with IE
improved performance such that the overall accuracy
(Q2) and Matthews correlation coefficient (MCC) were
approximately 75%, respectively. The highest prediction
accuracy was obtained, however, after these three attribute
sets were combined into a new vector, Parepro, suggesting
that the three attribute sets reinforce each other in the
analysis.

Table 2: Range of the number of homologous sequences

Effect of the number of homologous sequences on Parepro
performance

To examine how the number of homologous sequences
influenced the performance of Parepro, the HumVar data-
set was split into seven sub datasets (i.e., F1, F2, F3, F4, F5,
F6, F7) according to the number of homologous
sequences, as summarized in Table 2. Then 20-fold cross-
validation test was carried out on every sub datasets.
Importantly, caution was taken to ensure that every test
protein that contained the corresponding nsSNP was not
included in the training set. As shown in Figure 2, the
overall accuracy and MCC on sub dataset F1 were only
about 70% and 36%, respectively. This result indicated
that the prediction on the two classes (disease-related
mutations and neutral polymorphisms) using sub dataset
F1 was imbalance and only the major class obtained the
better score. However, Parepro obtained the highest accu-
racy on sub dataset F3, which the overall accuracy (Q2)
was 77% and the MCC was 54%. Therefore, these results
indicated that the efficacy of Parepro for predicting amino
acid variants depends on the number of homologous
sequences.

Reliability index of Parepro for nsSSNP prediction

When machine learning approaches are selected to predict
the effects of nsSNPs on protein function, it is important
to know the reliability of the predicted result [10,41]. In
this study, a Reliability Index (RI) was also assigned to a
predicted nsSNP based on the output of support vector

Subset name

The range of homologous sequences number* The proteins number within the range (%) The mutations number within the range (%)

FI [0,0]
F2 [1,3]
F3 [4,6]
F4 [7.9]
F5 [10,14]
Fé [15,25]
F7 [26,1000]

12.29 8.28
18.93 17.31
11.84 9.27
7.20 6.78
9.70 10.65
9.06 11.84
30.97 35.86

*The number of homologous sequences of target protein between a and b, as denoted by [a, b].
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Figure 2
The overall accuracy (Q2) and Matthews' correlation
coefficient (MCC) of Parepro when testing the sub-
sets from F1 to F7. The x-axis denotes the different test
subsets from F| to F7, and the y-axis denotes the overall
accuracy (Q2) or Matthews correlation coefficient (MCC).

machines that LIBSVM was used in this work. Consider
that an output of LIBSVM with parameter of "-b 1" for a
nsSNP is O; the RI value is thus computed as: RI = INTE-
GER(20 x abs(O - 0.5))+1. The RI assignment yields infor-
mation about the certainty of the classification decision
and thus can be used as an indicator of prediction cer-
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Average prediction accuracy calculated cumulatively
with Rl above a given value. For example, about 66% of
all nsSNPs have RI > 6, and of these nsNSPs about 88% are
corrctly predicted. The result is based on the NumVar data-
set.
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tainty for a particular variant. Figure 3 shows the expected
prediction accuracy and the proportion of the sequences
with a given RI value. For example, about 66% of all nsS-
NPs had an RI > 6, and of these nsSNPs about 88% were
correctly predicted. These results are based on the Hum-
Var dataset.

Comparison of Parepro with other methods

We compared Parepro with other predictors, HybridMeth
[10], PolyPhen [3] and SIFT [8,16,23]. HybridMeth uses
the profile and sequence information surrounding a
mutation. PolyPhen [3] is based on a decision tree and
takes into account several pieces of information derived
by structural parameters, functional annotations, and evo-
lutionary information. SIFT [8,16,23] mainly uses infor-
mation from homologous sequences.

As shown in Table 3, Parepro obtained the highest scores
with respect to sensitivity, specificity, overall accuracy
(Q2) and Matthews correlation coefficient (MCC) (the
definition of these parameters could be find in method
section) among the four methods. Because there was an
obvious disparity in the number of disease-related muta-
tions and the neutral polymorphisms in the dataset, MCC
combined both the sensitivity and the specificity of the
predictor and should be selected as the main score among
the six scores in the evaluation [20,21,41,42]. The MCC
for Parepro was higher by 6%, 17% and 4% compared
with the MCC obtained with PolyPhen, SIFT and Hydrid-
Meth, respectively. Furthermore, Parepro could predict all
mutations in the HumVar dataset. By contrast, PolyPhen
and SIFT could only predict approximately 93% of the
amino acid mutations, because these programs require
more specific functional or evolutionary information.
These results indicate that Parepro is a powerful tool for
predicting the effect of mutations.

Predicted efficacy of Parepro on the NewHumVar dataset
To test the robustness of Parepro and compare it with
other methods available on the web, the dataset
NewHumVar was selected, which includes only new vari-
ants submitted to the Swiss-Prot database. Variants that
were the same as in the HumVar dataset were removed. As
shown in Table 4, all amino acid mutations in the
NewHumVar dataset were predicted by Parepro. The MCC
for Parepro was significantly higher than the MCCs calcu-
lated by HybridMeth, PolyPhen, and SIFT. These results
indicate that Parepro outperformed these other prediction
methods.

Discussion

Predicting phenotypes resulting from nsSNPs is an impor-
tant aspect of post-genome biology. The present study
helps advance the analysis of genetic variation and may
therefore lead to a better understanding of the resulting
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Table 3: Comparison of performance between Parepro and other methods using the HumVar dataset

Prediction Method Sensitivity Specificity Q2 MCC PM (%)
PolyPhen 0.62 0.80 0.72 0.44 93
SIFT 0.76 0.56 0.67 0.33 94
HydridMeth 0.80 0.65 0.74 0.46 100
Parepro 0.82 0.67 0.76 0.50 100

The prediction results of PolyPhen, SIFT and HydridMeth were obtained from Capriotti et al. [10].

Q2: the overall accuracy
MCC: Matthews correlation coefficient
PM is the percentage of predicted mutations.

phenotypic variations among individuals with an aim
toward drug design and development [2,7,20,25]. Two
tests using different datasets indicated that Parepro out-
performed several widely used methods.

Unlike the other methods that use the machine learning
method [10,12,20-22,43,44], Parepro was constructed
from three attribute sets RD, MI, and IE, all of which
incorporate evolutionary information. In general, if the
RD between the newly introduced amino acid and the res-
idue in the mutation position has a high value, the substi-
tution would be considered to have a high probability of
being deleterious [16,18,25]. At the same time, attribute
sets MI and IE were used to characterize the condition at
the mutation position and around the mutation position,
respectively. For example, when residues surrounding a
mutation were found to be conserved, the region was
related to either function or structure [10,27], and thus
the mutation would be deleterious. This information rein-
forced the characterization provided by RD. Moreover, the
results indicated that these three attribute sets comple-
mented one another to yield a higher overall accuracy
(Q2) and Matthews correlation coefficient(MCC).

The attribute vector of Parepro did not contain structural
features. Thus, it is possible that some of the information
directly derived from the protein structure [19] was
ignored by Parepro. However, the lack of structural infor-
mation was likely overcome by the inclusion of 50 dis-
crete amino acid properties in the RD attribute set, thereby

enhancing the efficacy of the sequence-based Parepro pro-
gram.

Conclusion

We present an SVM-based prediction method, Parepro,
which predicts the effect of nsSNPs on protein function.
Comprehensive comparisons of the prediction perform-
ance on two datasets showed that Parepro, which utilizes
information from the amino acids surrounding the muta-
tion position and from the residue difference between the
newly introduced amino acid and the average residue in
the mutation position, outperformed several other widely
used prediction methods. Moreover, Parepro was able to
predict all mutations within two distinct test sets. There-
fore, we anticipate that Parepro will be a useful tool for
large-scale analysis of nsSNPs in genomic databases.

Methods

The prediction procedure of Parepro (Figure 1) begins by
calculating the position-specific amino acid probabilities
(PSAP) of a target protein that contains a corresponding
nsSNP. Next, three attribute sets were constructed using
PSAP and the properties of amino acids from AAindex
[39,40]; these three sets were then used to describe residue
differences (RD) and mutation position information (MI)
and to yield information on the environment around the
mutation positions (IE). Finally, a complex vector that
consisted of 94 attributes was used to predict the effects of
the nsSNPs. The attribute sets RD, MI and IE comprised
50, 23, 21 attributes, respectively.

Table 4: Comparison of performance parameters of Parepro with other methods using the NewHumVar dataset

Prediction Method Sensitivity Specificity Q2 MCC PM (%)
PolyPhen 0.30 0.92 0.72 0.28 79
SIFT 0.32 0.87 0.69 0.22 88
HydridMeth 0.34 0.94 0.73 0.36 100
Parepro 0.40 0.94 0.78 0.42 100
The prediction results of PolyPhen, SIFT and HydridMeth were obtained from Capriotti et al. [10].
Q2: the overall accuracy
MCC: Matthews correlation coefficient
PM is the percentage of predicted mutations.
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The mutation datasets

We used two datasets, HumVar and NewHumVar, taken
from the PhD-SNP server [10]. The dataset HumVar con-
sisted of 21,185 different SNPs (12,944 were disease-
related, and 8,241 were neutral polymorphisms) obtained
from 3,587 protein sequences in the Swiss-Prot database
(Release 48). The NewHumVar dataset was comprised of
SNPs obtained from the Swiss-Prot database (Release 50)
after eliminating any variants also present in the HumVar
dataset. Therefore, the dataset NewHumVar consisted of
935 single amino acid mutations (149 were disease-
related variants, and 786 were neutral mutations) from
469 different proteins.

Computing position-specific amino acid probabilities
(PSAPs)

A Dirichlet mixture method [45-47] was adopted to esti-
mate the PSAPs, which was then used to construct the vec-
tor of Parepro and was calculated as follows:

(1) PSI-BLAST [48] with parameter -e 0.001 was run for
three iterations to collect sequences similar to the target
protein that contained the corresponding nsSNP from the
Swiss-Prot database (Release 50.0) [49]. The identified
sequences were aligned by ClustalX [50,51] with default
parameters. The position-based sequence weight method
[52] was used to derive the weight w; of the ith sequence
in the alignment. If no homologous sequence was
selected, the weight w; of the target sequence was desig-
nated as 1.0.

(2) An alignment column was summarized by its
weighted composition into a vector ¢. The element of vec-
tor ¢ was calculated as follows:

N
cmzz’wixéim(m:l,z---zl) (1)
i=1
where N is the total number of aligned sequences, w; is the
weight of the i th sequence, the value of m from 1 to 20
represents any one of 20 amino acids, and a value of 21
represents a gap. If the symbol type of the i th sequence at
the column is an amino acid a,,(m = 1, 2U20) or gap (m
= 21), the value of 8, is 1.0; otherwise it is 0.

(3) A new vector u, which incorporated the gap informa-
tion into the 20 amino acids, was constructed as follows:

Uy = Cp+ Cyy x hyy (M =1,2020) (2)

where the vector h is the frequency of occurrence of any
one of the 20 amino acids [53].

(4) The Dirichlet mixture method [45-47] was adopted to
estimate the PSAPs. The posterior probability of amino

http://www.biomedcentral.com/1471-2105/8/450

acid m at a position, p,,, was calculated from a 20-com-

ponent Dirichlet mixture[47]:

. X

Pm =50 (m=1,2---20)
2 Xp (3)
k=1
2 (a]+n) o m+nm @)
B(at ) ‘aj‘+|n|

where g; is the mixture coefficient of each component, B is

the Beta function, &; = (;...)) is the parameter for

each component j of the Dirichlet mixture, and ! is the
number of components. The vector n was calculated by
the equation, n,, = u,,x N(m = 1, 2U20), where N is the
total number of homologous sequences and u,is calcu-
lated from equation (2).

Inputs and Encoding Schemes of Parepro
The Parepro vector was comprised of three attribute sets,
which were used to describe the RD, the MI, and the IE.

The first attribute set, RD, was designed to depict the prop-
erty differences between the newly introduced amino acid
and the average residue in the mutation position, which
was composed of 50 elements and was constructed as fol-
lows:

(1) The 544 amino acid properties were downloaded from
AAindex [39,40], as shown in Additional file 1. Then the
value of each property ¢, (k = 1,U,544, m = 1, 2U20) was
standardized as follows:

tl — Lem—HE (5)
Sk

where z,and sj are the mean and variance of the property

k, respectively, and were calculated as follows:

20 20
My = %z L and sj = % z(tkm —)?
m=1 m=1
(2) The position-dependent properties d;, were given by
dkm =PmX t}zm (6)

where p,, is the PSAP at a mutated position calculated
from equation (3).
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(3) With respect to property k, the distance 1, between the
weighted property d,,, of a newly introduced amino acid n
and the mean of d;, was

r, = =tk ?)
Sk

where 41, and s;’ are the mean and variance of d,, respec-

, 20
tively, and were calculated as follows: u;, =%dem,
m=1

20
0 ‘o
Sk —ﬁzl(dkm—ﬂk) .
m=

(4) A new vector r was then constructed using the 544 ele-
ments from Additional file 1. The software weka3.4 [54]
was used to simplify the vector r, in which the evaluator
CfsSubsetEvalwas selected. The redundant and low-con-
tribution elements in vector r were removed. After these
modifications, 50 elements remained and were included
in the RD attribute set.

The second attribute set, MI, was used to define the status
of a mutation position and consisted of 23 values. The
first 20 elements were the PSAP values of the 20 amino
acids in the mutation position calculated from equation
(3). The 21stand 22nd elements were the PSAP values of
the wild-type residue and the newly introduced residue,
respectively. The 23 value was the entropy (E) [55,56] of
amino acids in the mutation position and was calculated
as follows:

20
1
E=—-——— E 1 8

In20 mzlpm P (8)

where 20 is the number of amino acids, and p,, is the PSAP
value at the mutation position calculated from equation

3).

The third attribute set, IE, encoded the information sur-
rounding the mutation position and consisted of 21 ele-
ments. The first 20 elements represented the PSAP values
of the 20 amino acids and were calculated from equation
(3), and the last element represented entropy and was cal-
culated from equation (8). Residues in the immediate
vicinity of the mutation carried more significance with
respect to the mutation. Therefore, a significance coeffi-
cient was assigned to each residue in proximity to the
mutation. The element of IE was then calculated as fol-
lows:

http://www.biomedcentral.com/1471-2105/8/450

f
1 f+1—abs(m)
IE, =——X E Y a=1,2---21
a f+1 =, f+1 )/(1+m)a( )

)

where i is the mutation position, f is the number of resi-
dues located to the left or right of the mutation position,
and a represents one element of IE from 1 to 21. If the
value of a is between 1 and 20, y;, ), Is p, in the position
of i + m calculated from equation (3). However, if the
value of a is 21, y(;, ), is the entropy E,,,, calculated from
equation (8). Furthermore, if the mutation is located at
the N-terminal position (i + m > I) or at the C-terminal
position, then y;, ), 18 ¥}, 0T y;,, respectively, where [ is the
number of residues in the protein.

Support vector machine

The SVM is a classifier seeking an optimal hyperplane to
separate two classes of samples. SVM uses kernel functions
to map original data to a feature space of higher dimen-
sions and locates an optimal separating hyperplane. For
SVM implementation, we used LIBSVM [57] with a Radial
Basis Function (RBF kernel function) K(x; x;) = exp(-G||x;
- xj/[?). The parameter was selected with the LIBSVM
parameter selection tool.

Scoring the performance

The proteins in the dataset were randomly divided into 20
subsets. For each individual test, the mutations in one of
the 20 sub-datasets were used as the test set and the others
in the 19 subsets were combined to form a training set.
The procedure was repeated 20 times so that each sample
was used exactly once for testing and training. We defined
disease-associated nsSNPs as positive and neutral nsSNPs
as negative. In this work, we adopted sensitivity, specifi-
city, overall accuracy(Q2) and Matthews correlation coef-
ficlent(MCC) to score the performance of the
corresponding method:

Specificity = IN Q2= _IPHIN.
TN+FP’ TP+FP+TN+FN
TPXTN—FPXFN

JOIN+EN)X(TN+FP)X(TP+FN)X(TP+FP)

Sencitivity =

T
TP+FN’
MCC =

(10)
where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false posi-
tives, and FN is the number of false negatives. Because
there was an obvious disparity in the number of positive
samples and negative samples in the dataset, MCC com-
bined both the sensitivity and the specificity of the predic-
tor and should be selected as the main score among the six
scores in the evaluation [20,21,41,42].
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Availability and requirements
Project name: Parepro
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Operating systems: Windows
Programming language: Perl
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the terms of the GNU General Public License as published
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