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INTRODUCTION

Parametric images generated from dynamic positron emission tomography (PET) studies are useful for presenting func-
tional/biological information in the 3-dimensional space, but usually suffer from their high sensitivity to image noise. To improve
the quality of these images, we proposed in this study a modified linear least square (LLS) fitting method named cLLS that incor-
porates a clustering-based spatial constraint for generation of parametric images from dynamic PET data of high noise levels. In
this method, the combination of K-means and hierarchical cluster analysis was used to classify dynamic PET data. Compared with
conventional LLS, cLLS can achieve high statistical reliability in the generated parametric images without incurring a high com-
putational burden. The effectiveness of the method was demonstrated both with computer simulation and with a human brain
dynamic FDG PET study. The cLLS method is expected to be useful for generation of parametric images from dynamic FDG PET
study.

Copyright © 2007 Xinrui Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ies [9-11]. The application of conventional LLS method for

Positron emission tomography (PET) is a powerful quan-
titative tool for in vivo imaging compounds labeled with
positron emitting radioisotopes that trace biological pro-
cesses in the body. However, in many occasions, the biolog-
ical parameters on the image voxel level as determined by
conventional statistical estimation methods suffer from large
statistical uncertainty. This paper addressed this problem to
make the quantitative estimation of physiological parameters
more reliable.

Parameter estimation methods [1-8], such as nonlinear
least square (NLS), linear least square (LLS), and graphic
analysis, are used in kinetic analysis of PET data. Due to
its simplicity and computational efficiency, LLS-based pa-
rameter approaches are commonly used for estimation of
macroparameters such as FDG uptake rate constant K; (=
Kiks/(ky + k3)) and distribution volume (= (Ki/k)(1 +
ks/ky)) for reversible ligand-receptor PET study. Regardless
of whether the data is from ROI or from a single voxel,
the noise-induced bias has been reported in previous stud-

generation of microparameter images of FDG kinetic model
could be limited by high noise levels of pixel kinetics. The
option of reducing the noise by increasing the injection dose
is limited by clinical practice. Averaging over a larger volume
or setting a big voxel size could reduce the noise, but it is
limited by tissue heterogeneity and the partial volume effect.
The clustering-based analyses developed recently [12—17] re-
duced the noise effectively because these methods averaged
the data over a large volume that included many tissues with
similar tracer kinetics or physiological characteristics. The
clustering operation automatically segments the tissues into
different clusters, within each the time activity curves (TACs)
of all voxels have a similar shape. The combination of clus-
tering analysis and the LLS method may give the required ro-
bustness and reliability in the parameter estimation and yet
without significantly increasing the computation burden for
generation of parametric images.

Comparing with previous methods, clustering analysis
for kinetics (CAKS) method was originally developed based
on the principle component analysis (PCA) [12, 13] with
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only two principle components. A variation of the original
CAKS method was based on the mixed-Gaussian model [14],
and was applied at the voxel level. Nonlinear ridge regression
with spatial constraint (NLRRSC) was used for nonlinear
least square (NLS) estimation after hierarchical cluster anal-
ysis [15]. Simultaneous estimation (SIME) or simultaneous
estimation with postestimation (SIMEP) method was a si-
multaneous estimation approach using a K-means-like clus-
ter analysis [16]. In the present study, a combination of K-
means and hierarchical cluster analysis is used for clustering
dynamic FDG PET data, and the kinetics of clusters of high
signal-to-noise ratio are applied to regression matrix for LLS
to produce parametric images. The method was verified us-
ing computer simulated data and a human FDG PET data set
to show its superior performance compared to the conven-
tional LLS or Patlak graphic analysis.

2. METHOD
2.1. Modeling theory

The following three-compartment FDG model [18] has been
shown before to be appropriate for analysis of dynamic FDG
PET data [1, 19, 20],

dcC,
di = KICP — (k2 + k3)Ce,

dCy,

ar ks Ce, (1)
Ci=Ce+Cp,

Cpet = (1 - VB)Ct+ VBCP)

where C,, Cy,, and C, are, respectively, the concentrations of
free FDG, FDG-6-phosphate in tissue, and the FDG concen-
tration in plasma. C; is the total radioactivity in tissue, Cpe; is
total counts from the whole field of view (FOV). K| is a trans-
fer constant for free FDG from plasma into tissue, k; is a rate
constant for free FDG from tissue back to plasma, and k3 is
rate constant for FDG phosphorylated into FDG-6-PO4.Vp
is fractional volume of blood in tissue (0 < V3 < 1).

Then, the cerebral glucose metabolic rate can be calcu-
lated as
[Glc]

= K;- (2)

_ K1k3 [GIC]
MRGlIc c’

a k2+k3 LC

where [Glc] is the glucose concentration in plasma. The
lumped constant (LC) is usually a constant. Therefore, to get
glucose metabolic rate, one only needs to calculate the uptake
rate constant Kj.

The linear description of (1) can be written as follows:

G = ki | ;cp(r)df Kk | ;cp(e)de dr

t
~ (ky +k3)J C(r)dr + 5, 3)
0
Cpet(t) - VBCp
—v,;

cLLS is a modified linear least square (LLS) fitting method
that incorporates a clustering-based spatial constraint for

Ct(t) =

generation of parametric images from dynamic PET data
of high noise levels. The 3D autoclustering processing was
applied to the smoothed dynamic PET data by a method
that combines K-means and hierarchical clustering with av-
erage linkage. The number of clusters was determined by re-
ferring to previous work [15]. The average TAC and Vg of
each cluster (Cpet_cluster and Vg _cluster) Were then determined
and were used to improve the LLS method as shown below
in (4) and (6) (note that all the tissue TACs in the follow-
ing equations are the measurements after being corrected for
VB,cluster (e~g-a Ct(t) = (Cpet(t) - VB,clusteGC )/ (1 - VBxluster)»
Ct,cluster(t) = (Cpet,cluster(t) - VB,clusteGC)/(l - VB,cluster))a

Cult) = Klj Cp(r)dr + Klksj OJ ;CP(Q)deT
! (4)

. k3>j Crctuser (T)dT + €.
0

The conventional way of calculating the value of K; as
Kiks/(ky + k3) may have a large error propagation, because
the estimates of k; and k3 determined from high noise TAC
usually have large variability. In order to obtain a more ro-
bust K; estimate, (3) can be rearranged for estimating K; di-
rectly as

t K t t T
JOCt(T)dT - FlkJ Cp(rydr + K,»J OJ Cy(6)dedr

B 1
ko + ks

Ct(t) + &
(5)

Substituting C; with C; quster (of lower noise level) on the
right side of (5) is expected to improve further the estimate
OfKi,

t K‘ t t T
JOCt(T)dT - ]QlesJ Cplr)dr + K,I OJ Cp(6)dods

1

-——FC +¢.
k2 T k3 t_cluster

(6)

2.2. Validation method
(1) Computer simulation

Time activity curves for 100 pixels within a cluster were sim-
ulated to investigate the influence of noise on parameter es-
timation with conventional LLS and cLLS at various noise
levels. The regular FDG model was used for the simulation.

Parameters used were K; = 0.13 (mL/min/g), k, = 0.08
(1/min), k3 = 0.05 (1/min). The dynamic PET scan time se-
quence (4 X 0.5 min, 4 X 2 min, 10 X 5 min) was the same
as the one commonly used in human FDG study. A plasma
TAC from a real human FDG study was used as the input
function. The noise-free tissue TAC was generated according
to the analytical solution of the model, that is,

K
k2 + k3

Ci(t) = (ks + koe" 200y ® C, (). (7)
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Pseudorandom Gaussian noise was added to the TAC accord-
ing to the noise variance formula shown by Chen et al. [21]
and Feng et al. [22] before. That is, the variance of the noise
was proportional to the radioactivity concentration and in-
versely proportional to the scan duration (At;),

o X Ct (ti) 60.693t,v/)t

204 —
o (tl) Atl >

(8)

where o2(t;) is the variance of ith scan at its midtime (#;),
a is the proportionality constant that determines the overall
noise level in a TAC, and A is the physical half-life of FDG (=
110 min).

In this simulation, « was set as 0.1, 0.2, 1.0, and 1.5 to
yield noisy TACs at various noise levels. The simulated TACs
were then processed using LLS and cLLS, separately to give
the estimates of the two methods. For the cLLS, the clus-
ter average tissue TAC in (4) and (6) used was the average
TAC of the 100 simulated TACs. The estimated parameters
for each of the 100 pixels were obtained for each noise level.
Bias and root mean squared error (RMSE) were used as cri-
teria to evaluate the reliability of cLLS. The percentages of
RMSE and bias are defined as [15]:

N L 2
RMSE% = l M % 100%,
P N-1
1< (pi—p) ©
Bias% = — > N X 100%,

i=1

where p; is the parameter estimation result of the ith simu-
lated pixel TAC at one noise level, p is the “true” parameter
value for the simulation, and N is the number of pixels in the
cluster (i.e., N = 100).

(2) Clinical data validation

A set of dynamic FDG PET data was acquired from a nor-
mal volunteer with an ECAT EXACT HR+ PET scanner
(axial field of view = 15.5cm; intrinsic full-width-at-half-
maximum (FWHM) at the center = 4.3 mm) in 3D acqui-
sition mode. Before FDG administration, transmission scan-
ning was performed using *®Ge line sources for attenuation
correction. Dynamic emission scans (4 X 0.5 min, 4 X 2
min, 10 X 5 min) were initiated simultaneously with an
IV injection of 155MBq FDG. For each PET scan frame,
63 transaxial images (128 x 128 pixel; pixel size 1.471 mmy;
2.425-mm plane thickness) were reconstructed using a fil-
tered back-projection algorithm with a Hanning filter (cut-
off frequency of 0.3 cycle per projection element), resulting
in an in-plane spatial resolution of ~8 mm FWHM. Dead
time, scatter, and measured attenuation corrections were ap-
plied. Arterial blood samples were collected via a catheter in
the radial artery during the study.

The acquired image data was processed with the follow-
ing procedure.

(1) After the mean images were obtained by averaging all
the frames of the time series, they were smoothed with a 6-
mm FWHM Gaussian filter to get an image mask of the brain
using SPM99. All PET dynamic images were masked to zero
out all the pixels outside of the head.

(2) The clustering of the 3D PET dynamic data follows
the procedure described as follows. (a) 3D smoothing of the
masked PET 3D data of each frame; (b) classifying pixel
TACs of the masked and smoothed PET 3D dynamic data
into 15 clusters with the K-means method; (c) classifying
the 15 average TACs from the 15 clusters into 4 final clusters
(white matter, gray matter, scalp, and vasculature) with the
average linkage hierarchical clustering method.

(3) The cluster average TAC was obtained as the aver-
age of all the voxel TACs in each cluster. Fitting the cluster
average TAC with the FDG model (1) using the Levenberg-
Marquardt algorithm gave the estimates of the parameters,
K1, ki, k3, V3, for each cluster.

(4) After correcting the dynamic PET data and the clus-
tered average TAC of each cluster with Vg _qyster, the paramet-
ric images (K, k2, and k3) were estimated using (3) and (4).
K; parametric image was estimated from Kiks/(k, + k3) for
the conventional LLS and according to (6) for cLLS.

(5) To validate the robustness of the cLLS method, the
parameters estimated by cLLS were compared against those
from the conventional LLS method and those from the Patlak
graphical method.

3. RESULTS
(1) Results of the clustering

After the clustering processing, a brain image is classified into
4 clusters. Figure 1 shows the cluster image results at the 12th,
18th, and 24th slices. To investigate how the K-means’ re-
sults effect the average linkage output, various numbers of
clusters (10, 15, and 25) from the K-means clustering were
tested and the results from the average linkage were shown
in different rows in Figure 1. Some detail anatomic features
were lost with 10 clusters. Although some voxels were as-
signed to the wrong cluster with the use of 25 clusters, the dif-
ferences cannot be exactly distinguished between 15 clusters
and 25 clusters. To get an idea of how well separated the re-
sulting clusters are, we can make a silhouette plot using the
final cluster indices output. The silhouette plot displays a
measure of how close each point in one cluster is to points
in the neighboring clusters. A quantitative way to compare
the different solutions is to look at the average silhouette
values for the different cases. The bigger average silhouette
value indicates the better cluster result, for example, the av-
erage silhouette values of 12th slice are 0.8084, 0.8132, and
0.8177, respectively, for the final cluster results from 10, 15,
and 25 clusters from the K-means clustering.

Considering the computation efficiency and simplicity
simultaneously, the estimated parameters of each cluster,
from the average linkage results with 15-cluster K-means re-
sults, are summarized in Table 1.

(2) Results of the simulation

The estimated parameters (by LLS and by cLLS) from the
simulated data at different noise levels are listed in Table 2.
The bias and RMSE of the estimates are shown in Figure 2.
The absolute values of percent bias and percent RMSE of the



International Journal of Biomedical Imaging

18th slice

12th slice

24th slice

|
|
|

FiGURE 1: The 12th slice, 18th slice, and 24th slice of 3D PET dynamic data clustered image.

estimates are small for both methods when the TAC noise
level is low. For higher noise levels, the results from the con-
ventional LLS quickly deteriorate, while the estimated uptake
rate constant k; from cLLS remains stable (i.e., the absolute
values of bias and RMSE with the cLLS are both small).

(3) Results of clinical data validation

The parametric images of the 12th slice as estimated by LLS
and by cLLS are shown in Figure 3. It is evident that the para-
metric images from cLLS have a better image quality and
higher SNR.

To quantitatively compare the parametric images, we ap-
plied a number of small ROIs to the parametric images, and
compared the mean and standard deviation of the pixel val-
ues within the ROIs. The results are shown in Table 3. Com-
pared to LLS, cLLS gives higher means and lower SDs for the
estimates.

To investigate noise effects on real data, big-to-small ROIs
were selected and kinetically analyzed. The ROI parameter
values were obtained with three methods separately: conven-
tional nonlinear regression method fitting the average TAC of
all ROI pixel TACs; LLS method fitting each ROI pixel TAC
and giving out the mean of all pixel parameters; cLLS method
fitting each ROI pixel TAC with the average ROI TAC substi-

TABLE 1: The parameters of every cluster with NLS fitting.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
K 0.088 0.109 0.170 0.222
k> 0.343 0.249 0.284 0.629
ks 0.023 0.042 0.048 0.013
Vv, 0.042 0.052 0.070 0.137
K; 0.006 0.016 0.025 0.004

tuting the cluster average tissue TAC in (4) and (6). RMSE
of estimates (K, k», k3, and K;), with conventional nonlinear
regression method as reference, the RMSE of cLLS estimate
is significantly lower (22.7% for K;; 12.6% for kj; 16.5% for
k3, and 91.2% for K;) than that of LLS (paired t-test, P < .01).

(4) Correlation comparison of different methods

Squared correlation coefficients (R?) between ROI averages
of parametric images (by cLLS) and parameters estimated
by ROI kinetic analysis (with LLS) are 0.94 for K;, 0.92 for
k,, 0.88 for ks, and 0.99 for K; (Figure 4). The K; estimate
for each pixel from cLLS also correlates well with that from
the Patlak graphical analysis (R? = 0.99, y = 0.002 + 1.089*x)
(Figure 5).
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Ficure 2: Bias and RMSE of estimated parameters for the simulation data at different noise levels (diamond for LLS results; filled circle for

cLLS results).
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K;

F1GURE 3: The parametric images of the 12th slice in clinical 3D FDG PET dynamic data, the first row is the images from LLS and the second
row is the images from cLLS.
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FIGURE 4: The correlation of voxel-based average parameters of VOIs in parametric image space with the parameters derived from VOI
kinetic analysis with conventional LLS fitting.
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F1GURE 5: The correlation of the parameter comparison between cLLS and Patlak methods in parametric image space.

TABLE 2: Mean of estimated parameters for the simulation data
at different noise levels (“true” parameter values: K; = 0.130, k, =
0.080, k; = 0.050, K; = 0.050).

K k, ks K;
LLS ¢LLS LLS c¢LLS LLS «cLLS LLS cLLS
0.1 0.129 0.130 0.079 0.079 0.050 0.050 0.050 0.050
0.2 0.129 0.129 0.079 0.079 0.050 0.051 0.050 0.050
1 0123 0.128 0.069 0.082 0.034 0.049 0.046 0.051
1.5 0.117 0.124 0.054 0.074 0.024 0.038 0.088 0.050

TaBLE 3: Pixelwise comparison on mean and SD of parametric im-
ages (paired t-test, P < .05).

Mean SD SD

lower

K, cLLS 0.111 0.024 18.6%
LLS 0.104 0.029

k, cLLS 0.150 0.051 14.5%
LLS 0.123 0.059

ks cLLS 0.031 0.008 33.6%
LLS 0.029 0.013

K, cLLS 0.023 0.004 89.7%
LLS 0.020 0.035

4. DISCUSSION

(1) Advantage of the clustering processing in
the cLLS method

From the result shown in Figure 1, one sees that the clus-
tering technique in our cLLS method clearly segmented the
dynamic PET images into 4 clusters. Compared to previous
works based on subjective ROI drawing that is labor intensive
and error prone, our clustering technique performed well.
In addition, the process of clustering is not subject to tissue

heterogeneity, with which manual ROI method is difficult to
deal. Comparing with the relevant studies that the clustering
method has been used in dynamic PET FDG data analysis be-
fore, the novelty of our study is the integration of modified
clustering method and LLS based on voxel level.

(2) High accuracy and reliability of cLLS

From the simulated results in Figure 2, one can see that the
absolute values of percent bias and percent RMSE of the es-
timates from cLLS are usually smaller than those of LLS at
all noise levels. The use of the cluster average TAC on the
right-hand sides of (4) and (6) is considered to be the main
factor that accounts for the improvement. This result is in
agreement with those previously reported by Kimura et al.
[12] which showed that direct parameter estimation using
the conventional LLS would result in a large bias compared
with the linearization method with cluster analysis.

(3) cLLS analysis saving more calculation time

For cLLS, the right-hand-sides of (4) and (6) are calculated
only 4 times (the number of clusters) for each study, while the
same computation (3) needs to be repeated for each voxel for
LLS. The calculated time of cLLS is about 2 hours, less than
about 6 hours of LLS, when dealing with the clinical data.
The program was edited in Matlab 6.5 language under Win-
dows XP system and run on the PC with 2.0 G RAM and P4
CPU.

In conclusion, the present study showed that the cLLS
method is of high computational efficiency and provides es-
timates of high statistical reliability. The cLLS method is thus
expected to be useful for generation of parametric images
from dynamic brain FDG PET of high noise levels. In the
paper, the data of a normal volunteer was used to validate
the effectiveness of the method, because the anatomic struc-
ture of a normal volunteer is clear for us especially when we
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understand the clustering result. In future, we also can try
some dynamic PET FDG data of patients with brain disorder
to validate the cLLS method.
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