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Abstract

Background: As we move into the post genome-sequencing era, an immediate challenge is how to make best use of the
large amount of high-throughput experimental data to assign functions to currently uncharacterized proteins. We here
describe CSIDOP, a new method for protein function assignment based on shared interacting domain patterns extracted
from cross-species protein-protein interaction data.

Methodology/Principal Findings: The proposed method is assessed both biologically and statistically over the genome of
H. sapiens. The CSIDOP method is capable of making protein function prediction with accuracy of 95.42% using 2,972 gene
ontology (GO) functional categories. In addition, we are able to assign novel functional annotations for 181 previously
uncharacterized proteins in H. sapiens. Furthermore, we demonstrate that for proteins that are characterized by GO, the
CSIDOP may predict extra functions. This is attractive as a protein normally executes a variety of functions in different
processes and its current GO annotation may be incomplete.

Conclusions/Significance: It can be shown through experimental results that the CSIDOP method is reliable and practical in
use. The method will continue to improve as more high quality interaction data becomes available and is readily scalable to
a genome-wide application.
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Introduction

Genome sequencing projects have deposited tremendous

amounts of protein sequence data for a vast number of genomes,

and as we move into the post-genomic era, it will be crucial to

determine biological functions for all these encoded proteins.

Currently, a substantial portion of most genomes is still

unannotated [1]. For instance, among the current list of Drosophila

genes downloaded from FlyBase (November 2006) [2], only 54%

are annotated with ‘‘molecular function’’ terms in gene ontology

(GO) [3]. Additionally, many proteins are modular, consisting of

multiple functional domains, and therefore the existing annota-

tions may still be incomplete.

While experimental methods such as loss of function mutational

analysis, RNAi, or targeted misexpression approaches have been

very successful in identifying protein functions, they are labor

intensive and time consuming. As a result, much of the genome-

wide functional annotations are based upon in silico methods. The

most established computational approaches to function detection

primarily depend on homology matching to genes with known

functions utilizing programs such as FASTA [4] and PSI-BLAST

[5]. However, assuming functional annotations by sequence

similarity poses some critical questions, such as at what level of

sequence similarity can we feel assured that the two proteins carry

out the same function, and at what level of detail if the function is

conserved? Over the years, numerous non-homology based

computational techniques have been developed to derive protein

functions from additional sources of biological data such as gene

fusion events [6,7], phylogenetic profiles of proteins in multiple

genomes [8], gene expression and mutant phenotype data [9], and

heterogeneous data such as gene expression, physical interactions,

motif information and transcription factor binding sites data [10–

13].

With the ever-increasing accumulation of high-throughput

protein-protein interaction data, a number of computational

approaches have emerged to take advantage of these data for gene

function prediction [14–21]. In general, these approaches are

based upon the premise that proteins often physically interact to

achieve a common objective. Hence, it may be possible to infer

functions for a protein based on its interaction partners. The

concept is also known as ‘guilt-by-association’, which assumes that

interacting proteins are more likely to carry out similar functions.

Schwikowski et al. [14] applied a neighbor counting method where

unknown proteins were assigned functions based on the frequen-

cies of their interaction partners having particular functions.

Thereafter, several research groups attempted to improve the

neighbor counting method through application of x2 statistics

[15], Bayesian analysis [16], and Markov random field analysis
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[17,18]. Moreover, several researchers have introduced protein

interaction network based methods [19,20], and Brun et al. [21–

24] clustered the Saccaromyces cerevisiae proteome into several

groups to predict cellular functions using protein interaction data.

Although most computational methods have shown great

promise in function assignment, current methods still suffer from

two major limitations. First, most function prediction algorithms

can predict protein functions with 50%–75% accuracy, which may

not be of practical use for biologists. Moreover, some methods use

only several tens to hundreds of functional categories in the

prediction process which resulted in more generic rather than

specific functional assignments. Therefore, developing more

effective in silico methods to increase the fidelity of these functional

annotations and to propose novel functions for currently

uncharacterized proteins presents a major challenge to the life

science community and will eminently aid the biological

community as higher quality functional annotations are often

used by scientists to generate new hypotheses and direct their

research focus.

In this paper, we describe CSIDOP, Cross-Species Interacting

DOmain Patterns, a new method for protein function assignment

based on the shared interacting domain patterns extracted from

cross-species protein-protein interaction data. In an evaluation of

the CSIDOP method we use protein-protein interaction data from

the Homo sapiens genome, and find that CSIDOP is capable of

making molecular function predictions for human proteins with

accuracy of 95.42% using 2,972 gene ontology (GO) functional

categories (the most specific terms in GO). In addition, CSIDOP is

able to assign novel functional annotations for 181 previously

uncharacterized proteins. Furthermore, we demonstrate that

CSIDOP can complement current GO annotation by providing

additional functional annotations for proteins that are already

characterized by GO.

Results

Principle of the CSIDOP method
The CSIDOP method tackled the protein function determina-

tion problem by analyzing interacting domain patterns that are

conserved across different species. A brief synopsis of the method is

presented here with a more detailed description presented in

‘‘Materials and methods’’. Protein domains are the structural and/

or functional units of proteins. They are conserved through

evolution and serve as the building blocks of proteins. Some

protein domains serve specific functions such as tyrosine kinase

domains that covalently attach phosphate groups to select tyrosine

residues in target proteins, whereas other protein domains may be

more generic, for example participating in protein-protein binding

and thereby being associated with numerous biological activities.

A protein may contain only a single domain or it may contain

multiple domains. In some cases multiple domains may work

together for the execution of a single function. Protein functions

are often directed by physical interactions of these modular

domains [25]. Pereira-Leal and Teichmann [26] suggested that

protein interactions often evolve through duplication of the

proteins involved in the interaction. In their work, partial

duplicates are defined as any two interaction pairs with one

protein in common and homology between the other proteins.

Any two interactions where both proteins are homologous are

counted as complete duplicates. Their results indicated that the

duplicated modules tend to retain similar general functions. This

suggests that interacting modular domains may be conserved over

time and between organisms. Moreover, a shared pattern between

two interacting protein pairs may indicate that both pairs interact

through the same shared modular domains. We are exploring this

property of conservation of interaction as a means to assign

protein functions by concentrating on protein-protein interaction

(PPI) pairs with similar interacting modular domain patterns.

Under this hypothesis, if two PPI pairs contain a common

interacting domain pattern, then proteins in the two pairs with

similar modular domains are more likely to be associated with

similar functions. For example, assume that there exist two PPI

pairs: protein A interacts with protein B and protein C interacts

with protein D. If proteins A and C contain the same modular

domain X that interact with the modular domain Y in proteins B

and D, then we conclude that the two PPI pairs share a common

interaction domain pattern. Therefore, we extrapolate that

proteins A and C are more likely to have similar functions, and

the same applies to proteins B and D (Figure 1).

Figure 1. Function annotation scheme based on interacting domain patterns. This also illustrates how domain interaction can contribute to
protein interactions. One or more domains in a protein may form modular domains and interact with other modular domains in other proteins.
Dashed rectangles represent modules. In each module, one or more domains may exist and form a unit during interaction. The dashed lines represent
interactions between proteins. Since the protein-protein interaction pairs A–B and C–D share common domain interaction patterns, and proteins A
and C and B and D share the same interacting modular domains, we may deduce that the proteins are associated with similar functional annotations.
doi:10.1371/journal.pone.0001562.g001
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We first explored this concept for PPI pairs from different

species and have observed evidence of this conservation of

function between the PPI pairs. For example, in C. elegans, nhr-

67 [Swiss-Prot: Q9XVV3] and daf-21 [Swiss-Prot: Q18688] have

been shown to interact [27], whereas in human ESR1 [Swiss-Prot:

P03372] and HSP90AA1 [Swiss-Prot: P07900] are also known to

interact [28]. Both PPI pairs contain a common domain

interaction pattern, (PF00105)-(PF02518, PF00183), where ‘-’

denotes interaction and the parentheses denote modular domains.

PF00105 is described by Pfam [29] as the zinc finger, C4 type

domain, and PF02518 and PF00183 refer to HATPase_c and

HSP90 domains, respectively. The proteins nhr_67 and ESR1

contain the PF00105 domain, whereas daf-21 and HSP90AA1

contain the modular domain (PF02518, PF00183). In the Gene

Ontology database [3], the proteins nhr-67 in C. elegans and ESR1

in human are annotated to the same function terms such as ligand

dependent nuclear receptor activity, regulation of transcription,

DNA dependent, DNA binding, and transcription factor activity.

Analogously, daf-21 and HSP90AA1 were found to be annotated

with the same function terms, ATP binding and protein folding.

It is important to note that this method is fundamentally

different from other protein interaction-based function detection

algorithms where the function of a target protein is determined

strictly by its interaction partners. Compared with existing

methods, our method is distinctive in the following aspects: (i)

protein functions are detected through the shared interacting

domain patterns, (ii) the patterns are mined from the cross-species

protein interaction data, and (iii) unknown proteins can be

assigned to various functional categories in GO, in contrast to

most other methods where proteins are assigned with a limited

number of functional categories such as MIPS [30] that are less

specific than GO. A complete description of the experimental

results, novel protein function discoveries, and design of our model

are given in the sections below.

Biological and statistical evaluation of the CSIDOP on H.
sapiens

An essential issue concerning the protein function prediction

problem is the assessment of method reliability. To evaluate the

CSIDOP method, a set of protein interaction data is partitioned

into two groups: (1) training data: PPI pairs where both proteins

are annotated in the GO, and (2) testing data: PPI pairs with at

most one protein annotated. The training dataset is used to extract

interacting domain patterns. The test dataset, on the other hand,

contains interaction pairs that have either one of the proteins

uncharacterized or both unknown. Thus, we can assess the

reliability of the CSIDOP method by determining how well it

worked in function prediction for those GO-characterized proteins

and predict functions for proteins that are currently not

characterized in GO in the test dataset.

We chose to evaluate the method using proteins in H. sapiens.

The collected human protein interaction data were separated

exclusively into training and test datasets as described above. To

train the CSIDOP method, we integrated protein-protein

interaction (PPI) data from the organisms S. cerevisiae, C. elegans,

and D. melanogaster, in addition to the large data set from H. sapiens.

In order to assess the relative performance of our method, inferred

functions of the H. sapiens proteins (by CSIDOP) were then

compared to the known functions in the GO database, which we

designate as the ‘true’ terms. Hence throughout this paper, the

‘true’ function terms of a protein refer to the known function terms

of this protein listed in the GO. An exact match between a

predicted term and the corresponding true GO term for a protein

indicates a correct prediction; and wrong prediction otherwise.

Comparison of the CSIDOP method with other methods
After training, CSIDOP produced a lookup table of significant

interacting modular domain patterns from interaction pairs in the

training dataset (see Text S1 and Text S2), where each pattern is

associated with a number of function terms (please refer to

‘‘Material and Method’’ for details). Annotations were made to a

PPI pair in the test dataset if it contains at least one interacting

modular domain pattern listed in the table. Overall, we could

assign functions for 618 H. sapiens proteins from PPIs with

common domain patterns in the lookup table. Among the 618

predicted proteins, 437 had existing annotations in the GO

database, and thus could be used to evaluate the CSIDOP

method. Among the 437 proteins, 417 were assigned with correct

functions by the CSIDOP (assigned functions have an exact match

with the ‘true’ terms), i.e., the CSIDOP method had an accuracy

of 95.42% (Table 1) using 2,972 GO functional terms, which is

higher than most of the existing in silico methods. For comparison,

we also tested the Majority Rule (MR) method by Schwikowski et

al. [14], a simple domain based method, and orthology based

method.

Generally, the MR algorithm assigns a protein with the most

frequent function terms among its direct interaction partners.

Assessing the MR algorithm on the same target dataset that we

used in CSIDOP, MR made functional predictions with an

accuracy of 59.50% (Table 1). As for the domain based method,

considering the fact that a number of protein domains are

annotated in Pfam [29] with specific functions, and thus it is

possible to make protein function predictions according to the

functional terms associated with its domains. Using the same set of

proteins, only 61.98% were assigned with correct functions using

the simple domain based scheme (Table 1). Lastly, for the

orthology based method, we attempted to assign functions to

proteins according to their annotated orthologs in other species.

The orthologs were retrieved using Inparanoid [31]. The

orthology based method achieved prediction accuracy of

83.86%, and among the novel predictions, it only covered

56.35% of our novel discoveries. Therefore, our CSIDOP method

can provide an extra power in protein function prediction

compared to the orthology detection.

Most existing methods have been evaluated on the S. cerevisae

proteome using a smaller number of functional categories.

Schwikowski et al. [14], Hishigaki et al [15], and Brun et al [21]

used 42, 41, and 44 ‘‘cellular role’’ categories in the Yeast Protein

Database (YPD) [32], and the accuracies achieved were 72%,

64%, and 67%, respectively. In [19], Vazquez et al. evaluated

their method using two different level of functional classification in

MIPS [30]. In the coarse-grained level containing only 20

functional categories, the accuracy was about 83%. In the finest

Table 1. Method Comparison

Method Accuracy

CSIDOP 95.42%

Majority Rule (MR) 59.50%

Pfam domain based method 61.98%

Orthology based method 83.86%

Accuracy of the CSIDOP, Majority Rule (MR), Pfam domain based, and orthology
based methods are compared in protein function prediction. The accuracy is
defined as the percentage of proteins predicted with correct function terms. A
protein is considered to be correctly annotated if the known function occurred
among the predicted terms.
doi:10.1371/journal.pone.0001562.t001
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level containing 424 functional categories, the accuracy decreased

to 65%. Noticeably, the CSIDOP prediction was made over

2,972 GO functional categories, which is significantly larger than

those employed in other methods. Accordingly, the assigned

functions were specific rather than generic. In principle, the more

coarse-grained the classification, the easier the prediction is.

Applying the same definition of success, our CSIDOP method

was able to make correct predictions an astounding 95.42% of

the time using the full 2,972 GO molecular function categories.

However, in the GO function tree, the closer a node is to the

root, the lower the level in GO tree, which means that the

corresponding function is more abstract and the farther it is from

the root, the higher the level in GO tree, thus the more detailed.

An important advantage of the CSIDOP method is that it can be

tailored to different levels in the GO database based upon need.

For example, suppose that GO level is set to five, then all

predicted terms at GO tree levels higher than or equal to five will

be generalized to the corresponding function at level five. In

other words, the more specific functional terms that reside at

higher levels of the tree are replaced with their ancestor terms

which are located at level five. Higher prediction accuracy is

expected as we lower the GO depth. Consistent with this, the

prediction accuracy in the test dataset reached 98.85% when the

depth parameter was set to 2, which still contains 129 GO

functional categories (Table 2). Table 2 shows the prediction

accuracy as a function of GO level for this test dataset and

indicates the robustness and reliability of the CSIDOP method.

This depth parameter allows users to assign function terms for a

protein at different resolutions according to their individual

needs.

CSIDOP complements the current GO annotation
A protein often exhibits multiple molecular functions and its

annotation in GO may therefore not be complete. For the 20

proteins with predicted functions that do not match with their

‘true’ terms, the differences between the predicted terms and the

‘true’ terms may be due to incompleteness of the GO annotations.

Moreover, the CSIDOP may provide additional functional terms

to existing proteins. For example, the Alpha-2-macroglobulin

precursor [Swiss-Prot: P01023], was predicted by CSIDOP to be

involved in protease inhibitor activity (GO:0030414), which is not

among the current list of functions annotated in GO. Consistent

with this prediction, alpha-2-macroglobulin is found to be a major

human plasma protease inhibitor capable of inhibiting most

endopeptidases tested [33]. Another example is the PRS7 [Swiss-

Prot: P35998] gene in human, which is currently annotated in GO

to participate in protein binding (GO:0005515), with no other

listed terms. Our CSIDOP method predicted that it is also

involved in ATP binding (GO:0005524), hydrolase activity

(GO:0016787), nucleotide binding (GO:0000166), and nucleosi-

de_triphosphatase activity (GO:0017111), all of which can be

verified in InterPro [34]. Other assigned terms for PRS7 by

CSIDOP included endopeptidase activity (GO:0004175) and

ATPase activity (GO:0016887), which were observed in the

orthologous proteins of PRS7. An orthologous protein in D.

melanogaster, RPT1 [Fly-Base: FBgn0028687], is annotated with

endopeptidase activity inferred from direct assay [35]. Another

orthologous protein in S. cerevisiae, YKL145W is also annotated

with the function terms endopeptidase activity and ATPase

activity.

To gain insight into the 20 proteins that were ‘‘incorrectly’’

annotated by CSIDOP, we analyzed the relationship between the

predicted terms and their true GO terms. Figure 2 shows a

histogram of distances between the predicted terms and the ‘true’

GO terms, which is defined as the number of edges between these

two terms in the GO graph. As illustrated in Figure 2, 15 out of

the 20 proteins were predicted with function distances of one or

two. A distance of one means that the two terms have a direct

parent-child relationship; for instance, protein binding

(GO:0005515) is a known function of Furin precursor protein

[Swiss-Prot: P09958], and our method predicted it to be involved

in protein domain specific binding (GO:0019904), which is a

direct child term of protein binding in GO. If we consider such

cases to also be successful prediction, then the accuracy improves

from 95.42% to 97.71%. A distance of two indicates that the two

terms share a parent. For example, suppressor of cytokine

signaling 1 [Swiss-Prot: O15524] was identified in GO to be

associated with insulin-like growth factor receptor binding

(GO:0005159), whereas we assigned the function term, sevenless

binding (GO:0005118). The two terms share a parent term,

Table 2. Evaluation of the CSIDOP algorithm.

Depth in
the GO
graph

# of unique
GO functional
categories

# of correctly
Predicted
proteins

# of predicted
proteins
different from
their GO terms

Prediction
accuracy

2 129 432 5 98.85%

3 473 427 10 97.71%

4 961 422 15 96.56%

5 1996 419 18 95.88%

6 2598 418 19 95.65%

7 2816 417 20 95.42%

8 2938 417 20 95.42%

9 2957 417 20 95.42%

10 2972 417 20 95.42%

Accuracy is assessed over a number of values for the depth parameter (i.e.
generalizing annotated terms when parameter decreases). A protein is
considered to be correctly annotated if the known function occurred among
the predicted terms.
doi:10.1371/journal.pone.0001562.t002

Figure 2. Histogram of distances between the wrongly
predicted GO terms and the ‘true’ GO terms.
doi:10.1371/journal.pone.0001562.g002
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receptor binding (GO:0005102). In this case, if the more general

terms were used, a correct functional annotation would have

been achieved.

Moreover, we analyzed correlations between the predicted

function terms and the ‘true’ terms. In GO, gene products can be

associated with more than one term. Therefore, the correlation

between two GO terms is defined based on the number of gene

products in common [36]. The larger the correlation value is, the

closer the two GO terms are. In order to assess the significance of

the correlation scores between the predicted and ‘true’ terms,

10,000 GO term pairs were randomly selected, and a correlation

score was computed for each pair. E-value is described as the

probability of random GO term pairs achieving at least a certain

correlation score. For instance, an E-value of 0.0008 implies that

only eight out of the 10,000 random GO term pairs have scores

equal to or higher than a particular correlation score. As a result, it

was observed that among the 20 ‘‘incorrectly’’ annotated proteins,

many predicted terms are closely correlated to the true GO terms

with significant E-values. Table 3 shows the number of proteins

versus different E-values. Examples of proteins in which extremely

high correlation exists between the predicted and ‘true’ terms (E-

value#0.0008) are illustrated in Table 4.

Novel function assignment for currently uncharacterized
human proteins

Importantly, the CSIDOP predicted functional annotations for

181 H. sapiens proteins that are not currently described in the GO

database. Some of these novel annotations can be supported with

evidence provided by QuickGO, a web browser of gene ontology

data maintained by the European Bioinformatics Institute [37].

For instance, the gene FHL1, four and a half LIM domains

protein [Swiss-Prot: Q13642], was identified by the CSIDOP to

participate in metal ion binding (GO:0046872) and zinc ion

binding (GO:0008270). The metal ion binding annotation was

found in QuickGO which was inferred from UniProt keywords.

The zinc ion binding term was found by both the UniProt

keywords and in InterPro [34], which is a database of protein

families, domains and functional sites in which identifiable

features found in known proteins can be applied to unknown

protein sequences. Many novel functional annotations are

supported by evidences found in their orthologous protein

annotations. Orthologous proteins are generally believed to have

similar functions, and the orthologs can be obtained from

Inparanoid [31]. For example, the H. sapiens gene POLA2, DNA

polymerase subunit alpha B [Swiss-Prot: Q14181], was predicted

by CSIDOP to exhibit alpha DNA polymerase activity

(GO:0003889). Orthologs of POLA2 found by Inparanoid

include: POL12 [ORF: YBL035C; SGD:S000000131] in S.

cerevisiae, POLA2 [RGD:621817] in R. norvegicus, and CG5923

[FlyBase: FBgn0005696] in D. melanogaster. All three orthologs

were associated with the alpha DNA polymerase activity

(GO:0003889).

Furthermore, the CSIDOP method detected three molecular

function terms for the human protein SLY, SH3 protein expressed

in lymphocytes homolog [Swiss-Prot: O75995], while no infor-

mation was found anywhere else. The three functions identified

were DNA binding (GO:0003677), chromatin binding

(GO:0003682), and zinc ion binding (GO:0008270). The SLY

protein contains a COR1 chromatin-binding domain, and it was

suggested in [38] that SLY may be targeted to the gonosomes in

spermatids and may regulate gonosomal chromatin conformation

and expression. Another protein CCNB3 [Swiss-Prot: Q8WWL7]

in the human genome was predicted by the CSIDOP method to

be involved in cyclin-dependent protein kinase regulator activity

(GO:0016538) and protein binding (GO:0005515). An ortholo-

gous protein found in D. melanogaster CG5814 [FlyBase:

FBgn0015625] shared both functional annotations, which were

inferred from sequence or structural similarity and physical

interaction [39], respectively. In the literature, CCNB3 was

described as sharing properties with both A- and B-type cyclins.

Table 3. Correlation analysis for proteins with known terms
that differ from predicted ones

E-value
Correlation Score
($score) # of Proteins

0.0116 1 19

0.0028 10 16

0.0021 20 14

0.0014 50 12

0.0008 100 10

0.0006 200 8

0.0005 300 6

0.0003 500 5

0.0001 3000 3

0.0000 10000 1

Correlation score between two GO terms is defined as the number of gene
products in common. E-value is defined as the probability of random GO term
pairs achieving at least a certain correlation score. The third column shows
number of the wrongly predicted proteins reaching different correlation scores
between predicted and ‘true’ terms.
doi:10.1371/journal.pone.0001562.t003

Table 4. Examples of proteins with high correlation scores

Protein True GO Term Predicted GO Term Direct Correlation Score

Partitioning defective 6 homolog alpha
[Swiss-Prot: Q9NPB6]

GO:0017048 Rho GTPase binding GO:0003779 Actin binding 186

SH3-containing GRB2-like protein 2
[Swiss-Prot: Q99962]

GO:0016740 Transferase activity GO:0005509 Calcium ion binding 425

Hepatocyte growth factor precursor
[Swiss-Prot: P14210]

GO:0004252 Serine-type
endopeptidase activity

GO:0008233 Peptidase activity 6430

Erythrocyte membrane protein band 4.2
[Swiss-Prot: P16452]

GO:0005524 ATP binding GO:0016740 Transferase activity 33762

Examples of proteins with predicted terms different from their ‘true’ terms but sharing high correlation scores (i.e. E-value#0.0008). True GO term is the annotated term
for a protein in GO. Predicted GO term is by the CSIDOP method.
doi:10.1371/journal.pone.0001562.t004
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Cyclins play a key role in controlling progression through the cell

cycle. They act as regulatory subunits of p34cdc2/CD28 and

related cyclin-dependent protein kinases (cdks) [40]. In [41],

CCNB3 was found to interact with the cyclin-dependent kinase

CDK2, which implies that it indeed participates in protein binding

and cyclin-dependent protein kinase regulator activity. Some of

the 181 novel functional annotations found with supporting

evidences can be found in supplementary Table S1. A complete

list of the novel predictions can also be found in supplementary

material (Text S3).

Discussion

The CSIDOP is shown above to produce highly accurate

function predictions for proteins in H. sapiens. To demonstrate its

robustness, we further analyzed the method for its performance on

D. melanogaster. For this study, we integrated protein interaction

data from S. cerevisiae, C. elegans, and H. sapiens to form the reference

dataset to determine functional annotations of proteins in D.

melanogaster, the target dataset. None of the protein pairs in D.

melanogaster were involved in training our model. In other words,

the interacting domain patterns were extracted purely based on

interaction pairs from S. cerevisiae, C. elegans, and H. sapiens.

Function annotations were effectively assigned for 447 D.

melanogaster proteins. Among the 447 proteins, CSIDOP accurately

assigned function annotations to 419 proteins (i.e. 93.73% in

accuracy).

In addition, we were able to discover novel annotations for some

proteins. For example, the D. melanogaster protein CG15912 [Swiss-

Prot: Q9W4J7] was detected by CSIDOP to exhibit ATPase

activity, coupled to transmembrane movement of ions, phosphor-

ylative mechanism (GO:0015662). Its orthologs: Haloacid deha-

logenase-like hydrolase domain containing 3 [Swiss-Prot:

Q9BSH5] in H. sapiens and [Swiss-Prot: Q9CYW4] in M. musculus

were both found to be associated with phosphoglycolate

phosphatase activity (GO:0008967) and hydrolase activity

(GO:0016787), which is an ancestor term of our predicted term

(GO:0015662). Moreover, for the protein CG18445 [Swiss-Prot:

Q9V5F2], a multispan transmembrane protein related to fly

Porcupine, our algorithm identified to carry out the O-

acyltransferase activity (GO:0008374). Through literature search,

we discovered that biological experiments conducted by Kraut et

al. [42] confirmed the findings for CG18445.

Since the CSIDOP method only keeps the most significant

interacting domain patterns from the closely related protein

interaction pairs across species, PPI pairs in the test dataset not

containing the patterns in the lookup table will result in no

prediction. To enlarge the coverage, we can use a two-step

prediction method: the first step will predict functions for a large

number of proteins with lower confidence, and the second step

uses CSIDOP for more accurate prediction. In the first step, for

each protein pair in the test dataset, we construct a list of all

interacting domain patterns. Then for each of these plausible

domain patterns, we try to collect a list of protein interaction pairs

in the reference dataset that contain the pattern. Numerous

interaction pairs with shared pattern may exist in the reference

dataset, and certain functions annotated to those pairs may be

more likely to be associated with the target protein pair than other

functions. Thus, in order to assess the probability of each

functional assignment, we calculate the conditional probability of

a protein interaction pair having function pair F1–F2 given

interacting domain pattern D1–D2 (Eq. 1), where ‘-’ denotes

interaction. In other words, F1 and F2 represent function

assignments to proteins in the query interaction pair with modular

domains D1 and D2, respectively.

P(F1{F2jD1{D2)~
P(F1{F2,D1{D2)

P(D1{D2)
ð1Þ

where P(F1–F2, D1–D2) is calculated by counting the number of

interaction pairs in the reference dataset that contain the

interacting domain pattern D1–D2 and have the corresponding

functional annotation of F1–F2, and P(D1–D2) is computed by

counting the number of pairs that contain the interacting domain

pattern D1–D2. For a query protein interaction pair, the posterior

probabilities of all possible function pairs are calculated, and

finally, the top ranking function pairs are assigned. In this step, we

were able to predict function assignments for 1546 human

proteins, but with lower accuracy of 90%.

Since prediction in the first step is based on probability of a

protein p having term t, terms with probabilities above certain

threshold can be treated as positive prediction and terms below the

specified threshold can be treated as the negative prediction; thus,

sensitivity and specificity measures can be calculated. Applying the

same criteria in Nariai et al. [13], where they defined sensitivity as

TP/(TP+FN), which corresponds to recall, and defined specificity

as TN/(TN+FP), which corresponds to precision. A set of

observed positive p-t association is obtained from the GO. The

observed negative association set is defined as follows: if the

association is not found in the positive set and term t is neither

ancestor nor descendant of the known function terms in GO

hierarchy for protein p [13]. Intuitively, true positives (TP) in this

case refer to the overlaps between our positive predictions and the

observed positive set, and true negatives (TN) are the overlaps

between our negative predictions and the observed negative set.

False positives are the p-t associations in our positive prediction list,

but are observed to be in the negative set by GO. Lastly, false

negatives are the p-t associations in our negative prediction list, but

should be in the positive list. For varying posterior probability

cutoffs, the relationship between sensitivity and 1-specificity is

plotted in a ROC curve (Fig. 3). It is shown that the specificity of

96% with a sensitivity of 57% was achieved. When the specificity

was lowered to 78%, the sensitivity increased dramatically to 93%.

Conclusion
In this research, we describe CSIDOP, a novel approach to the

protein function detection problem by extracting the conserved

interacting domain patterns from protein interaction pairs across

organisms. The CSIDOP method is assessed, both biologically and

statistically, on the Homo sapiens genome for function annotation

based on domain patterns extracted from interacting protein pairs

in S. cerevisiae, C. elegans, D. melanogaster and H. sapiens. It makes

functional assignments from a pool of 2,972 unique functional

categories. The number of unique terms is considerably larger

than the number of categories utilized in previous attempts. Using

the H. sapiens genome, the CSIDOP method accurately assigned

functions to 95.42% of the proteins when 2,972 function terms

were used, which is highly reliable and is of practical use. The

accuracy increased to 98.85% when the number of terms was

decreased to 129. In contrast, with the same testing dataset, the

Majority Rule algorithm, the simple domain based method, and

orthology based method achieved only 59.50%, 61.98%, and

83.86% in accuracy, respectively. In this paper, we have shown

that the CSIDOP method can not only provide additional

functions to the incomplete GO annotations, but also assign

functions for 181 human proteins that currently do not have GO

functional terms. Supporting evidences for several of these newly
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annotated proteins can be found from other data sources or

biological experiments, confirming the utility of this approach.

As more genomes are sequenced, there will be a growing need

for better functional annotation of these genomes. In this paper,

we have shown that an in silico method based on protein-protein

interaction data and common domain interaction patterns is

reliable for large-scale protein function discovery. Certainly, the

CSIDOP method is not perfect, and it is limited in predicting

functions for proteins with a priori knowledge of interactions. It

cannot make predictions if the domain interaction patterns are not

found in the lookup table. This method will continue to improve as

protein-protein interaction data are increased in quality and

quantity, and will readily scale to a genome-wide application.

Materials and Methods

Data sources
Protein interaction pairs were collected from the DIP,

BioGRID, and MINT databases [43–45] for the organisms S.

cerevisiae, C. elegans, and D. melanogaster. The human protein

interaction data were obtained from the HPRD database [46].

Since we are concentrating on protein-protein interaction pairs

with similar interacting domain patterns, proteins with no domain

information were excluded. In addition, for the purpose of training

our model, the training dataset does not contain any uncharacter-

ized proteins. After data processing, the final training datasets

consist of 11151, 231, 7709, and 13596 interaction pairs from S.

cerevisiae, C. elegans, D. melanogaster, and H. sapiens, respectively. The

CSIDOP method performance is assessed using the test dataset of

3812 human interaction pairs. The human training and test

datasets do not contain any common protein interaction pairs.

Protein domain information was extracted from PFAM [29].

For each protein, Pfam-A and Pfam-B domains were considered.

Among our interaction datasets, there are 3835, 3209, 8858, and

8112 unique domains in S. cerevisiae, C. elegans, D. melanogaster, and

H. sapiens, respectively. There are a total of 493 unique Pfam

domains in common between the four species. Complete

information regarding domain distribution across the four

organisms is shown in Figure 4. The protein ‘molecular function’

annotations were obtained from the Gene Ontology (GO)

February, 2006 release [3]. Within the dataset, there are total

2,972 unique GO annotated molecular function terms.

The CSIDOP method
The basic idea of the CSIDOP method is to assign appropriate

GO functional annotations to proteins according to the interaction

pairs in diverse species having the shared domain patterns.

Domain patterns have been successfully applied in prediction of

protein-protein interactions (PPIs) [47–51], a problem related to

but different from protein function predictions. In protein

interaction prediction, it mainly focuses on identifying interacting

domains. While in our case, we aim to find modular domains that

likely possess certain functions.

In order to extract the true functional interacting domain

patterns from the vast wealth of deposited protein-protein

interaction (PPI) data, we have devised an algorithm to find

groups of protein interaction pairs with similar functions and

applied x2 statistics to derive meaningful interacting domain

patterns from these PPI groups. Figure 5 shows the flowchart of

the CSIDOP approach. For each protein interaction pair in the

reference dataset, we tried to identify its neighbors based on

functional distances between their individual proteins. In an earlier

work by Resnik [52], functional similarity between two GO terms

is measured based on their distances to the closest common

ancestor term. Later on, Schlicker et al. [53] introduced a new

measure that takes into account how detailed the lowest common

Figure 3. ROC curve. Sensitivity = TP/(TP+FN) Specificity = TN/
(TN+FP) Function terms with probability above certain thresh-
old are considered to be positive predictions and terms below
the specified threshold are treated as negative predictions. The
observed positive set of g-t association is obtained from the GO. The
negative association set is defined as follows: if the association is not
found in the positive set and term t is neither ancestor nor descendant
of the known function terms in GO hierarchy for gene g. Therefore, true
positives (TP) in this case refer to the overlaps between our positive
predictions and observed positive set. True negatives (TN) are the
overlaps between our negative predictions and the observed negative
set. False positives describe g-t associations exist in our positive
prediction list, but should be in the negative set. False negatives are g-t
associations in our negative prediction list, but should be in the positive
list.
doi:10.1371/journal.pone.0001562.g003

Figure 4. Domain distribution of organisms: S. cerevisiae, C.
elegans, D. melanogaster, and H. sapiens. In our interaction data, the
four organisms share 493 domains in common as shown in the figure.
There are total 1603, 1489 and 1988 common domains between D.
melanogaster and the other three organisms, S. cerevisiae, C. elegans,
and Human, respectively.
doi:10.1371/journal.pone.0001562.g004
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ancestor is. Most recently, Wang et al. [54] measured the GO

terms similarity by considering not only the number of but also the

locations of common ancestor terms. In our study, we employed a

slightly different definition of functional similarity between terms.

Since the GO database is designed as a directed acyclic graph

where each node represents a GO term, distance between two

proteins can be defined as the closest GO-graph-node distance

between all of their annotated molecular function terms. The GO-

graph-node distance is described as the number of nodes

separating two GO function terms in the graph.

In the training phase, for each PPI pair in the reference dataset,

we tried to determine its close neighbors or functional similar

interaction pairs. More precisely, each PPI pair in the training

dataset serves as a centroid to form a group of protein pairs with

similar functions. In doing so, all remaining pairs are compared

against this centroid interaction pair. An incoming PPI pair is

accepted to join the group if and only if the distances among

individual proteins in the centroid pair and the pair under

consideration are below certain threshold t. For instance, assume

that there are two PPI pairs A–B and C–D, where ‘-’ denotes

interaction. The two pairs are grouped together if and only if the

following condition is satisfied; the closest GO-graph-node

distance between either (A, C) and (B, D) or (A, D) and (B, C)

are less than or equal to the threshold. In the end, PPI pairs in the

same group are assuredly more likely to share the same or similar

functions. In our application, the value of t is empirically set to be

two.

After constructing a group of functional similar PPI pairs, we

derive the most representative interacting domain patterns from

each. This is accomplished by identifying an interaction domain

pattern that is uniquely conserved in a group of PPI pairs across

different organisms and with the same or similar functions (i.e. in

the same group). Proteins often contain multiple domains, and one

or more domains may form a functional unit during interaction,

which we call a modular domain. Thus different combinations of

modular domains in a protein should be considered in generating

the potential interacting domain patterns. Due to the existence of

some big proteins with more than 15 domains, it is computation-

ally intensive and impractical to generate all possible combina-

tions; therefore, measures had to be taken to trim down the set of

all possible combinations by restricting the domain size of each

protein to 4. While domain combinations involving more domains

from each protein could slightly increase the prediction accuracy,

they require much longer computational time. The assumption is

also biologically reasonable because it is unlikely for a large

number of domains to come together and form a single unit during

interaction. Moreover, the same set of a large number of domains

is unlikely to occur repeatedly in other proteins.

In consequence, a list of potential interacting domain patterns is

enumerated from each protein pairs in an individual group of PPIs

with similar functions. Each domain pattern will be associated with

a list of function terms from their corresponding PPI pairs. In

order to select the most significant interacting domain patterns, x2

statistics is calculated for each pattern. The x2 value is computed

using the following formula,

x2~
N|(AD{CB)2

(AzC)(BzD)(AzB)(CzD)
ð2Þ

N is the total number of PPI pairs in the reference dataset.

Variable A is the number of PPI pairs in the group that contain the

particular ‘pattern’, and B is the number of remaining PPI pairs

outside the group that contain the ‘pattern’. Variables C and D are

the number of PPI pairs that do not contain the ‘pattern’ in the

group and in the remaining samples outside the group,

respectively. An interacting domain pattern occurring more

frequently in PPI pairs inside the group than outside the group

is expected to have a higher x2 value, hence is more significant.

Finally, the deduced interacting domain patterns with the highest

x2 value are adopted in a lookup table for function annotation.

Supporting Information

Text S1 A list of domains and their corresponding IDs

Found at: doi:10.1371/journal.pone.0001562.s001 (0.29 MB

TXT)

Text S2 A lookup table of domain patterns and associated

functional assignments

Found at: doi:10.1371/journal.pone.0001562.s002 (0.62 MB

TXT)

Text S3 A complete list of novel functional predictions for

proteins in H. sapiens in text format

Found at: doi:10.1371/journal.pone.0001562.s003 (0.01 MB

TXT)

Figure 5. Flowchart of the CSIDOP method. The model begins
with a collection of protein interaction pairs across various species and
their domain and function information. For each PPI pair in the training
dataset, we try to find its functional similar neighbors and form a group.
Then from this group of PPIs with similar functions, we derive
significant interacting domain patterns. This process is performed over
all PPIs in the training dataset and in turn builds up a lookup table of
patterns and associated functional assignments.
doi:10.1371/journal.pone.0001562.g005
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Table S1 Novel functional annotations for some H.sapiens

proteins found with supporting evidences. For each human

protein in the 1st column, highlighted terms in the 2nd column

are the GO terms that CSIDOP predicted and also supported by

evidence found in other databases or literature. The evidence is

shown in the 3rd column where it lists the orthologous or

paralogous proteins annotated with these highlighted terms

inferred using different techniques. For example, we predicted

the protein Q96A23 to have the function GO:0001786, and we

found that its paralog Q99829 protein in H. sapiens is detected with

GO:0001786 through the evidence code IDA. InterPro is a

database of protein families, domains and functional sites in which

identifiable features found in known proteins can be applied to

unknown protein sequences. IntAct is by Giot et al. The following

is a list of evidence codes used in the table.

Found at: doi:10.1371/journal.pone.0001562.s004 (0.04 MB

DOC)
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