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The genomic DNA of 47 strains of TSST-1 toxin-pro-
ducing Staphylococcus aureus were cleaved with
SmaI restriction endonuclease and resolved in an aga-
rose gel by pulsed-field gel electrophoresis (PFGE). An
algorithm was designed to standardize the band
weights or brightness (trace quantity) produced to a
bounded region between 0 and 1 regardless of DNA
fragment size while simultaneously reducing gel-to-
gel variability. The algorithm allows for classification
of isolates by band intensity as well as DNA mobility
without a numerical hierarchy of band intensity that
is caused by ranging DNA fragment lengths. On anal-
ysis many isolates were classified as separate entities
on the basis of DNA co-migration only. Isolates differ-
ing by only DNA co-migration were subjected to a
second digestion with restriction enzyme SacII. These
isolates were characterized similarly to the standard-
ized trace quantity analysis of SmaI PFGE patterns.
The standardization method proposed in this article
permits characterization of isolates on the basis of
band differences, regardless of DNA co-migration,
thus increasing the discriminatory power (0.79 to
0.89) of PFGE by increasing band-associated informa-
tion. An established unbiased approach to the parti-
tioning of data were also explored. (J Mol Diagn
2003, 5:21–27)

Pulsed-field gel electrophoresis (PFGE) has been one of
the most useful developments in molecular epidemiology
for the past few decades and is now regarded as the gold
standard for molecular typing of microorganisms.1–4

PFGE is capable of resolving large fragments of DNA with
a practical range of 10 kb to �7 Mb.1,5 Highly discerning
endonuclease-treated Staphylococcus aureus genomic
DNA resolved by PFGE generates a high degree of dis-
crimination.3,4,6–9 Traditionally, band velocity or relative
front (Rf), the distance a band travels in a lane divided by
the total lane length, is the determining variable used to
discriminate band type. The band is then designated as
present or absent, indicated by a 1 or 0, respectively (a
form of data standardization). Pattern recognition meth-
ods are then used to identify groups of isolates with
similar banding patterns. This method of numerically re-

ducing PFGE pattern data, although quite successful,
overlooks much of the diversity present in PFGE banding
patterns. PFGE, like many other methods of sieving mol-
ecules, separates only by size, isoelectric potential, or
topology.5 Because DNA fragments of similar lengths are
likely to resolve to the same Rf during electrophoresis, a
band is produced that is more intense or broader than
other bands of similar migration distance; a phenomenon
called “DNA co-migration.” Band typing by Rf alone does
not recognize the difference between a band produced in
this way and a band produced by a single fragment. One
method used in an attempt to prevent DNA co-migration is
to run longer gels. This effectively increases the resolving
power of electrophoresis, allowing similar, but not identical,
lengths of DNA to form discrete bands. Unfortunately, the
use of longer gels also results in a greater dispersion of
DNA fragments within the gel during the molecular sieving
process; bands produced by smaller DNA fragments dis-
appear as the gel length increases. Clearly, the limitations of
the resolving power of PFGE illustrate a need for alternative
methods of increasing discrimination between closely re-
lated restriction patterns.

This study presents a classification algorithm that in-
creases the sensitivity of current PFGE techniques in
detecting pattern differences despite the potential for
DNA co-migration. The algorithm is not intended to illus-
trate the biological relevance of subtle PFGE pattern
differences per se, but rather to provide an unbiased
approach for detecting their existence using current
PFGE methods. An established method of partition rec-
ognition (stopping rule) was also evaluated.

Materials and Methods

S. aureus Strains

Forty-seven TSST-1 toxin-producing strains of S. aureus
were acquired from nasal, anal, or vaginal swabs taken
from women living in various geographic locations includ-
ing, Ohio, Florida, Arizona, and New Jersey in the United
States, and Manitoba in Canada. Strains were isolated as
part of a large epidemiological study to determine rates
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of S. aureus carriage and occurrence of TSST-1 toxin-
producing strains. TSST-1 toxin-producing isolates ob-
tained from women living in one geographical location
were selected to illustrate the standardization algorithm
described in this article. Standard microbial techniques
were used for isolating S. aureus. Briefly, swabs from
each subject were streaked onto mannitol salt agar
plates (PML Microbiologicals, Tualatin, OR) and incu-
bated for 48 hours at 37°C. Isolated colonies were then
streaked for purity onto tryptic soy agar plates with 5%
sheep blood (PML Microbiologicals) and incubated for
24 hours at 37°C. A gram stain, catalase test, and a rapid
S. aureus-specific latex agglutination test (Staphaurex;
Remel, Lenexa, KS) were performed to confirm the iden-
tity of isolates as S. aureus. Isolates so identified were
grown in brain heart infusion broth overnight at 37°C and
the supernatant was evaluated for the presence of the
TSST-1 toxin via a competitive enzyme-linked immu-
nosorbent assay.10 TSST-1 toxin-producing S. aureus iso-
lates were then stored at �80°C for later analysis.

Preparation of DNA for PFGE

S. aureus isolates were incubated overnight on an orbital
shaker at 37°C in brain heart infusion broth. After incu-
bation, 200 �l of the cell culture were harvested and
washed with cell suspension buffer [10 mmol/L Tris, pH
7.2, 20 mmol/L NaCl, 50 mmol/L ethylenediaminetetraac-
etate (EDTA)] and resuspended in 100 �l of fresh cell
suspension buffer. Two �l of RNase A stock (10 mmol/L Tris
Base, 0.1 mmol/L EDTA, ribonuclease A 1.25 mg/ml;
Sigma, St. Louis, MO) was added to the suspension, which
was warmed in a 50°C water bath. The preparation was
mixed with 100 �l of 2% CleanCut agarose (Bio-Rad, Rich-
mond CA), vortexed lightly, and cast in disposable plug
molds (Bio-Rad). The plugs were then placed into a lysis
solution containing 237 �l of lysozyme buffer (10 mmol/L
Tris, pH 7.2, 50 mmol/L NaCl, 0.2% sodium deoxycholate,
0.5% sodium lauryl sarcosine; Bio-Rad), 10 �l of lysozyme
stock (25 mg/ml, Bio-Rad), and 2.5 �l of lysostaphin stock
(100 mmol/L Tris base, 40 mmol/L magnesium sulfate, 0.8
mol/L sucrose, pH 7.6, lysostaphin 10 mg/ml; Ambi Inc.)
and incubated at 37°C for 4 hours. The plugs were then
washed briefly with 1� wash buffer (20 mmol/L Tris, pH 8.0,
50 mmol/L EDTA; Bio-Rad) and incubated overnight at
50°C in 250 �l of proteinase K reaction buffer (100 mmol/L
EDTA, pH 8.0, 0.2% sodium deoxycholate, 1% sodium lau-
ryl sarcosine; Bio-Rad) with 10 �l of proteinase K stock
(�600 U/ml, Bio-Rad). These plugs were then washed four
times with 1� wash buffer; the second and third wash were
treated with 10 �l of phenylmethyl sulfonyl fluoride stock
(100 mmol/L phenylmethyl sulfonyl fluoride in 100% isopro-
panol) and stored at 4°C for later enzymatic treatment.

Restriction Enzyme Digestion and PFGE

Plugs were cut to size (5 � 1.5 � 2.5 mm) and digested
in 100 �l of restriction buffer (10 mmol/L Tris-HCl, 50
mmol/L KCl, 7 mmol/L MgCl2, 1 mmol/L dithiothreitol, pH
7.75) with 40 U SmaI (Promega Corp., Madison, WI)

overnight at 24°C. The plugs were then washed in 1�
wash buffer, equilibrated in 0.5� TBE buffer (45 mmol/L
Tris, 45 mmol/L borate, 1.0 mmol/L EDTA, pH 8.3), and
loaded into a 1.2% pulsed-field certified agarose (Bio-
Rad) gel with the samples flanked by bacteriophage �
DNA concatemers CI857Sam7 (Roche Molecular Bio-
chemicals, Indianapolis, IN). All gels were electropho-
resed in 0.5� TBE buffer at 5.1 V/cm for 36 hours at 14°C
with a pulse duration of 1 to 85 seconds ramped linearly
in a CHEF-DR II system (Bio-Rad).

Data Acquisition

Gels were stained with ethidium bromide, destained in
distilled water, and photographed with a Gel Doc 2000
(Bio-Rad). Data were obtained from the digital image
using the Diversity Database software (Bio-Rad). This
included band typing by Rf and trace quantities, with
trace quantity defined as the integration of the signal
intensity over the width and height of a particular band in
the image. Thus, a trace quantity directly reflects the
band intensity or brightness. Band assignment was de-
termined by Rf values plus or minus 5% error. Data
standardization and classification were performed using
Minitab for Windows (Minitab Inc., State College, PA).

Standardized Trace Quantity (STQ)

Standardized data can be obtained by dividing values of
all trace quantities from all bands produced by a given
isolate by the sum of those intensities from that isolate to
produce adjusted trace quantities (e1a) and then dividing
the resulting values by the maximum adjusted trace
quantity of all like band types produced by all samples
(e1b). This can be written in mathematical terms as a
two-part algorithm (e1a then e1b):

a) Ai,j �
Mi,j��Mj�

b) Si,j �
Ai,j

Max�Ai�
(e1a,b)

where M is a matrix representing the entire raw data set
and i and j represent the band-type IDs (ie, DNA mobility)
and sample index, respectively. The values in S can be
interpreted as the standardized relative percentage of
the brightest like band (eg, of the same band type) of all
isolates. Thus, the brightest band of each band type is
represented by 1, and all other like band intensities be-
come a standardized fraction of the brightest band for a
given band type.

Assumptions

The basic assumptions for this algorithm are: 1) a given
DNA fragment is the product of two restriction sites; 2)
DNA digestion by restriction enzyme is complete; 3) DNA
band intensity, in a PFGE gel stained with ethidium bro-
mide, is proportional to the quantity of DNA present; 4)
the genome size for evaluated isolates compared are
similar; and 5) an appreciable amount of the total
genomic DNA is represented. These assumptions are
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well suited to large population studies of the same organ-
ism and for suspected nosocomial outbreaks requiring
an objective analysis of banding patterns that demon-
strate DNA co-migration.

Typing

Cluster analysis was performed by first applying the
Ward’s hierarchical linkage method on squared Euclid-
ean distances of Rf or STQ data at an 80% similarity
cut-point, followed by MacQueen’s k-means partitioning
method starting with the cluster partition produced by the
Ward’s hierarchical linkage.11 The number of clusters
determined using percent similarity was closely scruti-
nized or corroborated by the successive difference cri-
terion function Cg (e4). This utilizes the total within-cluster
sum-of-squares, minimized by the Ward’s linkage
method objective function (e2), where x̄j denotes the
centroid vector of cluster ci and g is the number of
groups. The maximum of Cg was then used as the stop-
ping rule, where m is the number of variables and g is the
number of groups. The optimum number of groups g is
defined as the value of g that maximizes Cg.11–13 For
subtyping, a local maximum of Cg was found to estimate
the optimum number of subgroups (see Figure 1). For
details of why the Cg function was chosen see Wolfgang
Vogt and colleagues.11

Z�G� � �
j�1

g �
x�ci

�x � x� j�2 (e2)

diff�g� � �g � 1�2/m � Zg � 1 � g2/m � Zg (e3)

Cg � �diff�g�/diff�g � 1�� (e4)

Subtyping and Mean Band Difference (MBD)

The groups determined by the model were evaluated for
band differences (BDs). To calculate the BDs between
two or more subtypes, all possible pairs of isolate
patterns in all subtypes within a group were evaluated
using (e5).

BD � ��C1 � C2� (e5)

where Ci is a vector for the ith isolate and BD represents
the total BD between the ith and ith�1 isolate. The mini-
mum, mean, and maximum BDs between a group of
isolates was also found by applying (e5) to all possible
pairs of isolate vectors for that group (see Figure 3). The
mean is an average estimate of genetic variance repre-
senting BDs between isolates within a group and is called
the MBD. BD is a useful variable because it is a measure
of genetic divergence.2,9 In this study a target maximum
BD cut-point of 6, which generally corresponds to two
genetic events at most (ie, insertions, deletions, and re-
arrangement2,9), was considered an ideal break-point for
defining a group. BD values equal to or less than this
value would suggest a close genetic relationship. Sensi-
tivity to these relationships can be tailored to a desired

maximum genetic divergence by adjusting the number of
possible groups. It should be noted that the Ci vectors are
derived from absolute band presence/absence data.
Trace quantity or STQ data could not be used for this
purpose because of its continuous nature. Deciding at
what numerical value a band produced in PFGE is de-
rived from one, two, or even three DNA fragments is
purely arbitrary and therefore not practical. Based on the
need for equation (e5) to consider all trace quantity or
STQ values equally, a concession was made. It was
assumed that one band was the product of one DNA
fragment source. Arguably this is consistent with current
methods of PFGE pattern evaluation and therefore more
comparable to current convention. Short of a complete
sequence of genomic and extra-genomic DNA for a
group of organisms, a procedure can only estimate the
true genetic diversity for that group.

Results

General

For the 47 isolates used to assess STQ analysis, there
were 20 unique banding patterns based on band position
only. When a clustering algorithm was applied at an
81.8% similarity cut-point (as determined by Cg), and
band position was the only variable taken into account,
11 clusters were produced. When band intensity was
considered, 15 clusters were produced. Cg determined
an optimal partitioning of 5 clusters (Figure 1) from both
Rf-only and STQ data. The isolate memberships deter-
mined by the two methods were identical for these 5
clusters (Table 1). With the use of the hierarchical parti-
tioning methods described above, the percent similarity
cut-point that was required to produce 5 clusters as
determined by Cg was (52.2%) and (46.1%) for Rf only
and STQ data, respectively. This partitioning would not
have been found by simply applying a similarity cut-point
of 70 or 80% with either Rf-only or STQ data. The subtype
partition g � 15 for STQ data are not as clearly defined as

Figure 1. The Cg criterion function (e4), which illustrates data partitions by
using the within-group total sum-of-squares (TSS) of Ward’s method. The
feasible number of partitions is represented by a maximum of Cg. Values in
brackets are the smallest similarity cut-points required to produce the
indicated number of partitions. It is not unreasonable to expect superimpo-
sition of partitions; therefore, local maxima should indicate subtyping.
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the Cg-determined partitions for typing. Figure 1 show
many different and sometimes conflicting local maximum
values between Rf-only and STQ analysis methods rang-
ing from 8 to 16 clusters. It became clear that a common
structure between the two methods may or may not be
represented by Cg local maximum values at the same
number of partitions, but isolate membership should be
identical (Table 1). This occurred at a common similarity
index of 81.8%.

Rf-Only and STQ Subtyping

The use of both band intensity and position produced
more subtypes than the use of band position alone (Table
1). Rf-only subtypes 1 and 4 were each cut into two
partitions by the STQ analysis, where the difference was
primarily a single band. Rf-only subtype 2 was cut into
three partitions based on Rf or band intensity differences.
The differences based on band intensity alone were con-
sidered most interesting, and the isolates were therefore
subjected to a different endonuclease enzyme and PFGE
resolution. Twelve isolates, six each belonging to sub-
types 2 or 8 as determined by STQ analysis, yet consid-
ered identical by Rf-only analysis, were digested using
SacII endonuclease enzyme and resolved by PFGE using
the same parameters as described above (Figure 2).
From the diagram, one can see subtle differences be-
tween subtypes 2 and 8; where SmaI digestion shows
only band-intensity differences, the SacII digestion shows
band-Rf differences. Although these isolates are clearly
subtypes of a related strain, these gels and dendrograms
nevertheless illustrate the subtle differences between
them, which the STQ analysis method is able to resolve.

Human Eye

The characterization by STQ analysis was in high agree-
ment with analysis by human eye (45 of 47 isolates, 96%),
where Rf-only was lower (38 of 47 isolates, 81%). This
was established by printing the PFGE patterns of the 47
isolates and pasting them in a grouped manner to a

board, with only the human eye used to compare them.
Band brightness was taken into account, and isolates
were grouped accordingly. Final assignments were
agreed on by two reviewers with no previous knowledge
of PFGE pattern origin. The result was then compared
with computer-generated partitioning determined by Rf-
only and STQ analysis. The only differences noted be-
tween human and STQ analysis methods were the result
of marginal PFGE patterns that could have been put into
one of two clusters (assigned by human or computer),
depending on which bands were considered important
(data not shown).

Band Differences (BDs)

The optimum number of groups determined by the Cg

criterion produced a maximum level of within-partition
BDs ranging from 5 to 7 (Figure 3). This theoretically
corresponds to (on average) one or two genetic events
separating the most divergent subtypes within defined
groups. These results suggest that the number of parti-
tions defined by Cg is plausible.

Discussion

For the purpose of analysis one fragment of DNA re-
solved by PFGE should be assigned some constant value

Table 1. Relating Subtypes between Analysis Methods

Rf-only
subtypes

Rf-only
types

STQ
types

STQ
subtypes

1 A A 1, 3
2 A A 2, 7, and 8
3 A A 4
4 A A 5, 9
5 C C 6
6 D D 10
7 A A 11
8 E E 12
9 E E 13

10 B B 14
11 A A 15

Rf-only typing is determined by band migration only. STQ typing is
determined by the STQ analysis method, where both band migration
and band intensities are considered. Note that the two middle lanes,
which correspond to the optimal partitioning of their respective data
types, are identical.

Figure 2. Two PFGE gels with identical isolates digested with different
enzymes and their associated dendrograms. A, Left: Subtypes 2 and 8 are
defined by the STQ analysis method. Differences are based on band intensity
only (arrows). A, right: The same isolates digested with a different enzyme.
Differences are based on band position (bracket). The two methods
grouped subtypes 2 and 8 similarly. B: Two representative isolates from
SmaI-digested isolates and a graph of the average band intensity values for
all six isolates.
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(X) regardless of the fragment size. When two co-migrat-
ing fragments are detected, the value should become 2X,
and so on. Associated numbers then become propor-
tional to the number of DNA fragments. This relates di-
rectly to the number and position of endonuclease en-
zyme recognition sites throughout the bacterial genome.
However, variations ranging from DNA loading and pu-
rity, enzyme selection, staining technique, and gel-to-gel
variability make assigning discrete numbers representa-
tive of DNA fragment count impossible. Resolution of
these issues required some form of band-intensity stan-

dardization that compensates for the concentration of
DNA loading as well as other variables. In STQ data,
band variables remain continuous as deciding at what
values STQ data should be considered two or more frag-
ments of DNA required arbitrary rules to be introduced to
the pattern evaluation.

Nearly all clustering linkage methods require a scale-
invariant data set.11 Typical PFGE-banding patterns in-
herently have a hierarchy of band intensity; that is, the
bands produced by larger fragments of DNA are more
intense than the bands produced by smaller DNA frag-
ments. As a result, the values representing the band
intensities of larger fragments of DNA exhibit an exag-
gerated role in typical cluster analysis methods when
these values are used directly (Figure 4A). Standardizing
PFGE band intensity data using parametric methods is
not plausible. PFGE data have many zero designations
that represent the absence of bands; and the PFGE data
distribution is bounded, two factors that confound any
chance of normality, a requirement of parametric analysis
methods.

The STQ method of standardization converts band
patterns to a scale-invariant data set by first dividing
trace quantities by the sum of those band intensities,
producing what were earlier referred to as adjusted trace
quantities (Figure 4B). This mathematical procedure will
standardize trace quantities between all isolates regard-
less of DNA loading or gel-to-gel variability (within rea-
son), provided that assumptions regarding proportional-
ity of DNA staining and similarity of genome size are met.
However, the problem of band hierarchy (scale-variant
data) still exists. Dividing all like band-intensity values by
the brightest or largest numerical value will result in a
number no larger than 1 and no smaller than 0 for any
given band. Performing this operation for all band-inten-
sity values results in a standardized data set that is
practical for cluster analysis (Figure 4C). Underlying pat-
terns otherwise masked by the inherent noise of PFGE
are revealed.

Figure 3. Dendrogram of subtype centroids and between-isolate within-
group statistics, including minimum, mean (in parentheses), and maximum
BDs. Numbers in box represent the isolates per subtype (centroid), and
shaded bars represent the final partition as determined by the Cg criterion.
Note that the maximum number of BDs corresponds well with final partition.

Figure 4. Illustrating the standardization process. A: Raw data, where the band-type axis represents band characterization determined by 	5% (Rf) tolerance and
the raw data axis is the unstandardized trace quantity of each band. B: Adjusted trace quantities (ATQ), where each isolates trace values (raw data) for all bands
produced by that isolates is divided by the sum of those values (standardize for gel loading). C: Standardized trace quantities, where each ATQ of all isolates is
divided by the maximum respective ATQ. Note that hierarchy of band intensity is removed while retaining a standardized form of band intensity. Note also the
bimodal distributions in the STQ values, particularly band types 19 and 25.
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Under rare conditions, one isolate could possess an
unusually high number of multiple co-migrating DNA
fragments, producing a very bright band. After standard-
ization and cluster analysis, the isolate producing such a
band would still be characterized as different from the
other isolates, as this would be considered a large dis-
parity. However, when used as a common denominator,
the value associated with this band would reduce those
numbers associated with similar bands of other isolates,
thus reducing the role they play in characterization (ie, a
mathematical weighted effect). In practice, however, this
weighted effect does not appear to be detrimental to the
ability of the standardized data set to be representative of
the PFGE patterns. Two limitations of the STQ analysis
are all isolates must be represented in the database
before analysis (because of the standardization process)
and that very large data sets (�10,000) may be imprac-
tical, as the standardization process for such a large
matrix would be time-consuming.

The Criterion Function

Data set partitioning based on a similarity index poses
several concerns. The value of the cut-point is an external
arbitrary index required before data analysis, and this
value needs to be adjusted in accordance with the num-
ber of isolates evaluated. This is related to the structure of
the data set. For an example, if the structure in a group of
isolates is well defined (exists), additional samples can in
effect fill in the gaps between disparate groups. This
does not change the original groups or their relationship
to each other but it does require adjusted similarity indi-
ces to maintain an analysis outcome for that relationship.
Of course larger sample populations are more statisti-
cally significant and are encouraged but are not always
practical. Another concern posed by hierarchical linkage
methods is that groups will be defined even when there
are none. Among the numerical classification community
there is little consensus regarding the best stopping-rule
methods. In fact, one of the few points of consensus that
does exist among authors is that clustering algorithms
are inherently data-dependent. Hence, prudent use of
any analytic method is necessary. Unlike a similarity in-
dex in hierarchical linkage methods, Cg should not define
partitions where there are none. In application, this as-
sumption holds.12 The Cg function should fluctuate
around one when analysis is performed on randomly
generated ungrouped data.12 Therefore, if a peak oc-
curs, particularly at the same value g, while using differ-
ent forms of data representing the same phenomenon,
one can be reasonably assured that an intrinsic pattern
exists in the data set. Although the Cg function as de-
scribed by Krzanowski and Lai12 is certainly not the only
stopping-rule available, based on the data presented
here, it does appear to be superior to percent similarity
index cut-points at determining the optimum number of
clusters. Its most attractive attributes are that its ap-
proach to determining the optimum number of partitions
is unbiased and its compatibility with the objective func-
tion used in the Ward’s hierarchical linkage algorithm.11

Where the similarity cut-point is an external arbitrary pa-
rameter needed in advance, Cg takes the data set as a
whole into consideration, finding the maximum succes-
sive difference between k and k � 1 partitions of the total
sum-of-squares for each possible number of groups.
Therefore, no user input is required for estimating the
number of groups present in an experimental data set.

Practical Use of STQ Analysis

The STQ analysis method is ideally suited for the evalu-
ation of nosocomial outbreak stains and population stud-
ies of same species organisms using PFGE. Standard-
ized band intensity as a marker for isolate disparity, and
indirectly DNA co-migration, is the purpose of this algo-
rithm. Other source data may include polymerase chain
reaction-based patterns such as random amplification of
polymorphic DNA or whole cell protein patterns such as
that produced by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis. In every case STQ analysis is de-
signed to increase associated descriptive data for each
evaluated banding pattern, allowing a finer partitioning of
the samples where investigators may use discretion as to
how discriminatory the analysis should be. Using a stop-
ping-rule such as the one described above provides an
unbiased approach to determining inherent data struc-
ture, if in fact it exists, and at what level groups are
interconnected.

This algorithm could easily be implemented into any
available software product as an optional method of data
standardization. Analysis thereafter would be identical to
existing methods. Stopping-rules and methods of visual-
ization also would vastly improve any tools currently used
by investigators. Optionally, this algorithm is simple
enough that calculations could be done in a spreadsheet
before cluster analysis using most statistical software
packages.

The primary benefit of the STQ analysis algorithm over
current protocols found in software products such as
BioNumerics/GelCompar (BioSystematica, UK) and Di-
versity Database (Bio-Rad) is cost. Combined with pro-
grams such as ImageJ, a free public domain Java image-
processing program inspired by NIH Image, a statistical
package capable of multivariate analysis such as MiniTab
or Statistica, and a spreadsheet program, STQ can facilitate
band pattern analysis at a significant cost reduction over
commercial packages. Additionally the band-weighting
analysis method used by Diversity Database introduces a
hierarchical effect of band brightness. That is, larger and
brighter bands are given more importance than smaller
bands in the pair-wise comparison of patterns. This results
in an unusual partitioning of the data set.

Significance of DNA Co-Migration

DNA co-migration is an important characteristic of PFGE
patterns. If one isolate has co-migrating fragments of
DNA and another does not, the two isolates in all proba-
bility are genetically different (Figure 2). Incorporating
DNA co-migration as an attribute can improve the dis-
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criminatory power of PFGE by increasing the amount of
information available for analysis. Cluster subtypes 2 and
8, determined by analysis of STQ data set, in this study
illustrate that point well. The additional information found
in band types 19 and 25 between the two clusters are
enough for the Ward’s linkage method to separate the
isolates into two entities at a minimum similarity cut-point
of 79.2%. This and other further partitioning by STQ anal-
ysis increased the index of discriminatory power in this
study from 0.79 to 0.89 compared with Rf-only analysis.
Use of the STQ PFGE band-pattern standardization meth-
ods described here permits consideration of DNA co-
migration, often found in PFGE patterns, during analysis.
In addition, the Cg criterion function offers an unbiased
tool for determining the optimum number of partitions for
an experimental data set.
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