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ABSTRACT Limulus ventral photoreceptors generate highly variable responses to 
the absorption of single photons. We have obtained data on the size distribution of 
these responses, derived the distribution predicted from simple transduction 
cascade models and compared the theory and data. In the simplest of models, the 
active state of the visual pigment (defined by its ability to activate G protein) is 
turned off in a single reaction. The output of such a cascade is predicted to be 
highly variable, largely because of stochastic variation in the number of G proteins 
activated. The exact distribution predicted is exponential, but we find that an 
exponential does not adequately account for the data. The data agree much better 
with the predictions of a cascade model in which the active state of the visual 
pigment is turned off by a multi-step process. 

I N T R O D U C T I O N  

Signal transduction commonly involves an enzyme cascade in which the activation of 
a single receptor molecule triggers a sequence of gain-producing reactions (Stadtman 
and Chock, 1979). For instance, in vertebrate rod photoreceptors a light-activated 
rhodopsin molecule works as an enzyme to activate hundreds of G proteins. Each of 
these activates a cGMP phosphodiesterase enzyme that hydrolyzes many molecules of  
cGMP. This second messenger, in turn, controls the channels that gate the flow of 
ions through the membrane  (reviewed in Stryer, 1986). In such a cascade, each 
molecule will have a randomly variable active lifetime, in analogy with a channel 
protein, which has a randomly variable open time (Colquhoun and Hawkes, 1984). 
Therefore, the gain produced by each molecule will be stochastic in nature. Stochastic 
gain at the molecular level implies that the output of the cascade (e.g., the flow of 
ions) will vary randomly. Such variability may go unnoticed in laboratory experiments 
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because typically, many receptor molecules are activated by a stimulus and the 
fluctuations in their respective outputs tend to cancel. Photoreceptors, however, 
provide a system in which the stochastic response to a single activated receptor 
molecule can be studied. This is particularly true in Limulus photoreceptors, where 
the photoexcitation of  a single rhodopsin molecule stimulates a large discrete wave of  
membrane depolarization (quantum bump; Fuortes and Yeandle, 1964; Lillywhite, 
1977). Voltage (Millecchia and Mauro, 1969) and patch (Bacigalupo, Chinn, and 
Lisman, 1986) clamp studies of the ventral photoreceptor have shown that a 
quantum bump results from inward current through thousands of transiently open 
membrane channels. Thus, a quantum bump is a direct manifestation of the large 
amplification produced by the transduction cascade (Cone, 1973). Strikingly, quan- 
tum bumps are highly variable in size (Yeandle and Spiegler, 1973), latency 
(Martinez and Srebro, 1976) and waveform shape (Goldring, 1980; Stieve, Reuss, 
Hennig, and Klomfass, 1990). A question that naturally arises is why this variability 
occurs and whether it can be explained in terms of the properties of the transduction 
cascade. 

Borsellino and Fuortes (1968) explored the implications of quantum bump latency 
variability. They worked with a stochastic version of the original, deterministic 
cascade model that Fuortes and Hodgkin (1964) had earlier shown to be consistent 
with the response to a moderately bright flash (which reflects average quantum bump 
kinetics). Studies subsequent to that of Borsellino and Fuortes, however, revealed 
analytical difficulties in interpreting latency variability when even the simplest 
cascade models are invoked (Tiedge, 1981; Goldring and Lisman, 1983). In this 
paper, we demonstrate that the size of the quantum bump, quantified as the 
time-integral of quantum bump current (charge), can be more easily related to 
cascade properties. We find that for simple models, a high size variability is expected, 
largely because of a high variability in the number of G proteins activated by 
rhodopsin. In particular, we show that for the simplest models-those in which 
rhodopsin and all other active molecules are inactivated in a single step-the 
probability distribution for quantum bump charge has an exponential form, a 
conclusion also reached by Grzywacz and Hillman (1985). They examined measured 
quantum bump charge distributions and found good agreement with an exponential, 
in support of the simplest models. By contrast, we find that measured distributions 
are somewhat more peaked than an exponential. We go on to show that these 
distributions are consistent with simple models in which rhodopsin is turned off by a 
multi-step process. Direct experiments to test whether the shape of these distribu- 
tions is dependent  on early transduction processes involving rhodopsin are presented 
in the companion paper (Kirkwood and Lisman, 1994). 

M A T E R I A L S  A N D  M E T H O D S  

Electrophysiological Recording and Data Acquisition 

The ventral nerve of Limulus was continuously superfused with artificial sea water (ASW) of 
standard composition (in mM: 425 NaCI, 10 KCI, 10 CaC12, 22 MgC12, 26 MgSO4, 15 Tris-CI, 
pH 7.8). Substitution of 9 mM of the CaCI~ in ASW with MgCI2 yielded the l-mM-Ca 2÷ sea 
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water used in one experiment in an effort to increase quantum bump size (Wong, 1977). The 
bath temperature, monitored with a thermocouple, was kept fixed to within 0. I°C. 

To avoid recording from electrically coupled photoreceptors (Sokol and Srebro, 1982), only 
photoreceptors that appeared to be isolated were selected for study and the light stimulus was 
confined to a small ( ~ 10p.) spot. Photoreceptors were impaled with two microelectrodes (2.5 M 
KCI, 12-16 Mfl), voltage-clamped to resting potential ( -45  to - 60  mV) by standard methods 
(Lisman and Brown, 1971), allowed to dark-adapt about 1 hr (Lisman and Brown, 1975), 
cooled to 15.5-18°C to reduce the rate of spontaneous quantum bumps (Adolph, 1964; Srebro 
and Behbehani, 1972), and stimulated at regular intervals (1.3-2.5s) with a 3-ms flash of dim, 
570-nm light that evoked ~ 0.3-1.3 quantum bumps on the average. If the quantum bump 
peak amplitude distribution (Yeandle and Spiegler, 1973), probability of response to a flash, 
spontaneous quantum bump arrival rate or resting current level (nominally 0 hA) were 
unstable, data were not taken. In most cases, however, these parameters became stable, at least 
by eye, at which point we recorded voltage clamp current through an RC filter (time constant 
0.3 ms) and on f.m. magnetic tape (recorder model 3964A, Hewlett-Packard, San Francisco, 
CA; four-pole low-pass Butterworth response, cutoff frequency near 300 Hz). Data were taken 
until the cell deteriorated, as evidenced by a decrease in average quantum bump peak 
amplitude, a decrease in the probability of response and/or an increase in the arrival rate of 

1400 
EvQnt Latency (m~c) 

FIGURE 1. The event latency distri- 
bution for Cell 1. Bin width: 20 ms. 
See Materials and Methods for de- 
tails. 

spontaneous quantum bumps. After the experiment, recorded data were played out through a 
four-pole low-pass Butterworth filter set at a cutoff frequency of 150 Hz, digitized by a 
computer at 1000 Hz, and stored on disk. 

The Measurement of Response Charge 

The current trace following each flash was examined by eye using a computer and interactive 
graphics. Every event was measured, where an event consisted either of a single quantum bump 
or of multiple quantum bumps with temporally overlapping waveforms. To measure an event, 
two sections of baseline were chosen before and after the event, respectively, and a single line 
was fit through these sections by a linear least squares routine (Bevington, 1969, pp. 105-106). 
The charge of the event (in picoCoulombs, pC), was then measured as the integral of the event 
waveform above this line (unaffected by preliminary low-pass filtering), using an algorithm from 
Bevington (1969, pp. 272-275). 

A latency distribution for events was compiled as in Fig. 1. This distribution consisted of a 
broad peak superposed on a low, uniform, background. The peak rose sharply from the 
background at small latencies and returned to the background level with a more gradual tail. 
The peak was due to light-induced quantum bumps, and these had a relatively restricted 
latency range, which is termed here the "response period"; the background was due to 
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spontaneous quantum bumps, which began at times uniformly distributed between flashes 
(Srebro and Yeandle, 1970). The response period was defined empirically as the latency range 
covered by all but the extreme upper tail of the peak (Fig. 1, arrows; see below). The observed 
response to a given flash was then taken to be all the events that began in the response period, 
and the "response charge" was computed as the sum of the charges of all these events. Because 
low flash strengths were used, a large number of flashes failed to yield any observed response 
(nonresponses) and were thus assigned a response charge of 0 pC. 

The relative contributions of light-induced quantum bumps and spontaneous quantum 
bumps to observed responses were evaluated from the empirical probability of response 
(fraction of flashes followed by an observed response), Poas, and the rate of occurrence of 
spontaneous quantum bumps (see Table I and associated details in Appendix E). The rate of 
spontaneous quantum bumps was measured directly from the events beginning in a "spontane- 
ous quantum bump observation period," which was chosen well outside the response period. 
The rate of events in the spontaneous quantum bump observation period was so low ( < 0.13/s) 
that all these events could be regarded as single (i.e., nontemporally overlapping) spontaneous 
quantum bumps. We estimated that at least 90% of the observed responses comprised only 
light-induced quantum bumps (WE, Table I). The few observed responses that contained 
spontaneous quantum bumps were incorporated into the response charge distribution analysis 
as described in Appendix A and below. We further estimated that a very small fraction (at most 
3%) of the light-induced quantum bumps began outside the response period and were thus not 
included in observed responses. It is apparent from Appendix A that the omission of such 
quantum bumps is inconsequential if quantum bump size properties do not depend on latency. 
The independence of size and latency has been reported by previous workers (Howard, 1983; 
Stieve and Bruns, 1983) and is examined further in Results. In any case, because the quantum 
bumps at issue were so few in number, their systematic exclusion had no significant impact on 
our conclusions about distributions. 

Despite the systematic exclusion from observed responses of the quantum bumps beginning 
after the response period, it was nevertheless theoretically possible for such quantum bumps to 
be included inadvertently in a response charge measurement. This could happen in the 
following way. An event beginning late in the response period would endure past the end of the 
response period, and then, before the event waveform had returned fully to the baseline, a new 
quantum bump would begin. Because the event would be integrated from its very beginning 
through its complete return to the baseline (see above), the new quantum bump would be 
included in the event, and hence, in tbe observed response. To verify that the number of such 
"contaminated" observed responses was acceptably small, we first considered the time interval 
t~p by which two, consecutive quantum bumps would have to be separated in latency to be 
measured as separate events (e.g., see Fig. 2 F). We then estimated the fraction of flashes f for 
which quantum bumps began after the response period but within t~p after the latency of the 
latest quantum bump beginning inside the response period. To make this estimate, we used the 
event latency distribution and the fact that the respective occurrences of quantum bumps in 
disjoint latency ranges are probabilistically independent. We further used the fact that, because 
of this independence, the probability of quantum bumps beginning between times x and y after 
a flash may be estimated as the number of flashes whose earliest event begins between x and y 
divided by the number of flashes without events beginning before x. The fraction of flashes f 
was thus estimated as ft Pr(quantum bumps begin between times t and t + t/t) Pr(no quantum 
bumps begin beween t + dt and the end of the response period) Pr(quantum bumps begin 
between the end of the response period and t + dt + tsep), where the time parameter t ranged to 
the end of the response period and the integral was approximated as a sum over 20 ms 
intervals. For conservatively large values oft~p (e.g., 160 ms for the cell of Fig. 2), the estimate 
fo r f  turned out to be < 3.1% for Cell 2A and at least an order of magnitude lower for the other 



T A B L E  1 

Parameter Values for Experiments 

Parameter Cell 1 Cell 2A Cell 2B Cell 3 Cell 4 

Holding potential (mV) - 5 2  - 4 5  - 4 5  - 6 0  - 6 0  
Temperature (°C) 17.9 17.8 17.8 18.1 15.5 
[Ca~+]o (mM) 10 10 10 10 1 
No. of  flashes with stable 

data 3196 789 500 923 1084 
Interflash interval (ms) 1350 2130 2130 1350 2520 
Response period (ms) 80-340 60-340 60-340 80-280 140-920 
Spontaneous (Spont.) q.b. 

observation period (ms) 0-50, 500-1350 700-2000 700-2000 500-1350 1000-2200 
C~in, charge of  the smallest 

reliably detected q.b. 
(pC) 4.0 4.0 4.0 4.0 6.0 

nR<, no. of  responses with 
charge < Cmin 39 4 2 3 7 

nR~, no. of  responses with 
charge > Cmin 807 576 166 279 380 

ns<, no. of  spont, q.b. with 
charge < Cmi, 30 7 19 17 0 

ns~, no. of  spont q.b. with 
charge > Cmi n 76 56 61 83 32 

spont, q.b. arrival rate (s -1) 0.037 0.061 0.12 0.13 0.025 
poss, Pr(q.b. in response 

period) 0.265 -+ 0.008 0.735 -+ 0.016 0.336 -+ 0.021 0.306 -+ 0.015 0.357 -+ 0.015 
Ps, Pr(spont. q.b. in 

response period) 0.010 0.017 0.034 0.026 0.019 
PL, Pr(light-induced q.b. in 

response period) 0.258 0.730 0.312 0.287 0.344 
WL, Pr(response is purely 

light-induced) 0.964 0.977 0.897 0.915 0.946 
ws, Pr(response is purely 

spontaneous) 0.027 0.006 0.071 0.061 0.035 
WLS, Pr(response is both 

light-induced and 
spontaneous) 0.009 0.017 0.032 0.024 0.019 

~'li, m e a n  no,  o f  

light-induced q.b. in 
response period 0.30 1.31 0.37 0.34 0.42 

)~s, mean  no. of  spont, q.b. 
in response period 0.010 0.017 0.034 0.026 0.019 

~'li,o mean no. of  
light-induced q,b. given 

1 1.16 1.79 1.20 1.18 1.23 
Pmutt, Pr( > 2 light-induced 

q.b. given > 1) 0.142 0.516 0.176 0.160 0.196 
Response charge range 

(pC) 0.4-568.9 0.7-1292.5 2.1-763.3 1.5-422.4 1.1-2203.1 
moss, mean response 

charge (pC) 79 +- 3 237 - 8 205 +- 12 82 -+ 4 159 +- 9 
Spontaneous q.b. charge 

range (pC) 0.4-427.4 0.8---681.6 1.1-603.1 0.7-291.9 6.6-521.2 
ms, mean spontaneous q.b. 

charge (pC) 19 -+ 5 106 -+ 18 68 -+ 13 29 -+ 5 152 -+ 26 
mL, mean light-induced q.b. 

charge (pC) 70 -+ 3 132 - 8 178 -+ 12 72 --- 4 128 -+ 9 

For complete definitions, estimation and computation details, and additional notes, see Appendix E. 
*q.b., quantum bump(s). 
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experiments. The estimated number of contaminated observed responses wasfdivided by Poas 
from Table I, or less than 4.2% for Cell 2A and at least five times lower for the other 
experiments. Moreover, typical quantum bumps were usually measured separately by our 
method even if their latencies differed by far less than rsvp. For this reason, the true numbers of 
contaminated observed responses were almost certainly much lower than the numbers just 
given. Even smaller were the numbers of observed responses contaminated similarly by 
quantum bumps beginning before the response period. Therefore, the net effect of inadvert- 
ently captured quantum bumps on the form of response charge distributions was negligible. 

8 

b 

C 

I lOOms 

e 

f 

FIGURE 2. Voltage clamp cur- 
rent records showing quantum 
bumps evoked from Cell 1. A 
3-ms flash was presented at the 
beginning of each trace. (a-c) 
Apparently individual quantum 
bumps. (d) Possibly two, super- 
posed quantum bumps (note 
waveform near arrow). (e) One 
of the smallest quantum bumps 
detected by eye. (f)  Apparently 
two quantum bumps. (g) Mul- 
tiple, superposed quantum 
bumps. 

To evaluate the resolution of our response charge measurements, we first considered the 
charges of the events with the smallest peak amplitudes (= 0.1 nA) that could be reliably 
detected by eye above the recording noise. We thus identified a small, criterion charge, Cmin, 
such that any event with charge greater than Cmin was almost certainly detected (see Table I). In 
fact, as the table shows, some events smaller than Cmin were detected, but, by far, most of the 
detected events were larger than Cmi n. Furthermore, Cmi, was much smaller than the average 
event charge. Thus, the measured responses with charge above Cmin represented almost the 
entire charge range of interest. Moreover, the response charge distribution analysis was 
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specifically designed to take into consideration the very small events below Cmln that were lost to 
measurement (see below). Cmin proved to be much larger than the typical error in charge 
measurement, which was ascertained from the measurement of many traces that did not exhibit 
quantum bumps. Thus, smearing of response charge distributions by recording noise was 
negligible. 

Statistical Methods 

Tests for stability. The accurate measurement of statistically defined response parameters 
required temporal stability of the cell. Although we had screened for stability by eye during the 
experiment, we needed to expose and eliminate any nonobvious but statistically significant 
instabilities that remained in the data. The two most important stability indicators were the 
probability of response to a fash and the probability distribution of response charge. Two 
additional indicators were the rate of occurrence and charge distribution of spontaneous 
quantum bumps. Therefore, all these indicators were objectively examined for stability through 
specific statistical tests. A series of flashes that had been presented during a period of apparent 
stability was divided into sequential subseries. To test for long-term stability, three subseries of 
nearly equal numbers of flashes were used. To test for shorter-term stability, many more 
subseries, of ~ 100 flashes each (except possibly the last subseries), were used. In either case, a 
given stability indicator was evaluated for each subseries, and a statistic which measured the 
variability of the indicator across the subseries was computed (see below). To judge objectively 
whether the variability was too high for the cell to be considered stable, we evaluated the 
probability that the statistic would be at least as high as the value obtained if the cell were truly 
stable (significance probability). If the significance probability turned out to be very low 
(<0.01),  then the hypothesis of stability was rejected. (If the significance probability was 
between 0.01 and 0.1, the deviation from stability was not necessarily significant in view of the 
number  of such tests being done). 

First we describe the stability test for the probability of response. Let m be the number  of 
subseries, let kj be the number  of flashes in the j ' t h  subseries fo r j  = 1, 2 . . . . .  m, and let rj be 
the number  of responses with charge at least Cmin in the j ' th  subseries. Also, let N~j -- rj, 
let N2j = k j  - r j  fo r j  = 1 . . . . .  m, let n = E;= l kj be the total number  of flashes, let R, = J  = 
E~= 1 rj, and let R2 = n - J .  Then,  the chi-square statistic 

X 2 = n ~ 2 (Uij- Rikj/n)2/(Rikj) 
i=1 j=l 

is a measure of the variability in the probability of response. X ~ has a discrete probability 
distribution, which we approximated by the distribution of a chi-square variable with m - 1 
degrees of freedom (×z m_ z), as described by Bickel and Doksum (1977, p. 324). The hypothesis 
of stability was judged per above using the significance probability Pr(×Zm_ I >-- X~), where Pr(H) 
denotes the probability of event H. Chi-squared significance probabilities were found using the 
algorithm of Holt (1986) and from published tables (Bevington, 1969). 

We now describe the stability test for the distribution of response charge. The J responses 
with charge above Cmi, were ranked from 1 to J (tied charge values received their average 
ranks), and the Kruskal-Wallis test, suitably adjusted for ties (Bickel and Doksum, 1977, pp. 
364, 397), was performed. This was a test of the hypothesis that each of the samples of rj 
response charge values was taken from the same, unknown probability distribution (no 
assumptions were made on the form of the unknown distribution). Thus, Let Rj denote the 
average rank for the rj responses in the j ' th  subseries, e the number  of distinct charge values 
observed, and tu the number  of observations tied with the u'th distinct one, where tu >- 1 and 
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tu ~- 1 if all the observations are different. The  Kruskal-Wallis statistic was defined as 

[ ] j ( f ¥  rjRj - 3 ( J + 1 )  
T* = 

1 ~ 
1 js-_ju~=lt~-tu 

Its probability distribution was also approximated by that of  ×m-I' The  approximation is 
acceptable ifr j  > 6 for all j ,  or i fm > 3 and rj > 5 for all j, according to Bickel and Doksum 
(1977, p. 364). Adjoining subseries were combined, starting with the earliest ones, as necessary 
to obtain these conditions. The  hypothesis of  stability was rejected if T* was too large, in the 
same sense as described above. 

If the response charge distribution turned out to be significantly unstable by the Kruskal- 
WaUis test, then pairs of  subseries i and j were compared by the two-sample Kolmogorov- 
Smirnov test (Darling, 1957). This is a test of  the hypothesis that two samples come from the 
same, unknown probability distribution. The  Kolmogorov-Smirnov test required calculation of 
the statistic 

K,  =: max [abs (.ci(_ x) cJ (__x!/] ' 
[ \ ri rj ]J 

where ci(x) and cj(x) are the respective counts in subseries i a n d j  of  the responses with charge 
between Cmi, and x. This statistic was thus the maximum difference between the empirical 
cumulative conditional response charge probability distributions, given x > Cmi., for subseries i 
and j ,  respectively. Significance probabilities of  the Kolmogorov-Smirnov statistic K* were 
obtained from Kim and Jennrich (1973). The  respective Kolmogorov-Smirnov statistics for 
pairs of  subseries and the respective mean response charge values for the individual subseries 
indicated which of  the subseries deviated most from the others. When such a subseries was the 
first or last, it was deleted and the remaining subseries reexamined for stability as just 
described. When such a subseries was in the middle of  the whole series, the data to one side of  
this subseries were discarded and the remaining data then reexamined. 

Similar stability tests were also performed for the rate and charge distribution of spontaneous 
quantum bumps. Taken together, the stability tests revealed several instances of instability that 
had not been noticed by eye and thus prompted the discard of some (sometimes up to one 
third) of  the recorded data. We report  only results for data which had passed both the long- 
and shorter-term stability tests for all four indicators, with the one exception noted for Cell 4 in 
Appendix E (Details for Table I). 

Estimating cascade model parameters and fitting models to response charge distributions. We 
tested predicted charge distributions using chi-squared tests (Bevington, 1969, p. 187), which 
involved the estimation of  model  parameters through the minimization of a chi-square statistic. 
Thus, for each experiment,  we formed a total of  m intervals, or "categories," of response charge 
x, with boundaries 0 pC = x0 < x~ = Cmin < xz < ' " " < Xm. Nonresponses were included in the 
count for the lowest category, 0 < x < Cmin- To determine the category boundaries above Cram, 
we first formed equal bins of  10 pC _< x < 20 pC, 20 pC _< x < 30 pC, and so on, as well as a 
lowest bin Cmin -< x < 10 pC. Then,  beginning with the lowest bin, consecutive bins were 
combined to give eight categories, each with a roughly equal number of observations and thus 
comparable statistical weight. Thus, there were m = 9 categories in all for each experiment.  
Because of  the low flash intensities used, there were many nonresponses and thus the lowest 
category, 0 _< x < Cmin, contained many more observations than any of  the others. 

To  define the chi-square statistic, let n i be the number of observed response charge values in 
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the i'th category, xi-i < x < xi, and, for a given cascade model, let ai be the theoretical 
probability that an observed response charge is in the i'th category. Then, the chi-square 
statistic, which is a measure of the deviation of the observations from the theory, is 

g 2 = ~ (hi  --  ain)2 / (a in) ,  
i=l 

where we note that E,n i= I ni equals the total number of flashes n. For each model, ai will be a 
function, a i = a i (0 ) ,  where 0 is an unknown vector of parameters, say of dimension d. Let X~m~n 
denote the minimum value ofX ~ over all possible values of 0. The vector 0 is estimated by 0, the 
value of 0 at which X2min is attained. If the theory being tested is correct (for some, unknown 
value of 0) and the model has d independent parameters, then the distribution of X2min can be 
approximated by that of a chi-square variable with m 1 d degrees of freedom, 2 - -  - -  X m -  1 - d  

(Bickel and Doksum, 1977, p. 320). Thus, the theory would be rejected if X2min is too large, i.e., 
if the significance probability 2 2 P r ( X m _ l _  d > Xmin) _< 0 . 0 5 .  

For our tests of theoretical response charge distributions, the probabilities a i were equal to 
v~um(xi) - v~um(xi_l),  where v~Um(x) is the cumulative response charge distribution defined in 
Appendix A in terms of light-induced and spontaneous quantum bump quantities. The 
spontaneous quantum bumps beginning in the response period were both rare and much less 
frequent than light-induced quantum bumps (see Table I). This enabled us to calculate the ai 
through the simplifying approximation of Eq. A4, which in essence treats the spontaneous 
quantum bumps as a small effect on top of the light-induced data. For the theoretical response 
charge distribution derived from the Scheme A cascade model (Results), the expression for 

V cum in Eq. BI2 of Appendix B; for the Scheme B model, V~ ~m is V c~m in Eq. A4 is given by Xli, A 
~'li ~'li 

V cure in Eqs. C14-15 of Appendix C. The expressions in these equations were given by x~i,B 
calculated by computer. We estimated the terms V~qb(X) and Ps in Eq. A4 (probability density for 
spontaneous quantum bump charge and the probability of occurrence of spontaneous quantum 
bumps in the response period) based on measurements of the events of the spontaneous 
quantum bump observation period (we did not assume any theory for the generation of 
spontaneous quantum bumps). Thus, we directly measured the empirical cumulative distribu- 
tion of spontaneous quantum bump charge, denoted VcUm(x "~ cum s ~ j, and calculated from V s (x) an 
approximate, discrete estimate for V~qb(X) consisting of a set of probabilities at representative 
charge values. Ps was estimated as in Table I. The convolution in Eq. (A4) was actually 
performed only for Cell 2A; for the other experiments, it was sufficient to approximate the 
convolution based on our estimate that of the few observed responses containing a spontaneous 
quantum bump, only one third or fewer also contained light-induced quantum bumps (see WL, 
WLS, and Ws in Table I). Thus, we approximated that when a spontaneous quantum bump of 
charge >_ Cmi n occurred in the response period, it occurred alone, and that any spontaneous 
quantum bump of charge <Cmin contributed negligibly (i.e., zero) to measured response 
charge. With the exception of Cell 2A, then, the convolution term in A4 was reduced to the set 
of probabilities 

cum V cum i x ~1 cum cum (Ps - Ps>_)[V),li (xi) - -  k l  i ~ i - IL l  + ( P s ~ ) [ V s q b  (Xi) --  Vsqb (Xi - I ) ] ,  

where Psz is the probability that a spontaneous quantum bump with charge > Cmi n begins in the 
response period. 

R E S U L T S  

An impor tan t  goal of our  exper iments  was to measure  the charge distr ibution of 
l ight- induced q u a n t u m  bumps  in Limulus ventral  photoreceptors.  The  size variability 
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of these quantum bumps is evident from Fig. 2. Because multiple quantum bumps 
evoked by the same flash can temporally overlap and be mistaken for a single 
quantum bump (Fuortes and Yeandle, 1964; Lederhofer, Schnakenberg, and Stieve, 
1991), it is not possible to determine the charge distribution rigorously by direct 
measurement of individual quantum bumps. We therefore sought an alternative 
method that would he based on parameters that could be measured with greater 
certainty. One parameter that can be measured with great accuracy is the total charge 
(response charge) generated by all the quantum bumps (light-induced and spontane- 
ous) that begin during the response period, a period during which virtually all 
light-induced quantum bumps occur (Fig. 1). Response charge is of interest because 
its distribution can be calculated from the distribution for the charge of a single 
light-induced quantum bump (Appendix A). The basis for this calculation is that 
light-induced and spontaneous quantum bumps contribute independently to mea- 
sured responses (Srebro and Yeandle, 1970), that a small number of quantum bumps 
add linearly under voltage clamp (Lisman and Brown, 1975), and that the total 
number of light-induced quantum bumps per flash obeys the Poisson distribution 
(Lillywhite, 1977). The calculation requires knowledge of the rate and charge 
distribution of spontaneous quantum bumps and the probability of a light-induced 
response, all of which can be accurately measured. It is therefore possible to examine 
a model for the charge distribution of a light-induced quantum bump by calculating 
the theoretical distribution of response charge on the basis of the model and 
comparing the calculated distribution to the observed one. Using this approach, the 
model can be accepted or rejected on sound, objective grounds. 

In four cells, we were able to obtain data that met the stability criteria defined in 
Materials and Methods. Cell 2 yielded two sets of data, at two different intensities, 
respectively (Cell 2A and Cell 2B), giving a total of five experiments (see Table I). 
The response charge distributions for the five experiments are presented in Table II 
and plotted as average probability density in Fig. 3 (bars). The count in the lowest 
charge category (category 1) is the sum of two numbers: the number of flashes for 
which no response was detected (nonresponses) and the number of responses with 
charge below a small criterion value for reliable event detection, Cmin (4--6 pC; see 
Materials and Methods and Table I). For all experiments except Cell 2A, the 
empirical probability of response (PL) was low (< 0.34). Furthermore, the empirical 
probability of spontaneous quantum bumps beginning in the response period (Ps) 
was very low (< 0.034). Therefore, for Cells 1, 2B, 3, and 4, most (> 80%) of the 
observed responses consisted of a single light-induced quantum bump and the 
response charge distribution above Cmin was not very different from the light-induced 
quantum bump charge distribution. It can be seen from Fig. 3 that light-induced 
quantum bump charge is highly variable and not obviously quantized. On a more 
detailed level, the figure suggests that the probability density for light-induced 
quantum bump charge monotonically decreases with charge for Cell 1 but may have 
a more peaked form for the other experiments. 

An important goal was to determine whether the measured distributions agreed 
quantitatively with the predictions of simple transduction cascade models. Such 
models would be unlikely to describe fully all the complexities of transduction, but, as 
argued in the Discussion, could capture essential aspects of the first stage of 



T A B L E  I I  

Experimental and Theoretical Response Charge Distributions 

Response charge Experiment Scheme A Scheme B 

Category Range (pC) No. observed No. expected ×2 contribution No. expected X 2 contribution 

Cell 1 
1 0--4 2389 2386.51 0.003 2386.51 0.003 
2 4-10 91 65.41 10~008 65.41 10~008 
3 10-20 86 93.09 0.540 93.09 0.540 
4 20-30 80 78.47 0.030 78.47 0.030 
5 30-50 110 130.08 3 .099  130.08 3 .099  
6 50-70 94 100.55 0.427 100.55 0.427 
7 70-100 109 109.50 0.002 109.50 0.002 
8 100-150 110 110.79 0.006 110.79 0.006 
9 1 5 0 ~  127 121.59 0.240 121.59 0.240 

Cell 2A 
i 0-4 213 204.26 0.374 211.26 0.014 
2 4-70 102 129.42 5.808 103.46 0.021 
3 70-140 109 111.86 0.073 116.05 0.428 
4 140-210 99 88.04 1.366 96.68 0.056 
5 21 0-280 71 68.03 0.130 75.12 0.226 
6 280-350 61 51.20 1.878 55.83 0.479 
7 350-420 46 38.14 1.618 40.53 0.737 
8 420---490 36 28.01 2.278 28.77 1.815 
9 490-00 52 70.05 4.652 61.29 1.408 

Cell 2B 
1 0-4 334 324.85 0.258 332.03 0.012 
2 4--40 20 29.77 3.209 17.10 0.493 
3 40-100 21 36.63 6.672 33.56 4.703 
4 100-130 19 14.50 1.393 16.28 0.454 
5 130-170 21 15.81 1.700 19.00 0.210 
6 170--2 t 0 20 13.86 2.717 16.96 0.543 
7 210-280 21 18.16 0.445 22.11 0.055 
8 280-370 23 16.01 3.055 18.26 1.230 
9 370-.~ 21 30.40 2.905 24.70 0.554 

Cell 3 
1 0--4 644 637.70 0.062 643.62 0.000 
2 4-20 42 54.97 3.060 39.99 0.101 
3 20-40 43 50.84 1.210 47.76 0.475 
4 40-60 42 38.90 0.247 42.45 0.005 
5 60-80 36 30.40 1.032 35.33 0.013 
6 80-100 31 23.74 2.217 28.04 0.312 
7 100-120 25 18.59 2.214 21.68 0.508 
8 120-170 30 30.92 0.028 34.00 0.471 
9 170-*o 30 36.94 1.303 30.118 0.000 

Cell 4 
1 0--6 704 696.50 0.081 703.18 0.001 
2 6-30 36 58.74 8.803 35.34 0.012 
3 30-60 53 59.26 0.661 54.71 0.053 
4 60-90 53 48.86 0.350 54.10 0.023 
5 90-120 46 40.30 0.807 47.50 0.047 
6 120-150 49 33.67 6.977 40.06 1.993 
7 150-190 42 34.64 1.563 40.73 0.040 
8 190-290 51 55.31 0.336 60.73 1.558 
9 290--~ 50 56.71 0.795 47.65 0.116 

2 I Number observed, number expected (for best fit), and X contribut'on are hi, nai, and (ni - nal)2/(nai), as 
defined in Materials and Methods. The best fits are summarized in Tables III and IV and plotted in Fig. 3. 
For Cell I, Scheme B fit best when one of the two active metarhodopsin states was altogether ineffective, i.e., 
when Scheme B reduced to Scheme A (see Table III and corresponding section of Appendix E). Thus, the 
best fits for the two models are identical for Cell 1. 



7 0 2  THE JOURNAL OF GENERAL PHYSIOLOGY • VOLUME 103. 1 9 9 4  

amplification, which is probably the most  impor tant  determinant  o f  quantum bump 
size variability. 

Scheme A 

We first studied the simplest t ransduction cascade model  (Scheme A; see Fig. 4), 
which is a generalization o f  the first stochastic cascade model  for invertebrate 

,J~ 

cell 1 

Response Charge (pC) 

o coil 2A !rltJlllllllllll 

cell 3 

cell 2B 

° rllllllr llllllll '!J UIJHH 
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FIGURE 3. Experimental and theoretical response charge distributions. The number observed 
and number expected from each of categories 2 through 9 of Table II are plotted as average 
probability density, i.e., after dividing by the number of flashes (n from Table I) and the width 
of the category's charge range. The number observed corresponds to the middle of the striped 
region of a bar, where the striped region indicates -+ one standard deviation = 
+-- ~]ni(ni/n)[1 - (rq/rt)]/[n(xi-  Xi-l)] (see Materials and Methods for notation). The number 
expected refers to the best fit of Scheme A (diamond) or Scheme B (cross). Notes: the number 
observed and number expected from category 1 would be off scale and hence are not plotted; 
the plotted value for category 9 is always 0 because the category extends to infinite charge; the 
best fits of Schemes A and B coincide for Cell 1 (see Table II, caption). 

t ransduction (BorseUino and Fuortes, 1968). In Scheme A, amplification is p roduced  
in a sequence o f  stages. Thus,  photoisomerizat ion leads to an active molecule, E~, 
which we take to be metarhodospin  in its active state (M*). In the first stage, M* 
catalyzes the conversion of  inactive molecules E2 to an active form E~ (e.g., activated 
G protein). Each activation Ez ~ E~ constitutes a unit of  gain product ion by M*. In 
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the second stage, each E~ catalyzes the conversion of inactive molecules E3 to an 
active form E~, and so on. In the next-to-last stage, molecules of second messenger 
E,-2 activate (open) light-sensitive channels (En-l ~ En-1; Bacigalupo et al., 1986). 
In the last stage, each open channel E*-l  conducts extracellular ions into the cell 

---* En). All active molecules eventually become inactivated. Thus, metarhodopsin (E, * 
and all other active molecules are shut off, second messenger is removed, and 
channels close (M* ---* M ° * and Ei ~ E~i, i = 2, 3 . . . .  n - 1). The output of the cascade 
is defined as the total ionic charge that enters the cell, and therefore equals the total 
number of E~s times the ionic charge per E*. 

In Scheme A, every gain-producing molecule E* is shut off in a single step. This 
means that the molecule works in a single active state that produces gain stochasti- 
cally as follows. Once active, the E ' can  either produce a unit of gain (activate an El+ 1) 
or become inactivated. Whether gain production occurs before inactivation is a 
matter of chance. Thus, there is some probability Pi that the E'will produce a unit of 
gain. If this happens, the E'will next either produce a second unit of  gain or become 

Scheme A 

R 

E~ 

( / M *  ~ M  ° 

E,* , E, ° 

/ 
( 

E~ , E,* . F_~ ° 

Scheme B 

R • M *  • M2* , M  ° 

rh , E~ ° 

E, .~* . E ;  
/ 

( E~ .E.* .F~ o 

FIGURE 4. Simple transduction cas- 
cade models (Schemes A and B). (R) 
Rhodopsin molecule. (M*) Single ac- 
tive metarhodopsin state. (M~ and 
M~ Two, sequential active metarho- 
dopsin states. (M °) The inactivated 
form of metarhodopsin. (E~, E~', and 
E~2) The inactive precursor, active 
state, and inactivated forms, respec- 
tively, of the gain-producing mol- 
ecules of stage 2. Similarly for stages 3 
through n. 

inactivated. Again, there is a probability Pi of gain production before inactivation, and 
so on. The invariance ofpi with the amount of gain already produced is an important, 
simplifying assumption. It is called here the "linear gain assumption" because it 
implies that active molecules, their substrates and products have no cooperative, 
saturation or other non-linear interactions that would affect the quantity of gain. The 
linear gain assumption does not exclude nonlinear interactions that would affect the 
kinetics of gain production as 10ng as the probability Pi is not time-dependent. 

To  calculate the probability distribution for the total charge output of  Scheme A, 
we first calculate the distribution for the gain produced by the active metarhodopsin 
molecule, M*, of stage 1. For M* to activate a total of n E2s means that M* activates 
n E2s in succession and is then inactivated. By the linear gain assumption, these 
successive activation and inactivation events are probabilistically independent. There- 
fore, with Pi being the probability that M* (E~) will next activate an E2 rather than 
become inactivated, the probability for a total o f n  E~ activations equals (pl)"(l - p l ) ,  
a geometric probability (Ross, 1972, p. 24). We may likewise reason that a single E~ 
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will produce a geometrically distributed number of E~s. To deduce the distribution 
for the total number of E~s, however, is relatively complicated, because we must 
somehow take into account the fact that the population of E~s is produced by a 
random number of E~s. How much more complicated, then, will it be to deduce the 
distribution for the output of the entire cascade? Remarkably, there is an elegant way 
to fold together the randomness in gain production from all the stages (see Appendix 
B), with a simple result: the charge distribution for the output of Scheme A consists of 
a probability at zero charge and an exponential distribution above zero charge (Eq. 
B10). The probability at zero charge signifies that the cascade can fail to generate a 
quantum bump (cascade failure). The probability of cascade failure stems from the 
possibility that, as mentioned above, an active molecule can fail to produce any gain 
before becoming inactivated (molecular failure). Thus, M* could become inactivated 
before producing any E~s (probability 1 - Pl), in which case the cascade would abort 
at stage 1. Alternatively, M* could produce E~s which all fail to yield E~s, or all 
molecules activated in some later stage could fail. The probability of cascade failure is 
an important result because it signifies that the quantum efficiency of transduction 
will be less than the quantum efficiency of isomerization (probability that absorption 
leads to M*; Fein and Szuts, 1982). Thus, a noteworthy parameter of the Scheme A 
model is the quantum efficiency given that rhodopsin has been photoactivated to M*. 
This parameter is denoted here QEA and equals one minus the probability of cascade 
failure. 

The exponential distribution above zero charge (see Eq. B10) is the charge 
distribution for a light-induced quantum bump of Scheme A. Appendix B proves the 
exponential for all possible Scheme A mechanisms (a complementary proof for many 
of these mechanisms is given by Grzywacz and Hillman, 1985). In particular, 
Appendix B shows why an exponential, and not some other distribution form, is 
obtained regardless of the number of cascade stages and reaction time constants. The 
exponential has a single parameter, which is the mean light-induced quantum bump 
charge (mL,A). 

Based on the exponential distribution for light-induced quantum bump charge, we 
calculated the distribution of response charge for Scheme A as described in Materials 
and Methods. The response charge distribution has two free parameters, the mean 
light-induced quantum bump charge, mL,A, and the mean number of light-induced 
quantum bumps beginning in the response period, kli,A- Both parameters together 
influence the form of the response charge distribution above zero charge, but kli,A 
alone influences the predicted count at zero charge (number of nonresponses), which 
is included in the lowest distribution category (category 1). For each experiment, we 
varied the two parameters jointly to obtain the best fit to the data of all the categories 
(Table II; Fig. 3, diamonds). The best fit corresponded to the minimum value of the 
chi-square statistic X 2 (see Materials and Methods), X2min . T h e  values of hum and mL,A 
that gave the best fit served as the experimental estimates for these parameters and 
are listed in Table III. For each experiment, the estimate for ~'li,A is quite close to the 
estimate for the analogous, model-independent parameter ~1i (Table I), where the 
latter estimate is derived purely from the observed number of nonresponses and the 
Poisson distribution (see Appendix E). It should be noted, however, that varying 
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T A B L E  I I I  

Values of Independent and Implied Parameters of Schemes A and B for the Best Fits to 
Response Charge Data 

705 

Quandty Cell 1 Cell 2A Cell 2B Cell 3 Cell 4 

Scheme A, independent  parameters: 
klia,, mean number  of  light-induced quantum 

bumps in response period 0.3026 1.28 0.414 
mL~, mean  light-induced q.b. charge (pC) 67.14 t26.9 174.2 

Scheme A, implied parameters: 
SD/mean of light-induced q. b. charge 1.0 1.0 1.0 

Scheme B, independent  parameters: 
mu*~ mean  charge output  from a 

successful M~ cascade (pC) arbitrary 52.4 85.7 
* mean charge output  from a mM 2 

successful M~ cascade (pC) 67.14 97.32 102.1 
0.0 -0 .977088 -1 .743  

-q 0.3026 2.30 2.128 
Scheme B, implied parameters: 

fM* , Pr(M~ cascade fails) - -  0.214 0.071 
fM* , Pr(M~ cascade fails) - -  0.115 0.060 
QEB, q efficiency given photoactivation - -  0.975 0.996 
kli,B, mean no. of light-induced q.b. in 

response period 0.3026 1.303 0.385 
mE* mean charge successful E~ cascade (pC) - -  11.2 6.1 
mLR, mean light-induced q.b. charge (pC) 67.14 130.3 176.3 
SD/mean of light-induced q.b. charge 1.0 0.834 0.753 

0.369 0.44467 
69.2 119.3 

1.0 1.0 

35.5 39.5 

45.7 89.9 
-0 .85206  -0 .27663 

1.201 0.696 

0.080 0.084 
0.062 0.037 
0.995 0.997 

0.349 0.419 
2.84 3.32 

75.9 123.2 
0.759 0.787 

For details, see Appendix E. 
q.b., quantum bump.  

mL,A and ~kli,A jointly, as we did, yields a fit that is at least as good as, and probably 
better than, the fit that would follow from first setting Xii.A to kli and then varying mL.A 
alone to get a X2min for the data above Cmin (a conceptually simpler, though 
approximate approach). 

To judge the overall fit objectively, we evaluated the significance probability that 
corresponds to X2min (Table IV). This is the probability that if the model is correct, 
X2in will be at least as large as the value actually obtained. Thus, a very small 

T A B L E  IV 

Chi-Square Minima and Significance Probabilities for Fits of Cascade Models to 
Response Charge Data 

Cell Scheme A Scheme B 

Significance Significance 
X2mi ,  probability X2min probability 

1 14.35 0.026 14.35 0.00626-0.026 
2A 18.18 0.00580 < 5.18 > 0.269 
2B 22.35 0.00105 _< 8.26 >_ 0.0826 
3 11.37 0.0775 1.88 0.757 
4 20.37 0.00238 3.84 0.428 

See Appendix E for details. 
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significance probability for some experiment would prompt rejection of the model 
for that experiment. Table IV indicates that the experiment most supportive of 
Scheme A is Cell 3, but even for that experiment, the fit to the response charge 
distribution was only marginal (Fig. 3). A worse, and unacceptable fit was obtained for 
Cell 1, which is seen to have yielded many more small responses than expected on 
the basis of Scheme A (Fig. 3). Very bad fits were obtained for Cells 2A, 2B and 4, 
which, in contrast to Cell 1, yielded fewer responses at low charge values and more 
responses at intermediate charge values than expected (a relatively peaked distribu- 
tion; Fig. 3). Therefore, the pooled results from all the experiments lead to the 
strong conclusion that Scheme A should be rejected as a transduction model. This 
conclusion differs from that of Grzywacz and Hillman (1985), who found that an 
exponential yields good fits to light-induced quantum bump charge distributions 
from Limulus. Possible reasons for the difference between their and our conclusions 
are presented in the Discussion. 

Scheme B 

Having found that Scheme A failed to account for the observed response charge 
distributions, we sought a simple modification of Scheme A that would lead to 
consistency with the data. One of the simplest modifications is to replace the single 
step of metarhodopsin inactivation with a two-step inactivation process (e.g., phos- 
phorylation followed by arrestin binding; Wilden, Hall, and Kuhn, 1986). Therefore, 
we considered a second cascade model (Scheme B; see Fig. 4) in which metarhodop- 
sin passes sequentially through two, independent active states, MY and M~. Scheme B 
is identical to Scheme A after the photopigment stage. 

Scheme B can be viewed as the sum of two, separate cascades, one initiated by MY 
and the other, by M~. The MY cascade comprises MY, all the E~s it activates, all the 
E~s they activate, and so on, through any resulting output. Similarly, the M~ cascade 
comprises M~, all the E~s it activates, all the E~s they activate, and so on. Like the 
active molecules of Scheme A, M~, M~ and all the active molecules of Scheme B's 
subsequent stages are assumed to produce gain according to the linear gain 
assumption articulated in the description of Scheme A. Therefore, the MY and M~ 
cascades proceed independently and yield probabilisticaUy independent outputs. In 
fact, each of these cascades has gain production properties identical to those of 
Scheme A. Therefore, each cascade has some probability (fm~ andfM 2, respectively) 
of failing to produce any output; likewise, each cascade has a certain probability 
(1 --fM] and 1 --fM~) of yielding an exponentially distributed output (respective 
means mM] and mM~). The output of Scheme B is the sum of the MY and M~ cascade 
outputs, and therefore varies probabilistically among four types: (a) zero (Scheme B 
failure; probabilityfM] x fM~); (b) exponentially distributed with mean mM] (probabil- 
it), [1 --fM~] X fM~); (C) exponentially distributed with mean mM~ (probability fM~ X 
[1 --fi~]), and; (e) distributed as the sum of two exponential contributions (a peaked 

distribution with mean mi~ + mi~ ; probability [1 - - f i ] ]  X [1 --fi~]). The quantum 
bump charge distribution for Scheme B is the weighted superposition of the 
distributions for the last three types. Details are given in Appendix C. Among the 
most important points explained there is that the quantum bump charge distribution 
can range from a monotonically decreasing form (output types 2 and/or 3 dominate) 
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to a form with a single peak (type 4 dominates). The monotonically decreasing form 
is obtained, for example, when both MY and M~ produce relatively low gain, and even 
becomes exponential when one of these states produces very low gain (Scheme B 
effectively reduces to Scheme A). The peaked form of the distribution results when 
both MY and M~ produce relatively high gain. It is the ability of Scheme B to yield not 
only the monotonically decreasing form, but also the peaked form that distinguishes 
the character of its prediction from that of Scheme A's. 

As explained in Appendix C, the response charge distribution for Scheme B has 
four independent parameters (Table III). For each experiment, we varied these 
parameters jointly to minimize the value of the chi-square statistic X 2 (Table II; Fig. 
3, crosses). The  significance probabilities in Table IV indicate that Scheme B yields 
excellent fits for Cells 2A, 3 and 4, and a marginal, though acceptable, fit for Cell 2 B. 
For Cell 1, however, Scheme B does not fit the data any better than Scheme A, and, 
given Scheme B's greater number of free parameters, its fit is judged as especially 
poor (significance probability between 0.006 and 0.026). In fact, under the hypoth- 
esis of Scheme B, it is unlikely (probability between 0.03 and 0.13) for even one out of 
five independent experiments to yield such a bad fit (see Appendix E regarding 
Table IV). Thus, the pooled results from all five experiments suggest that Scheme B 
can account for the light-induced quantum bump charge distribution in most, but not 
all, cells. 

The striking difference between Cell 1 and the other experiments led us to inquire 
whether Cell 1 was somehow atypical in its transduction properties. Previous workers 
have reported that latency and size are uncorrelated (Stieve and Bruns, 1983; 
Howard, 1983). To study if this was true in our data, we examined the charges of 
early and late events (Table V), choosing early and late latency ranges (e.g., for Cell 
1, 80-110 and 240-270 ms), such that the respective numbers of events beginning in 
the two ranges were large enough for a meaningful statistical comparison and such 
that relatively few of the events were expected to contain spontaneous quantum 
bumps (e.g., for Cell 1, _< 3.5 events out of 44). Even if quantum bump latency and 
size were uncorrelated, one would expect early events to tend to have higher total 
charge than late events because an early quantum bump is more likely than a late 
quantum bump to be followed by a second, superposing quantum bump. The 
significance probabilities of Table V, however, indicate just the opposite type of 
correlation for Cell 1 (early events were smaller). By contrast, we found no evidence 
of correlation for Cells 2A, 3, and 4, and only a marginal possibility that early events 
were larger than late events in Cell 2B. Thus, we infer a correlation between latency 
and size for the light-induced quantum bumps of Cell 1 that contrasts with the 
correlation properties of our other cells and cells studied previously. Cell 1 may thus 
be atypical in its transduction properties (see Discussion). 

D I S C U S S I O N  

The underlying question of this paper is why identical photons produce responses 
(quantum bumps) of highly variable size in Limulus ventral photoreceptors (Fig. 2). 
We have examined this problem by calculating quantum bump charge distributions 
predicted from simple cascade models. For the simplest models--those in which 
the gain-producing molecules of each stage are inactivated in a single step 
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( S c h e m e  A, Fig. 4, a n d  A p p e n d i x  B ) - - w e  d r e w  two f u n d a m e n t a l  c o n c l u s i o n s .  T h e  

first  is t h a t  t h e  c a s c a d e  will s o m e t i m e s  fail  to  p r o d u c e  a q u a n t u m  b u m p  ( q u a n t u m  

eff ic iency < q u a n t u m  eff ic iency o f  i s o m e r i z a t i o n ) .  T h i s  will b e  t r u e  for  a n y  c a s c a d e  in  

w h i c h  g a i n  is p r o d u c e d  t h r o u g h  t h e  s i m p l e  k i n d s  o f  m o l e c u l a r  ac t ive  s ta tes  we h a v e  

c o n s i d e r e d .  T h e  s e c o n d  c o n c l u s i o n ,  c o n s i s t e n t  w i t h  t h e  f i n d i n g s  o f  Grzywacz  a n d  

T A B L E  V 

The Relationship Between Event Latency and Charge 

Cell 1 Cell 2A Cell 2B Cell 3 Cell 4 

Latency range for early 
events (ms) 80-110 

Latency range width for 
early events (ms) 30 

M, number of early events 47 
Expected number of early 

events containing a 
spontaneous quantum 
bump 3.5 

Mean -+ standard deviation 
of early event charge 45.4 -+ 72.7 

Latency range for late 
events (ms) 240-270 

Latency range width for late 
events (ms) 30 

N, number of late events 44 
Expected number of late 

events containing a 
spontaneous quantum 
bump 3.5 

Mean -+ standard deviation 
of late event charge 84.7 -+ 72.5 

~ ,  r .  {~o(~) c,(x)/l = m a x [ a o s t - - - - - , ,  " M N ]J 0.3810445 
Significance probability 

(Pr) for K* 0.001 < Pr < 0.005 
Linear-correlation coefficient 

for event latency and 
charge for all early and 
late events combined 0.277409 

Significance probability (Pr) 
for linear-correlation 
coefficient Pr < 0.01 

60-100 60-140 80-120 140-260 

40 80 40 120 
16 33 39 45 

1.9 4.9 4.7 2.2 

278.4-+ 205.9 238.8 - 198.4 67.9-+ 61.2 161.7-+ 195.3 

300-350 230-310 200-240 521)-640 

50 80 40 120 
16 33 39 41 

2.4 4.9 4.7 2.2 

175.5 -+ 168.4 148.6- + 105.8 68.9 -+ 43.5 133.5 -+ 118.3 

0.3125 0.3030303 0.2307692 0.1436314 

Pr > 0.1 Pr = 0.1 Pr > 0.1 Pr > 0.I 

-0.267702 -0.2484745 -0.03517751 -0.05333124 

Pr > 0.1 Pr = 0.05 Pr >> 0.1 Pr:~O.1 

K* is a Kolmogorov-Smirnov statistic (Materials and Methods), with ce(x) and cl(x), respectively, the counts of 
early and late events with charge <x. The linear-correlation coefficient (Bevington, 1969, pp. 119, 310-312) 
was calculated for all early and late events combined. 

H i l l m a n  (1985) ,  is t h a t  q u a n t u m  b u m p s  g e n e r a t e d  by t h e  c a s c a d e  will h a v e  a c h a r g e  

d i s t r i b u t i o n  t h a t  is e x p o n e n t i a l  in  f o r m .  A n  e x p o n e n t i a l  is ve ry  w ide  ( s t a n d a r d  

d e v i a t i o n / m e a n  = 1; Ross,  1972,  p.  49) ,  a n d  i m p l i e s  p r o g r e s s i v e l y  s m a l l e r  n u m b e r s  

o f  q u a n t u m  b u m p s  a t  i n c r e a s i n g  c h a r g e  va lues .  I n t u i t i o n  m i g h t  s u g g e s t  t h a t  b e c a u s e  

t h e  n u m b e r  o f  G p r o t e i n s  is d i sc re te ,  t h e  size d i s t r i b u t i o n  s h o u l d  cons i s t  o f  a ser ies  o f  
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narrow peaks. Such peaks are absent, however, because random gain production 
after the G protein stage broadens any would-be peaks so much that on the scale of 
average quantum bump charge, they become completely obliterated. We emphasize 
that this broadening is a predicted effect of the cascade itself and has nothing 
whatsoever to do with experimental recording noise or measurement error. 

Even by eye, the response charge data of Fig. 3 suggest that the light-induced 
quantum bump charge distribution is much closer to an exponential than, say, to a 
distribution that is highly peaked about its mean (standard deviation/mean << 1). 
On the other hand, four out of five data sets (Cells 2A, 2B, 3, and 4) suggest some 
degree of peakedness, i.e., that the very smallest quantum bumps are not obviously 
the most numerous. Furthermore, even for low probabilities of response (Cells 1, 2B, 
3, and 4) the response charge distribution will tend to be somewhat more peaked 
than the light-induced quantum bump charge distribution. Therefore, to decide 
whether the data are really consistent with an exponential and hence with the 
simplest cascade models requires rigorous statistical tests. We conducted chi-square 
tests for exponentiality and found that an exponential yields a marginal fit to one of 
our data sets (Cell 3), a bad fit to a second (Cell 1), and very bad fits to the remaining 
three (Cells 2A, 2B, and 4; see Fig. 3, diamonds, and Table IV). We have therefore 
concluded that it is not generally true that the charge distribution for light-induced 
quantum bumps is exponential. Consequently, the simplest cascade models for 
transduction are not adequate. 

This conclusion differs from that of Grzywacz and Hillman (1985), who found 
consistency with an exponential in Limulus. Their  experimental protocol differed 
substantially from ours, but we have no reason to attribute the difference in 
conclusions to the difference in protocol. One possibility we have examined is 
whether the different conclusions could have resulted from different numbers of 
charge distribution categories used to test theoretical predictions. Both our observed 
and model-based distributions suggest probability densities that change relatively 
slowly with charge. Accordingly, we used a small number of categories (nine), which 
both captured essential distribution characteristics and yielded a relatively large 
number of events per category, thus facilitating the exposure of significant differ- 
ences with the theory. Indeed, the use of a larger number of categories can make an 
exponential appear to fit better (Lisman and Goldring, 1985), essentially because the 
chi-square test is not sensitive to whether categories with similar discrepancies 
between theory and data are adjacent (suggestive of a real model insufficiency) or 
widely separated (consistent with normal statistical fluctuation). Grzywacz and 
Hillman's (1985) Fig. 2 shows 36 bins, which presumably they grouped into 25 
categories to meet the conditions for the chi-square test (Materials and Methods). 
When we regroup their data into nine categories (2.5-20, 20-40, 40-60 . . . .  pC), the 
fit of  an exponential becomes marginal (significance probability -~ 0.07), though not 
small enough in this one example to attribute the difference in conclusions to a 
difference in the number of categories. Moreover, even regrouping their data does 
not expose any obvious peaked distributional character of  the type suggested by most 
of our data sets, or, as additional examples, data of Stieve, et al. (1990) and most of 
the data sets of the companion paper (Kirkwood, A. and J. E. Lisman, 1994). Thus, it 
seems that the light-induced quantum bump charge distribution can appear expo- 
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nential in some experiments and significantly more peaked in others. While the 
reasons for this are not clear, what is clear is that there is now a significant collection 
of charge distribution data for which the simplest cascade models alone cannot 
account. 

Having rejected the simplest models, we next explored whether our data could be 
explained by a simple augmentation of Scheme A in which metarhodopsin passes 
through not one, but two, sequential active states (Scheme B: Fig. 4, and Appendix 
C). This scheme is suggested by other kinds of findings (see below), and is also 
among a general class of  models with multiple active states that Grzywacz and 
Hillman (1985) discussed in connection with distribution peakedness (see below). 
Because Scheme B can reduce to Scheme A (the gain produced by one of the active 
metarhodopsin states can approach 0), Scheme B is automatically consistent with 
experimental distributions that are adequately described by an exponential, such as 
those of Grzywacz and Hillman (1985) and our Cell 3. Further, however, the 
distribution predicted by Scheme B can be more peaked than an exponential, as we 
have shown explicitly in Appendices C and D. This potential for a more peaked 
distribution did not enable Scheme B to fit Cell 1 any better than Scheme A (which 
did not fit well; see Fig. 3A), but did enable Scheme B to fit the other four 
experiments well (Fig. 3, crosses; Table IV), in contrast to Scheme A. On further 
examination of Cell 1, we found evidence (Table V) that quantum bump size and 
latency were correlated, unlike in the other cells and previously reported experiments 
(Stieve and Bruns, 1983; Howard, 1983). Cell l's simultaneous anomalies in the 
quantum bump charge distribution and the correlation between quantum bump size 
and latency might be explained if Cell 1 were one of the relatively rare cells with two 
R-lobes (Stern, Ghinn, Bacigalupo, and Lisman, 1982). Thus, one R-lobe might 
generate the small, early quantum bumps, and the other might generate the large, 
late quantum bumps. In the absence of independent evidence for this or any other 
explanation, however, we can say only that Cell 1 is anomalous in multiple respects 
and should therefore not be used to reject Scheme B. If we disregard Cell 1, Scheme 
B provides a satisfactory statistical explanation for the light-induced quantum bump 
charge distribution. 

Scheme B is a very particular model that makes assumptions not only about the 
first cascade stage, but also about all subsequent stages. The assumptions about the 
subsequent stages, however, may not be of great consequence in accounting for the 
data. This is because output variability is due primarily to variability in the gain 
produced by the first stage provided the average gain of the first stage is reasonably 
high (> 10), as is true in Limulus (Kirkwood, Weiner, and Lisman, 1989). An intuitive 
reason for this is that fluctuations in the respective contributions to cascade output 
from many G proteins will tend to cancel, leaving the main source of variability to be 
the random number of these contributions that add together (equal to the number of 
G proteins). Appendix D proves this concept mathematically for the variability 
indicator standard deviation/mean (see Grzywacz and Hillman, 1985, for related 
discussion), and then uses this indicator to show how the variability in the output of 
Scheme B can be understood directly in terms of the variability in the number of G 
proteins activated. Appendix D also explains why the variability in the number of G 
proteins may largely determine not just the standard deviation/mean, but nearly 
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the whole form of the quantum bump charge distribution. This is illustrated in Fig. 5, 
which compares the outputs of  two cascades that have the same, highly stochastic first 
stage but quite different kinds of stochastic variability after the first stage. The 
quantum bump charge distributions for the two cascades are seen to be quite close 
over most of  the charge range. These results suggest that even if late stages in the 
phototransduction cascade differ in important  ways from the simple cascade modeled 
by Scheme B, the scheme may still capture the reactions that are the primary 
determinant of output size variability. 

The two steps of  metarhodopsin inactivation suggested by Scheme B are envi- 
sioned to be slow enough for metarhodopsin to have time to produce significant gain, 
but additional fast inactivation steps cannot be ruled out. On the other hand, it can 

, o  

o 

r i ~ i i 

~to 4o  6o  8{) l oo  

Response Charge (pC) 

FIGURE 5. Illustration of the large 
influence of the first stage of amplifi- 
cation on the variability of light-in- 
duced quantum bump charge. Two 
models are considered. Both have an 
identical first stage in which a single 
active metarhodopsin state yields a 
geometrically distributed number of 
activated G proteins (G*), with an 
average of 10 G*s when a quantum 
bump is generated. In the model for 
the dotted curve, a G* stimulates a 
charge flow with a Gaussian distribu- 
tion (peaked) that has mean 5 pC, 
variance 10 (pC) 2 and hence standard 
deviation/mean of 0.63. In the model 
for the dashed curve, a G* stimulates 
an exponentially distributed charge 
flow with mean 5 pC, variance 25 
(pC) 2 and hence standard deviation/ 
mean of 1. Both models yield the 
same mean quantum bump charge of 
50 pC. 

be argued (see below and Grzywacz and Hillman, 1985) that many high-gain- 
producing steps would lead to a highly peaked distribution, contrary to what we have 
found. Thus, our work suggests that metarhodopsin is turned off by a process that 
has more than one step of high gain production, but not many such steps. 

The actual mechanism of metarhodopsin inactivation in Limulus is not known, but 
the following additional considerations also point towards a multistep inactivation 
process. First, the evidence from vertebrate systems, where the mechanism of 
metarhodopsin inactivation has been extensively investigated, suggests that both 
phosphorylation of metarhodopsin (Wilden and Kuhn, 1982; Sitaramayya and 
Liebman, 1983) and the binding of arrestin (Kuhn, Hall, and Wilden, 1984) must 
occur before the pigment is inactivated (Wilden et al., 1986). Both rhodopsin 
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phosphorylation (Vandenberg and Montal, 1984) and arrestin (Smith, Shieh, and 
Zucker, 1990; Yamada, Takeuchi, Komori, Kabayashi, Sakai, Hotta, and Matsumoto, 
1990) are found in invertebrate photoreceptors, though their function is not yet 
established. Second, experiments in Limulus median eye (Lisman, 1985) have 
revealed a class of spontaneous quantum bumps whose size properties can be 
explained simply if metarhodopsin is inactivated in a sequence of steps. These 
spontaneous quantum bumps result from the reversal of metarhodopsin inactivation 
and are smaller than light-induced quantum bumps on the average. The size 
relationship between the two kinds of quantum bumps implies that the reversal of 
inactivation yields an active form of metarhodopsin that produces less gain than the 
form produced by the light-activated forward reaction. This suggests that the 
metarhodopsin resulting from the reversal of inactivation has only to undergo a final 
inactivation step to be shut off again, whereas a photoactivated metarhodopsin 
molecule must proceed through each of multiple inactivation steps, thereby having 
more time to activate G proteins. The reasoning outlined here is upheld even when 
stochastic variability is taken into account (Goldring, M. A., and J. E. Lisman, 
manuscript in preparation). A final reason for suspecting that metarhodopsin may be 
inactivated in multiple steps comes from a theoretical argument that shows that 
multi-step inactivation yields higher quantum efficiency than single-step inactivation 
(Goldring and Lisman, manuscript in preparation). Intuitively, the reason for the 
higher quantum efficiency is that fluctuations in the respective gain contributions 
from multiple active metarhodopsin states tend to cancel; thus, the distribution of 
first-stage gain is more peaked, and the probability of zero gain (which implies 
cascade failure) smaller, for multiple active states than for a single active state. 

The companion paper (Kirkwood and Lisman, 1994) examines the charge distri- 
bution of quantum bumps under conditions where the fluctuations in output cannot 
be attributed to fluctuations in the number of G proteins activated. Under these 
conditions, the charge distribution appears much closer to exponential. This obser- 
vation lends further support to the multi-step rhodopsin inactivation cascade model 
of this paper and, more generally, to the idea that the size variability of light-induced 
quantum bumps provides significant information about the first stage of amplifica- 
tion in transduction. 

A P P E N D I X  A 

The Probability Distribution for Response Charge 

Here we derive a general expression for the probability density of response charge, 
defined in the text, and an approximation for the cumulative response charge 
distribution that applies when spontaneous quantum bumps are both rare and much 
less frequent than light-induced quantum bumps. 

The number of metarhodopsin molecules activated by a flash is Poisson distributed 
with some mean k'. Each of these has some probability QE (the quantum efficiency 
given photoactivation) of stimulating a quantum bump, which has a large probability 
Pae of beginning in the empirically defined response period (e.g., see Fig. 1). Because 
a small number of quantum bumps superpose linearly under voltage clamp (Lisman 
and Brown, 1975), the probability density for the summed charges of these quantum 
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bumps (the "light-induced response") is 

00 

Vxli(x) = ~]  e -~QE, ([k(Q E)]k] k=0 ~ k! ] (Vliqb)*k (X), (A1) 

where Vliqb(X ) is the probability density for the charge of a light-induced quantum 
bump, kn =: k(QE) =: k'PRe(QE) is the mean number of light-induced quantum 
bumps beginning in the response period (see Ross, 1972, pp. 77-78, and cfYeandle, 
1958), f*k(x) denotes the k-fold convolution (Ross, 1972, p. 42) of a function fwi th  
itself, and a zerofold self-convolution is defined as the Dirac delta distribution ~0: 

g0(x) = 0 ,  x;~O, 

f0 +~0(x)dx= 1, e > O. 
(A2) 

Similarly (see Srebro and Yeandle, 1970), the total charge of all the spontaneous 
quantum bumps beginning in the response period (the "spontaneous response") will 
have probability density 

Vx,(x) = ~ e -x~ (Vsqb)*k(x), (A3) 
k=0 

where V~qb is the probability density for the charge of a spontaneous quantum bump 
and ks is the mean number of spontaneous quantum bumps that begin in the 
response period. A measured response is the sum of the light-induced and spontane- 
ous responses, and therefore response charge has probability density VR(X) = 
[V~li * Vx~] (x). The cumulative response charge distribution is v~Um(X) = f;=o Va(y)dy. 
Note that for an infinitesimally small ~ > O, v~m(e) = Jo  • e-~e -~s ~0(x)dx = 
(1 -pL)(1 --PS), where PL =: 1 -- e -~1i and Ps =: 1 - e -xs are, respectively, the 
probabilities that no light-induced quantum bumps and no spontaneous quantum 
bumps begin in the response period. 

If ps << PL, then the number of spontaneous quantum bumps beginning in the 
response period is usually O, rarely 1, and practically never > 1, so V~,~(x) 
(1 - ps)$0(x) + (Ps) V~qb(x), and we have the useful approximation 

I; v~m(x) ~ (1 - Ps) V[~im(x) + (Ps) =0 (VXli * Vsqb)(y) dy, (A4) 

where V cure tx~ fy~ all ~ ~ =: =0 Vxli(Y)dy is the cumulative probability distribution for the 
charge of the light-induced response. 

APPENDIX B 

The Light-induced Quantum Bump Charge and Response Charge Probability 
Distributions for Scheme A 

Scheme A is described in Results. Here we will first show that the probability 
distribution for the charge output of Scheme A consists of the probability 1 - QEA at 
zero charge (cascade failure) and an exponential light-induced quantum bump 
charge distribution above zero charge (Eq. B10). Then we will give the corresponding 
cumulative charge distribution for a purely light-induced response (no spontaneous 
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quan tum bumps;  Eq. B12). Finally, we will r emark  briefly on the scope of  the Scheme 
A activation and inactivation reaction mechanisms,  which include those of  the 
Borsellino-Fuortes (1968) model.  

The light-induced quantum bump charge probability distribution for scheme A. Scheme 
A has n - 1 types of  active molecules E*, i = 1, 2, 3 . . . . .  n - 1, with E~ the same as 
activated metarhodops in ,  M*. An E* produces  only E*+ls, and the n u m b e r  of  E*+ls 
produced  by a given E ' h a s  a distribution {Pi,k}k~0 which does not  depend  on anything 
except  i. Thus,  the cascade is a mult i type Galton-Watson branching  process (Harris, 
1963). Let f be the probabili ty genera t ing function (Feller, 1968, p. 264) for the 
distribution {Pi,k}k°°_ 0 : 

co 

f,(s) = ~]p~,ks k, Isl-< I. (B1) 
i = 0  

It  can be shown (Harris, 1963, pp.  5, 36; Jagers ,  1974) that because the cascade 
begins with a single molecule,  E 7, the n u m b e r  of  E~s has a genera t ing function 

Fn(s) = f l ( f2 ( "  "" ( f , - l ( s ) ) ) .  • .). (B2) 

The  definition o f p i  given in Results implies that  the Pi,k a r e  geometr ic  probabilit ies 

Pi,k = (pi)k( 1 -- Pi). (B3) 

For k >_ 1, the Pi,k c a n  be expressed  in the form ab k- 1, with a, b > 0. We will call any 
such distribution "semigeometr ic ."  It can be shown (Harris, 1963, p. 9) that  a 
probabili ty distribution is semigeometr ic  if and only if its genera t ing function G(s) is 
fractional-linear, i.e. for some c, d, e, f ,  

c - d s  
G (s) - . (B4) 

e - fs 

Therefore ,  the genera t ing functions f are fractional-linear. It is readily verified that 
the functional composi t ion of  two fractional-linear functions is also fractional-linear. 
By induction, then, so is the composi t ion of  n - 1 fractional-linear functions, as in 
Eq. B2. Therefore ,  Fn is fractional-linear and the total n u m b e r  of  E*~s has a 
semigeometr ic  distribution, i.e. for some A, B _> 0, 

PK =" Pr(Kions enter  the cell) = AB K-I, K > 1, (B5) 

where Pr(H) denotes  the probabili ty of  event H. 
A quan tum b u m p  is p roduced  if at least one ion enters  the cell, which happens  with 

probabili ty 

A 
Q E A =  l - P 0 =  ~ P K - -  - -  • (B6) 

K=I 1 B 

T h e  probabili ty that  K ions enter  the cell dur ing a quan tum b u m p  is the conditional 
probabili ty 

A 
~ :  - - B  K - I  = (1 - B ) B  K - 1  (B7) 

P K I  K z  1 Q E  A 
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Let Q be the mean charge carried by an E*. Then, the mean quantum bump charge 
is 

mL,A =: 2 KQPr, l v , ~ I - 1  Q B "  (B8) 
K~ 1 

Therefore, 

PalK~ 1 - ~ 1 - - -  (B9) 
mL,A mL,A] J " 

In dark-adapted photoreceptors, the mean light-induced quantum bump charge is 
~ 109 times the charge of a single ion. Therefore, to an excellent approximation, the 
quantum bump charge ( K -  1) Q may be treated as a continuous variable x, the 
quantity in large brackets in Eq. B9 may be replaced by its limiting value as Q.fmL, A 

approaches 0, exp(1), and the unconditional probability density for the charge 
output of Scheme A is 

VA(X) = (1 -- QEA)g0(x) + QE..___~A exp -- , (BI0) 
mL,A 

where Vnqba(x) =: (1/mI.,A) exp (--x/mL,A) is the exponential probability density for 
light-induced quantum bump charge. 

The response charge probability distribution for scheme A. Substitution of gliqb,A and 
QEA for their analogs in Eq. A1 yields the probability density for the charge of a 
purely light-induced response, where the resulting expression involves gamma 
functions (Ross, 1972, pp. 113-114) 

( l ) ( l l ( x l k - l - -  - -  exp ( x ) _  = (1--~-exp (--x-~--//*k. (Bll)  
~/ k,~L,A (X) =: ~mL,A]~mL,A] ~ L ~  ~mL,A ~ mL,A]] 

Integration yields the corresponding cumulative charge distribution, 

V c . . . .  ~ 1 -  e -MQEA) , (B12) x~,AtX)= 1-- exp -- 
= kmc,A] [ k=o • 

where we have ordered the summations as shown for convenient numerical evalua- 
tion. 

The scope of the scheme A activation and inactivation reaction mechanisms. Many types 
of molecular activation and inactivation mechanisms are consistent with Scheme A. 
The simplest are those of the Borsellino-Fuortes model (1968), where in every stage, 
both activation and inactivation occur as single chemical reactions with exponentially 
distributed waiting times (rates k and I~ in their notation). This implies (Ross, 1972, 
pp. 114-115) that our Pi equals their h/(h + I~) for all i. More generally, both 
activation and inactivation in Scheme A may involve multiple reactions and processes 
(e.g., diffusion) of arbitrary complexity, as long as an active enzyme molecule E* 
always returns to the same reference state and biochemical environment before 
activating a molecule Ei+l in the next stage. 
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A P P E N D I X  C 

Light-induced Quantum Bump Charge and Response Charge Probability 
Distributions for Scheme B 

Scheme B is described in Results. Here we show that its charge output has a 
three-parameter probability distribution that includes (a) a finite probability 1 - QEB 
at zero charge (cascade failure), and (b) above zero charge, a light-induced quantum 
bump charge distribution that either decreases monotonically or exhibits a single 
peak. We also derive the cumulative charge distribution for a purely light-induced 
response. 

The light-induced quantum bump charge distribution for scheme B. Continuing from 
the exposition in Results and using the results of Appendix B, we write the respective 
probability densities for the charge outputs of the MY and M~ cascades as 

(1--fM]) ( X )  
- -  -- - -  and (C 1) VM](X) = (fM])~0(X) + mM] exp mM~ 

VM'2(X) = (fM~)g0(X) + mM~ exp -- . (C2) 

The four parameters fM'l, fM~, mM*~ and mM~ are not independent, inasmuch as they 
are in part jointly determined by the gain production mechanisms after stage 1. To 
reveal their mutual dependence, we will use the fact that a cascade initiated by an E~ 
(to be called an "E~ cascade" and labeled a "subcascade" within Scheme B) has the 
gain production properties of a Scheme A cascade and therefore has some probabil- 
ity fE~ of failing to yield any charge output and probability 1 - fE~ of yielding an 
exponentially distributed charge output with some mean mE~ (Appendix B). We will 
also apply the terms successful, effective, and their natural correlates to molecules, 
cascades, and subcascades as in the following examples. If the MY cascade yields some 
(nonzero) charge output, it is successful (does not fail) and MY is an effective 
molecule (it stimulates some charge output). By distinction, MY is successful if it yields 
at least one E~ before becoming inactivated. MY will be successful and yet ineffective if 
it yields one or more E~s but none of the resulting E~ cascades succeeds in yielding 

E~s Is effective). Thus, an effective MY implies at least any charge output (none of the * " 
one effective E~. 

Now, let PM],k =: (PM~)k(1 -- PM~) be the geometric probability that MY produces 
exactly k E~s before becoming inactivated (see Eq. B3) and let PM~,k =" (PM~)k( 1 -- 
PM~) be the analogous probability for M~. Then, 

fM'l = Pr(M'~ is ineffective) 

= ~ Pr(M~ is ineffective IM~ yields k e~)Pr(M~ yields k E~s) 
k~0 

= ~ Pr(M~ yields k e ,)er(k cascades fail) = ~ (pM~,k)(fE;) k (C3) 
k=0 k=O 

( 1  - P M ] )  

1 -- (PM])(fE~) ' 
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Also, the mean charge output from the MY cascade (counting both failures and 
successes of the MY cascade) is (1 - fM*)(mMr), which must equal the product of the 
mean number of E2 s produced by MI, [pMj/(1 --PM0] (see Ross, 1972, p. 48 and 
Chapter 3), and the mean charge output of an E~ cascade (including both cascade 
successes and failures), (1 -fE~)(mE~)-ThUS, 

(1 --fM])mM~ = ~1 -- PM*J (1 +fE~)mE~. 

Calculating 1 - fM] from C3, substituting into C4 and rearranging yields 
mM] [(1 -- pM])/(1 -- (PM])(fE~))] = m * or, substituting again from C3, (mM]) E 2 , 

(fM]) ---- mE G. Similarly, (mM~)(fM~) = mrs, and therefore 

(fM])(mM~) = (fM~)(mM~), ( c 5 )  

which shows that only three of the four parameters in Eqs. C1 and C2 are 
independent. 

Given that the sum of the charge outputs of the independent My and M~ cascades 
equals the charge output of Scheme B, the latter has a probability density VB(x) that 
must be the convolution 

~ x 

Vs(x) = ((VM~) * (VM~))(X) =:  =0 VM'~( t )VM~(X --  t )d t  

[(fM])(fM*2)80(X)] + (fM~) mM ] exp - -  

+ (fM~) mM ~ exp - -  

1 

+[(1--fM])(1--fM~')('mM~-mM,) (C6) 

+  M --mM0 m 

where it is understood that C5 holds, fM~ = fM~ '= f w h e n  mM~ = mM[ := m, and 
0 < fM], fM[ < 1. The coefficient of g0(x) in C6 equals 1 - QEs, where QEB is the 
quantum efficiency of Scheme B given that rhodopsin is photoactivated to My. The 
Scheme B probability density for light-induced quantum bump charge, Vliqb, S(X), 
equals 1/QEB times the sum of the three (two) right-most square-bracketed terms in 
the top (bottom) expression of C6. The mean light-induced quantum bump charge, 
mE, B, equals the total mean charge output of the MY and M~ cascades divided by the 
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p r o b a b i l i t y  o f  n o n - z e r o  to ta l  o u t p u t  (see Ross,  1972, C h a p t e r  3), o r  

(1 - fM])mM*l + (1 -- fM*2)mM~ 
mL, a = QEa  (C7) 

The shape of the light-induced quantum bump charge distribution for scheme B. It  is 

c o n v e n i e n t  to  de f ine  cx =: m a x  [l/raM*, l / raM'] ,  [3 = '  m i n  [1/mM'l, 1/mM[], M*~ =: M~ 
ifcx = l/mM] a n d  =." Ms* otherwise, '  MSI* =: M2~* if  [3 = 1/ mM[ a n d  =: M~ otherwise ,  

q~ =: 1 - fM*,q~ =: 1 -- f M ; , V  =: (q~) [1 +(q~)cX/([3--CX)],W =: (q~) [1 +(q~)[3/ 
( ~ - -  [3)], a n d  u =: I - (v + w) (one  m a y  a lso  n o t e u  = 1 - QEB = (1 - q~)(l - q~) = 
1 - (o~/[3) (1 - q o )2 ) ,  a n d  to c o n s i d e r  only  the  case  ~ ;~ [3 a n d  h e n c e  e~ > [3, 
w h e r e u p o n  

Va(x) = U~o(X) + w e  -°~ + w[3e -~x, (C8) 

1 
Vliqb,B(X ) = ~ (~)Ot, e - ax  + W[~ -[~x) a n d  (C9) 

1 (v  ~ )  
mL,B -- 1 -- U + " (C10) 

In  view of  C5, qo = 1 - ([3/c~) (1 - q~), so v = ( q a )  2 [ [ 3 / ( [ 3  - o0]; also,  w = (q[~)2 

[~/(cx - [3)], w h e r e u p o n  Vliqb,~(x) = (w[3/QEB) [e -~x - (qJq~)2e-~X]. E q u a t i n g  the  first  
der iva t ive  o f  this  last  e x p r e s s i o n  to  ze ro  y ie lds  e ~-~)x = (o~/[3)/(qJq~) 2, which,  in view 

o f  C5, equa l s  ((1 - q~)/(1 - q~)) (qJq~)~. Because  e ~-~)~ increases  m o n o t o n i c a l l y  wi th  

x f rom the  va lue  1 at  x = 0, a n d  because  Vliqb,B(X ) is a p r o b a b i l i t y  dens i ty  a n d  mus t  
t h e r e f o r e  a p p r o a c h  0 as x ~ ~0, Vliqb,B(X) has  a s ingle  e x t r e m u m  a n d  this e x t r e m u m  is 
a m a x i m u m .  I f  [(1 - q ~ ) / ( l  - q ~ ) ] ( q j q ~ ) Z  _<1 (e.g.,  fo r  q~ s l ight ly  a b o v e  zero)  the  
m a x i m u m  is a t  x = 0. I f  [(1 - q~)/(1 - q~)](qjq~)2 > 1 (e.g.,  for  b o t h  q~ a n d  q~ 

sl ightly < 1), the  m a x i m u m  is a t  s o m e  va lue  x > 0. Thus ,  Vliqb,B(X ) e i t h e r  dec reases  
m o n o t o n i c a l l y  wi th  x o r  has  a s ing le  peak .  

The response charge probability distribution for scheme B. We have  

(Vliqb'B)*k(x) = ~" ~ - -U  ~ 1 -- U] [~(j ,  a )  * ~/(k - j, [3)](x), (C11) 
j=0 j 

w h e r e  "y() is d e f i n e d  in A p p e n d i x  B. T o  eva lua te  ['y(n, ~) * ~(m, [3)](x), w h e r e  n, 
m _> 1 a r e  in tegers ,  we use  the  cha rac te r i s t i c  func t ion  { ^ ( t ) = :  f~_~ ~(x)eitXdx (a 
F o u r i e r  t r a n s fo rm)  o f  a p r o b a b i l i t y  dens i ty  ~(x) a n d  its p r o p e r t i e s  (Fel ler ,  1971, p. 

498).  Thus ,  

[7(n, ~x) * "t(m, [3)]^(t) = ~ -'= g(t). (C12) 

T o  inver t  Eq. C12,  we take  p a r t i a l  f rac t ions  (see L e n t n e r  a n d  Bueh le r ,  1964), l e t t ing  
to =: i/~ a n d  g =: i/[3 a n d  e x p a n d i n g  g(t) as 

" 2 g(t) = ~ bj(1 - ~ ) - J  + Ck(1 -- ~t) -k. (C13) 
j=~ ~=~ 
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Using this expansion to express (1/(1 -[ , t ))  TM, differentiating the expression with 
respect to t and evaluating the derivative at t = 1/o yields the coefficients bj. The 
coefficients Ck are obtained similarly. An inverse Fourier transform then yields the 
desired expression for the convolution of gammas in C 11. The probability density for 
the charge of a purely light-induced response follows per A1 [with 
)kli = h(QEB) = M1 - u)]. Then,  letting ~ =: hv and "q =: hw, integration yields the 
corresponding cumulative distribution, 

cum e-~-~ 
Vk.li,B(X ) = 1 - 

I l r=07 

+e-~×r_ ~ r! [ ~ +  

with 

® 1 / k-I 
= ,=r,, (1 ; ) ' / l  (C14) 

+ X _ D r j k  , 

= j = l  1 -  k 

% ,  = 1 - -  _ j  

Drd'k i=r j -  1 " 

and 

(c15) 

Note that the working assumption 0~ > 13 implies qp > 1 - (ilia) and 0 < q~ < q~ < 
1 (one may also note QEB > 1 - ([3/a)), whereupon it is seen that the constraints 0 
< (a - 13)/a < w < a/(oL - 13) and 13/(13 - 00 < v < 0 apply to ~ =: hv and'q =: Xw 
in C14. 

A P P E N D I X  D 

The Influence of the First Stage of Amplification on the Size Variability of 
Light-induced Quantum Bumps 

Here we explore how the first stage of cascade amplification influences the variability 
of light-induced quantum bump charge. First, we derive a simple formula (Eq. D3) 
for the peakedness of the charge distribution, quantified through the coefficient of 
variation (standard deviation/mean). This formula is valid for a very broad class of 
cascade models that extend far beyond Schemes A and B. The formula shows that the 
peakedness is nearly determined by the fewest initial stages that on average 
contribute a high "effective" cumulative gain (defined below) to a quantum bump. We 
next exemplify the utility of this formula through its application to Scheme B. Finally, 
we outline why not just the peakedness, but practically the entire charge distribution, 
is nearly determined by the first stage of the cascade (e.g., G protein activation) if the 
effective gain from this stage is high, regardless of the nature of the amplification 
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processes after this stage. Related discussion can be found in Grzywacz and Hillman 
(1985). 

The peakedness of the light-induced quantum bump charge distribution for cascade 
models. We consider any cascade for which the charge of a light-induced quantum 
bump equals the sum of  independent, identically distributed charge outputs from 
one or more successful subcascades initiated respectively by E~s in any stagej  = 2, 3, 
4 . . . . .  or n - 1 ("effective" E~s; see foregoing appendices for the definition of terms, 
especially after Eq. C2). For some one of these stages j, let N he the number of 
effective E~s, X the charge output of a successful E~cascade, and Y the charge of a 
quantum hump, i.e., the charge output when the cascade as a whole is successful, 
which implies N > 1. Then, denoting the conditional mean and variance of N given 
that N > 1 by E[NIN > 1] and Var[NIN >__ 1], respectively, we have 

E[Y] = E[NJN > 1]E[X], (D1) 

Var[Y] = Var[NIN > 1](E[X]) 2 + E[NIN > l] Var[X], (D2) 

(Ross, 1972, p. 71), and, therefore, 

Var(Y] Var[NJN >_ 1] 1 Var[X] 
+ (D3) 

(E[Y]) 2 - (E[NJN > 1]) 2 E[NIN >-- II (E[X]) 2' 

E[NJN >__ 1] is the mean of a quantity that may be called the "effective cumulative 
quantum bump gain through stage j - 1." Eq. D3 shows that the light-induced 
quantum bump charge distribution is always broader than the distribution of the 
effective cumulative quantum bump gain, but approaches this distribution in peaked- 
ness as the mean effective cumulative gain grows. Of special interest is high effective 
gain from stage 1 (3" = 2), in which case the peakedness of the quantum bump charge 
distribution nearly equals the peakedness of the distribution of, e.g., the number of 
effective G proteins. 

The peakedness of the light-induced quantum bump charge distribution for scheme B. 
Using the identities 

E[N] 
E[NIN> 1]=  1 - P r ( N = 0 )  and (D4) 

Var[N] (E[N]) 2 (E[N]) 2 
Var[NIN >_ 1] = 1 - Pr(N = O) + 1 - Pr(N = 0) [1 - Pr(N = 0)] z '  (D5) 

we apply D3 to Scheme B withj = 2, recalling from Appendix C that M* and M~ yield 
independent, geometrically distributed numbers of E~s and that the charge stimu- 
lated by an effective E~ is exponentially distributed, which implies Var[X]/(E[X]) 2 = 1 
(Ross, 1972, p. 49). Using a composition of  generating functions, as in B1-B4, one 
may demonstrate the intuitively plausible fact that the respective numbers of effective 
E~s produced by M* and M~ (to be called N,, and N0, respectively) are also 
geometrically distributed. In fact, one sees from the definitions of q,, and q0 in 
Appendix C that Pr(N~ = j )  = (1 - q~)(q~)J, and similarly for N 0. Therefore, E[N~] =. 
q,,/(l - q~), E[No] = qa/(l - qo), Var[N~] = qJ ( l  - q~)2, and Var[N0] = qo/(l - qfl)2. 
Also, E[N] = E[N~] + E[No], and, from the independence of Na and Nt3, Var[N] = 
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Var[N~] + Var[N~] (Ross, 1972, pp. 39-42,71). We also recall from Appendix C that 
1 - Pr(N = 0) = QEB = 1 -- (1 --q.)( l  --qB). Substitution into D3 yields, after 
algebraic manipulations, 

q~(1 - q,0 
Var[Y] 2qaqB qa(l - qB) 
(E[y])-------- ~ - 1 [ 1 + q ~ ( l  - q . ) / 2  ( D 6 )  

q,(1 - ~ ) ]  

Letting r = q~(1 - q,~)/[q~(1 - q~)], one sees that D6 attains its minimum value of ½ 
(most peaked quantum bump charge distribution) when q~/~ and r/(1 + r) 2 are 
simultaneously maximum, which occurs for q~ --~ q~ --~ 1. This case represents the 
limit of  equivalent and indefinitely-high-gain-producing M* and M~, and implies a 
gamma probability density for quantum bump charge x, (~) (~)exp( -~) ,  for some 
indefinitely small, positive 6. D6 attains its maximum value of 1 (least peaked charge 
distribution) for one of q, or q~ ~ 0. This case represents the limit of M* producing 
indefinitely low gain and an exponential quantum bump charge distribution (Scheme 
B reduces to Scheme A). In general, for equivalent M* and M~ (q~ --> q~ := q ), D6 
reduces to the simpler form 

Var[Y] q2 
(E[Y]) 2 1 2 ' (D7) 

and corresponds to a mean effective first-stage gain of  E[N[N > 1] = [1/(1 - q)~] 
2q/(1 - q). 

The influence of the first stage of amplification on the form of the light-induced quantum 
bump charge distribution. We now consider all models with a first stage consisting of a 
sequence of active states (M*, M~,  M~ . . . .  ), each of which produces a geometrically 
distributed amount of effective gain (AT,, N~, Nv . . . .  ), and where we again let X take 
on any distribution. 

Our main objective is to explain at a nondetailed level that, regardless of the 
distribution of  X, as the average effective gains E[Na], E[N~], E[Nv] . . . .  become large, 
the light-induced quantum bump charge distribution approaches a convolution of 
exponentials, which is also the limiting form of the distribution for the total effective 
first-stage gain, N,, + N~ + Nv + • • • (a single exponential if there is only one active 
state, M*). We also comment on the relevance of this result to practical transduction 
cascade models, in which the effective first-stage gain (e.g., number of activated G 
proteins) may be only moderately large (= 10). 

First, we consider ]£N, Xi/E[N~] (defined to be 0 for N~ = 0) and rewrite it as i= l  

(NJE[N~])'(~=~I Xi/N~). As E[N~] becomes large, the left term becomes exponentially 
distributed with mean 1 (Feller, 1971, p. 2) and N,~ usually takes on large values, for 
which the right term approaches E[X] by the strong law of large numbers (Feller, 
1971, p. 238). Therefore, the product of the two terms becomes exponentially 
distributed with mean E[X]. Equivalently, the distribution of the charge contribution 
stimulated * by Ms becomes an exponential, which is also the limiting distribution form 
for the effective gain produced by M*. 

Generalizing, as the average effective gains E[N.], E[No], E[N~] . . . .  become large, 
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the respective distributions for the charge contributions stimulated by M*, M~, M*, 
• . .  become exponentials, like the distributions of the corresponding effective gains. 
Therefore, the distribution for the sum of the charge contributigns approaches a 
convolution of exponentials, as does the distribution for the total effective first-stage 
gain. Under these conditions, the cascade almost always results in a quantum bump, 
so the quantum bump charge distribution is practically the same as the convolution 
of exponentials. 

What if the average total effective first-stage gain is only moderately large, e.g., 
near 10? This would suggest, for example, average effective gains near 5 for the two 
active metarhodopsin states of Scheme B. Such numbers are not very large in the 
usual sense of the limits invoked here, but are large enough to suggest some 
resemblance of the quantum bump charge distribution to a convolution of exponen- 
tials for a wide variety of possible transduction processes after the first stage (e.g., see 
Fig. 5). 

A P P E N D I X  E 

Details for Tables 

Details for Table I. Here we discuss the definitions and estimation of the statistical 
parameters of Table I (see Materials and Methods, Results, Appendix A, and Ross, 
1972, Chapter 3 for background). We also provide additional experimental notes on 
Cell 4 and on the relationship between Cell 2A and Cell 2B. ' 

n is the number of consecutive flashes that yielded stable data. An observed, or 
measured response signifies that at least one quantum bump (light-induced or 
spontaneous) beginning in the response period was detected, nR< and nR~ are 
respectively the number of observed responses with charge < and > Cmi n. Thus, n --  

nR< -- nRz is the number of nonresponses, ns< and ns~ are respectively the total 
number of detected spontaneous quantum bumps with charge < and > Cmin 

beginning in the n spontaneous quantum bump observation periods. POBS =: Pr(a 
flash is followed by an observed response), which is estimated (see Bevington, 1969, 
pp. 53, 78) as POBS = ((nR< + nR~)/n) +-- ~/PoBs(1 --PoBs)n/n. Similarly, Ps =" Pr(a 
flash is followed by one or more spontaneous quantum bumps that begin in the 
response period) = [(ns< + ns~)/n] x (LRp/LsQBOP) + ~/ps(1 -- ps)n/n, where LRp and 
LSQBOP are respectively the lengths of the response period and spontaneous quantum 
bump observation period (ms). PL =: Pr(a flash is followed by at least one 
light-induced quantum bump beginning in the response period) = (PoBs-  PS)/ 
( 1 -  PS). WL =: Pr(an observed response comprises only light-induced quantum 
bumps) = pL(1 --Ps)/PoBs. WS =: Pr(an observed response comprises only spontane- 
ous quantum bumps) = ps(1 -PL)/PoBs. WtS -----: Pr(an observed response comprises 
at least one light-induced quantum bump and at least one spontaneous quantum 
bump) = psPL/poBs. From the Poisson distribution (see Appendix A), the mean 
numbers of light-induced and spontaneous quantum bumps beginning in the 
response period are ku = -In(1 - pL) and ks = -ln(1 - Ps) = Ps forps << 1. hli,c = :  

the conditional mean number of light-induced quantum bumps in an observed 
response given that the response comprises at least one light-induced quantum 
bump = h l i / P L .  Pmul t  = :  Pr(an observed response that comprises at least one 
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light-induced quantum bump comprises at least two light-induced quantum bumps). 
By the Poisson distribution, pmult = (1 - e -an - kjie-XU)/(1 - e-X'i), mobs =: the 
average charge of the nR< + nR> observed responses, expressed --. its standard error. 
ms =: the average charge of the ns< + ns~ spontaneous quantum bumps, mL =: the 
average light-induced quantum bump charge, estimated as (MoBsPoBs -- psms)/hli. 

Additional notes on experiments are as follows. Cell 2 was left in the dark ~ 8 min 
after flash series A (Cell 2A), then stimualted at ~ 5.5 times lower flash intensity for 
flash series B (Cell 2B). In Cell 4, the spontaneous quantum bump rate exhibited 
statistically significant short-term fluctuation. So few spontaneous quantum bumps 
occurred in that cell, however, that the fluctuation had negligible impact on the 
analysis of the response charge distribution (see Materials and Methods). 

Details for Table III. Notes on table quantities, which are defined in Results and 
Appendices A-D, are as follows. For Scheme A, the standard deviation/mean for 
quantum bump charge (last row) always equals 1 because the charge distribution is 
exponential (Appendix B; Ross, 1972, p. 49). The quantum efficiency parameter  QEA 
cannot be estimated from the data (only kliA =:  h(QEA) can be estimated; see Eq. 
B12). 

The Scheme B parameters  were computed according to (see Appendix C): mM~ ---- 
min ( l / a ,  1/13); mM~ = max ( l / a ,  1/t3); 1 -- fM~ = qB = (ZI + ~/(Zl) 2 - Z2Z3) /Z2 ,  

where Z1 =: (a/B) - 1, z2 =: (a/fl) + (~/Xl), and Zs =: (a/B) + (B/a) - 2; 1 - f ~ l  = 
q~ = 1 - (a/B) (1 - qB); QEB = q~ + qB -- q~ql3; hli,B =: h(QEB) = ~ + ~q; mL,B = 
[ (qJa)  + (q~/B)]/QEB; mE~ = (f~) ( mM] ) = ( fM~ )( mM~ ). The standard 
deviation/mean for quantum bump charge was calculated according to Eq. D6. The  
values of  the quantum efficiency parameter  QEB are very close to 1 and therefore 
reasonable (Fein and Szuts, 1982). The true values of  many of these quantities are 
highly uncertain, inasmuch as values were found for the independent  parameters 
that, although far from the values listed, yielded a fit almost as good as the best fit. 

For Cell 1, Scheme B fits best when ~ takes on its maximum allowed value of 0 
(Appendix C, last paragraph).  This value implies that one of the active metarhodop- 
sin states (here, arbitrarily chosen as M ~ ) is completely ineffective and thus Scheme 
B reduces to Scheme A. Thus, mM] is arbitrary, the other parameter  values align with 
Scheme A, and some of them (e.g., QEB) cannot be estimated from the data. 

Details for Table IV. By the procedures described in Materials and Methods, 
X2min was found in all cases except Scheme B, Cells 2A and 2B, for which calculations 
became numerically unstable in some parameter  regions. For these two experiments, 
the X~mi, values listed are the smallest accurate values found. The  true values are at 
least as small, and correspond to significance probabilities at least as large as those 
listed. 

The number  of  free model parameters  d equals: 2 for Scheme A, and; 4 for Scheme 
B, except for Cell 1, where Scheme B reduced to Scheme A (see Details for Table III) 
and thus 2 of  the 4 Scheme B parameters  could not be meaningfully varied around 
best-fit values as can in general be done at X~i n. The correct ×2 distribution in this 
case has somewhere between 4 and 6 degrees of freedom. Hence, the range given in 
the table for the significance probability of  Scheme B, Cell 1. To appreciate the 
smallness of  this probability (P), consider that for a true model, the significance 
probabilities for a set of  N independent experiments should be about uniformly 
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d i s t r i bu t ed  b e t w e e n  0 a n d  1. Thus ,  P r ( o n e  o r  m o r e  o f  N s igni f icance  probabi l i t i es  is 

< P )  = 1-Pr(all  N s igni f icance  p robab i l i t i e s  a re  > P )  = 1 - (1 - p)N, which  h e r e  

(N = 5) is a p p r o x i m a t e l y  b e t w e e n  0.03 a n d  0.13 (see Results).  
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