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ABSTRACT The structure of a complex arterial tree model is generated on the 
computer using the newly developed method of "constrained constructive 
optimization." The model tree is grown step by step, at each stage of development 
fulfilling invariant boundary conditions for pressures and flows. The development of 
structure is governed by adopting minimum volume inside the vessels as target 
function. The resulting model tree is analyzed regarding the relations between 
branching angles and segment radii. Results show good agreement with morpho- 
metric measurements on corrosion casts of human coronary arteries reported in the 
literature. 

I N T R O D U C T I O N  

Arterial trees feature a high degree of complexity, starting from a feeding artery and 
then repeatedly bifurcating into smaller branches. Bifurcations may vary between 
highly asymmetric (when a large vessel gives off a small side branch) and close to 
symmetric. The endpoint is at any rate to provide adequate supply of  blood to each 
site of tissue within the perfusion area depending on the feeding artery in question. 

In the past, the high degree of  complexity typical for real vascular trees was usually 
reduced to several "compartments," each of which represented a certain class of 
vessels (e.g., arteries, arterioles, capillaries, venules, veins) and was furnished with 
corresponding parameters for resistance, compliance and (rarely, also for) inertia. In 
other words, the features of complex structures were reduced and lumped into 
several parameters ("lumped parameter models"). Within each of  the interacting 
compartments pressure, volume, inflow and outflow were calculated, using coupled 
differential equations. Thus a detailed description of all hemodynamic quantities was 
achieved in timesteps typically in the order of milliseconds. However, one severe 
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drawback was left unsolved: the process of lumping ignores fine structures and hence 
cannot account for effects arising thereof. Consequently, the desire remained to 
generate more realistic representations of arterial trees. This was partly done by 
introducing more and more compartments,  each of which still had to reproduce a 
"lump of vessels." 

In the present work, the goal is to generate the structure of an arterial tree from 
first principles (Thompson, 1952). The model tree's structure, providing all details 
down to the level of single arterial segments, may then serve as a basis for realistic 
hemodynamic simulations using differential equations. The  "lumping of vessels" for 
the purpose of hemodynamic simulation is thus rendered unnecessary. 

Looking at the corrosion cast of a real arterial tree is fascinating: the complexity, 
while appearing chaotic on the one hand, still seems to follow some scheme on the 
other hand, in that the arrangement  of arterial segments (i.e., sections between 
successive bifurcations) comprising a tree is obviously not mere coincidence. 

Consequently, the present approach starts with formulating the physiological 
necessities (i.e., nutrition and oxygenation of tissue) in mathematical terms; these will 
comprise the first set of  boundary conditions to our model. A second set of boundary 
conditions will be added to guarantee the realistic shrinkeage of vessel radii at 
bifurcations. In addition to boundary conditions, we finally have to introduce an 
optimization principle, which will exert a governing influence on the whole develop- 
ment of  the tree model. 

As a result, we can present a highly detailed model of an arterial tree, which, 
regarding fineness and complexity, surpasses the models established so far. Finally to 
demonstrate the realism of the model, the branching angles in the model are 
compared with experimental measurements on corrosion casts reported in the 
literature. 

P A R A M E T E R S ,  B O U N D A R Y  C O N D I T I O N S ,  A N D  

N O T A T I O N  

Constraints Derived from the Need for supply 

We assume a certain portion of tissue is to be supplied as homogeneously as possible 
via a dichotomously branching arterial tree. Each arterial segment (between succes- 
sive bifurcations) of the tree is represented by a cylindrical tube perfused according to 
Poiseuille's law (Fung, 1984). Anatomical structures, such as fascia, ligaments or 
myofibers, which in real organs guide the course of blood vessels, are ignored in the 
model. We also ignore the fact that the courses of microvessels have to comply with 
the arrangement  of cells in the tissue. Moreover, the piece of tissue is assumed to be 
flat enough to be represented by a two dimensional area (called "perfusion area"), 
which we choose to be a circle. Assuming further that, due to similar physiological 
function, all sub-areas have similar demands in supply, we end up with the following 
boundary condition for homogeneous supply: the terminal segments of  the binary 
tree model should be distributed as homogeneously as possible over the perfusion 
area. Each terminal should then deliver the same flow (Qterm) of blood against a 
unique "terminal pressure," pte~m. 
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Pte,~ is assumed to be the inflow pressure into the microcirculatory network which 
is not modeled in detail. 

Constraints for Radii at Bifurcations 

The morphometric analysis of real arterial trees (Zamir and Chee, 1987; Zamir, 
1988) has revealed that at bifurcations, the radii of the parent segment together with 
left and fight daughter follow a power law: 

r~arent = r~eft + r~ight.V (1) 

Besides the fact that real arterial trees always show some spread rather than exactly 
fulfilling Eq. 1, all authors agree that the relation is of the above form. However, 
different values for the exponent  T have been reported in the literature. Measure- 
ments on corrosion casts of human coronary arteries (Smaje, Fraser, and Clough, 
1980) indicated that ,/ = 3.0, which would allow for uniform shear stress all over the 
tree (Rodbard, 1975). Conversely, it has been argued that minimum reflection of 
pulse waves (Arts, Kruger, Gerven, Lambregts, and Reneman, 1979) would be 
achieved with T = 2.55. 

In the present work, we have limited ourselves to T = 3.0, although the method of 
constrained constructive optimization (CCO) would of course work for arbitrary 
values of ~/(provided that T > 0). 

Global Parameters 

Because the perfusion area represents a piece of tissue, the total perfusion flow (Qee~f) 
and the size of  the perfusion area (rperf) must be preset at reasonable and compatible 
values. For the perfusion bed of a human l~ft anterior descending coronary artery we 
choose rp~f = 0.05 m and a reference tissue mass of 100 g. To standardize 
conditions, we further assume a fully vasodilated state [400 ml/(min • 100 g)] and 
cardiac arrest. Then, in addition to diastole, the period of systole also becomes 
available for coronary perfusion, which increases flow by ~ 25%. Hence, we end up 
with a reasonable reference value of Q~a = 500 ml/min. 

Finally, the fineness of the model tree, characterized by the number of terminal 
segments (Nt~rm) must be chosen. Note that the binary branching trees discussed here 
are allowed to have different numbers of generations along different paths from the 
root to the leaves. Nevertheless, due to dichotomous branching, the total number of 
segments is always 

Nto t = 2"Nterm - 1, (2) 

regardless of the particular structure of the tree. 

Notations for Specifying a Dichotomously Branching Tree 

The dichotomously branching tree (short: binary tree) comprising Ntot segments can 
be specified by (a) the geometrical locations, where the coordinates x(i), y(i) refer to 
the distal (i.e., downstream) end of each segment i, (1 ~ i < Ntot) and (b) the 
connective structure of the tree: for each segment i, we specify the indices of its left 
and fight daughter, D I and D~, respectively. Terminal segments, which do not 
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bifurcate but rather supply into the microcirculation, have D I = D[ = NIHIL. 
Redundantly and merely for convenience, we also carry a backward pointer to the 
parent segment (Bi) of each segment i. For the root segment a special index, i -- iroot, 
is assigned. Although the root segment (by definition) has no parent we may formally 
assign Bi~t = 0. Then x(0) and y(0) locate the inlet to the tree geometrically. 

For example, according to the above notation, the length l(i) of a segment is 
calculated from 

l(i) = ((x(i) - x(Bi)) 2 + (y(i) - y(Bi))2) Uz. (3) 

If segment i has radius r(i), then Eq. 1 (in terms of the above notation) reads 

r(i)~ = (r(D~)) v + (r(Dr)) ~ (4) 

and the resistance to laminar flow can be calculated from Poiseuille's law (Fung, 
1984): 

8o l(i) 
R(i) - ~r r4(i) (5) 

where "q is the viscosity of blood in the high shear rate limit. We have verified that our 
shear rates actually are in this range (i.e., >__ 100 s-l; Milnor, 1989). Also, the 
maximum Reynolds number observed in the segments of our model was always well 
below 2300, the upper  limit for laminar flow, so that in principle Poiseuille's law 
should be applicable. 

Furthermore, it is convenient to define bifurcation ratios to characterize the 
relative shrinkeage of radii when branching into the left and right daughter of a 
parent segment: 

[31(i) = r(Dl) /r ( i ) l  
(6) 

~r(i) = r(D~i)/r(i) J 

T H E  C O N C E P T  O F  C O N S T R A I N E D  C O N S T R U C T I V E  

O P T I M I Z A T I O N  

The Possibility of  Flow-scaling 

Suppose a binary tree has been (partly) defined by specifying all coordinates and 
(forward) pointers: {x(i), y(i), Dli, D[; i = 1 . . . .  Ntot}. We will show that it is always 
possible to scale the segments' radii such that (a) all terminal segments yield equal 
flows at equal pressures; (b) the bifurcation law (Eq. 4) is fulfilled at each bifurcation; 
and (c) the resistance of the tree as a whole can be set to permit a (deliberately 
chosen) total perfusion flow Qpe~f across the overall pressure gradient Ap = P p e r f  - 

P term �9 

The proof  can be given as follows. First consider a segment i branching into two 
terminal segments. Because both terminal segments originate from the same bifurca- 
tion, they experience equal inlet pressures. Because both drain into the microcircu- 
lation, they also experience equal outlet pressures (Pterm) and hence equal pressure 
drops. Given their lengths, the ratio of radii r(Dl)/r(D r) can always be chosen to yield 
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equal resistances 

(r(D~)/r(Dr)) 4 = l(Or)/ l(D~). (7) 

This will guarantee that equal flows leave these two terminals, as required by the 
perfusion constraint formulated above. Inserting r(Dl)/r(D~) into the bifurcation rule 
(Eq. 4) yields bifurcation ratios via Eq. 6. If the latter are held constant, equal flows 
will be carried through both terminals even for arbitrary radius of the feeding 
segment i. 

Next we realize that segment i and its two daughters may be regarded as a subtree 
and realize the following: for any positive gradient between the inlet pressure into 
segment i and pterm, and while keeping bifurcation ratios constant, r(/) can always be 
chosen such that the subtree carries a flow of exactly 2"Qterm (as it should be). 

Without rigid proof  we conclude the following to hold for arbitrary subtrees: 
bifurcation ratios within the subtree are set to achieve proper  (relative) splitting of 
flow down to the terminal level, while the radius of the inlet segment controls total 
flow into a subtree without having any effect on the splitting of flow. 

Finally, we consider a bifurcation into two subtrees, each of which we assume to 
have its bifurcation ratios set appropriately. Then we can always balance the radii of 
the inlet segments such that the flows into the subtrees are in the same proportion as 
the respective number of terminal sites supplied. As a result, terminal flows are not 
only equal within subtrees but also between subtrees. Because any binary tree can be 
assembled from subtrees, it is possible to implement the homogeneous perfusion 
constraint all over the entire tree, as required. In other words: flow balancing and 
scaling is possible regardless of the particular structure of the tree. 

Geometric Optimization 

Given a flow-scaled tree which fulfills the bifurcation rule. Then we may adopt a 
target function T characterizing the degree of optimality of  the tree in question. The 
selection of T is arbitrary in principle, and various candidates have been proposed 
(Lefevre, 1983). Presently, we restrict the analysis to a very simple form of T, namely 
the minimum total intravasal volume of the tree: 

Ntot 

T = V = * r ' ~  l(i)'r2(i) ~ minimum. (8) 
i=1 

Note that given locations (x(i), y(i), i = 1 . . . .  Ntot) automatically define segment 
lengths 1(i). The  implementation of proper  flow splitting (as described above) induces 
bifurcation ratios (l~l(i), W(/)), and the required total flow (Q~rf) is achieved by the 
appropriate setting of r(iroot). 

Suppose we select one bifurcation segment, say segment j, and displace it (without 
changing the tree's topology). As a consequence, (most likely) all three segments 
forming the bifurcation will change in lengths and resistances, and make the tree 
violate the boundary conditions. These can be reestablished, however, by reassessing 
all bifurcation ratios affected and r(iroot). However, the new tree will in general have a 
volume (i.e., target function) different from what it was before the move of  the 
bifurcation. 
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Hence, intravasal volume may be interpreted as a continuous function of all 
coordinates V = V(x(i), y(i), i = 1 . . .  Ntot) if topology (i.e., the connective structure) of 
the tree remains unchanged. Thus, bifurcations can be moved along the gradients 
towards minimum target function by an iterative method, while all boundary 
conditions (constraints) are fulfilled at each step of the iteration (constrained 
optimization). Of  note is the fact that this kind of optimization can only lead to a local 
minimum of T within the topology chosen. 

Structural Optimization 

Trees with equal numbers of  segments, but different in topologies, will, upon 
optimization of all bifurcations, in general lead to different minimum values of the 
target function. Hence, minimum T is a function of topology, the latter being 
represented by the set of  pointers: 

Note that: 

Trnin -- Tmin (O~, O~, i -- 1 . . . .  Ntot) .  (9) 

all possible sets of  pointers = {(D~, D~, i = 1 . . . .  Ntot)k} (10) 

form a finite and discrete but enormously large set, even for moderate  values of Ntot. 
We have to select that topology which is able to yield the global minimum of the 
target function. It would by far exceed the computational resources presently at hand 
to generate all possible topologies one after the other, optimize each and finally 
select the global optimum. It is a key point of the present work to introduce the 
method of constrained constructive optimization (CCO) instead. 

The key idea is as follows. We start with a degenerate tree comprising one segment 
only. Its distal end is selected randomly within the perfusion area. The radius is 
adjusted so as to convey the flow Qte~m. Then, the location for the distal end of a 
second terminal segment is chosen, and its proximal end connected to the midpoint 
of the first segment, thereby generating the first bifurcating segment (now three 
segments altogether). While keeping the distal ends of  the two terminal segments as 
well as the inlet to the root at their positions, the bifurcation is moved in steps (within 
the perfusion area) along descending gradient into a position yielding the minimum 
total volume for the three-segmental tree. Note that after each move, bifurcation 
ratios and r(iroot) have to be rescaled in order to reimplement the fulfillment of 
boundary conditions. 

Next, the location for the distal end of a third terminal segment is chosen from 
pseudo random numbers. It is checked that this location is not too close to any of the 
preexisting segments. This "vicinity check" is performed in a nested loop: for the 
trial location we calculate the minimum distance to the centerlines of all existing 
segments. If  this minimum distance exceeds a threshold, the new terminal location is 
accepted; if not, tossing is repeated up to 10 times. In case no acceptable position has 
been found, the threshold is decreased by a factor 0.9 and another loop of 10 times 
tossing is resumed. Before adding a new terminal, the threshold is initially set 
proportional to the space available per  terminal site 2 1/2 (rperf/kterm) , where kterm is the 
current number  of terminal segments, and decreases as more and more segments are 
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added. Note that as a consequence, the distribution of terminals is much more 
uniform than if they were drawn from a random distribution. 

After being generated, the new terminal is arbitrarily connected to the first 
segment. The  new bifurcation is optimized and the (local !) minimum of T recorded. 
Note that T is considered valid only if the new segment in its optimized geometrical 
position does not intersect with any of the preexisting segments (except for its sister 
and parent). In any case, the connection is dissolved again and the process of  testwise 
connecting the new terminal is repeated for all preexisting segments in the vicinity of  
the new terminal site. Actually, this testwise connection is only performed for the 
Ndo~ segments nearest to the new terminal site (Nclose = 100). Thus in early stages of  
growth (as long as Ntot -< Ndose), the connection search extends over the whole tree, 
but it is restricted to a diminishing portion of the tree later on. Finally, that 
connection site which allows the utmost minimization of T within one lap of 
connection search is adopted to become permanent.  

It is interesting to note that an optimally connected terminal never intersects with 
any of the preexisting segments (except for its parent and sister), even though the 
algorithm does not explicitely preclude intersections. During the connection search, 
suboptimum connection sites are examined and intersections do occur. However, 
topologies with intersections were never seen to yield the minimum value of the 
target function and hence are not allowed to become permanent .  This is reasonable, 
because the intersected (preexisting) segment itself usually provides a more suitable 
connection site (which is closer and offers a lower target function in terms of volume 
within segments) than the (more remote) connection site currently tested. This 
parallels our intuition that the nearest site of  intersection should rather be chosen for 
connection. 

Repetition of the whole process described above grows the model tree, step by 
step, and is able to create trees comprising several thousand segments. Note that the 
model at each stage of  development meets the very same physiologic conditions we 
require the complete tree to fulfill. 

R E S U L T S  

A Typical Realization 

Constrained Constructive Optimization has been implemented on an IBM 3090 
mainframe computer  at the Institute for Medical Informatics at the University of  
Vienna, Austria. Choosing minimum intravasal volume to be the target function, a 
tree with 4000 terminal segments (and hence 7999 segments in total) can be grown in 
~ 50 h of  computation time. Fig. 1 displays a typical result, the diameters of  the 
cylindrical segments appearing as widths of  the branches in the display. 

Distribution of Branching Angles 

Out of the many quantities available from the model we focus on the distribution of 
branching angles in relation to the ratio of  radii at bifurcations. These relations have 
also been investigated experimentally in the human coronary arterial tree (Zamir and 
Chee, 1986), and hence model results may be directly compared with reality. Please 
note that neither anatomical information nor any kind of parameters relating to 
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branching angles have a priori been plugged into the model. We rather let branching 
angles develop from the model itself. If they are still reproduced realistically, this may 
count as a convincing indicator for model validity. ZAMIR (Zamir and Chee, 1986) 
reports on measurements in two coronary trees with 500 and 350 bifurcations 
respectively, and hence we also generated a tree with 500 terminal and 499 
bifurcating segments for comparison. In its major branches this tree is similar to the 
one with 4,000 terminal segments shown in Fig. 1, but the very small segments are 
omitted. At each bifurcation site of the model tree the two branching angles 01 and 0~ 
were calculated (cf Fig. 2) and plotted over the ratio of daughter radii r2/rl. In 
accordance with the experimental work of ZAMIR, subscript 1 always refers to the 
segment with the larger, and subscript 2 to the segment with the smaller radius 
(r2 < ri). Fig. 3 shows the distribution of  01 (i.e., the branching angle of the thicker 

FIGURE 1. Model for an arte- 
rial tree with 4000 terminal 
segments. Optimization was 
performed for minimum vol- 
ume inside the vessels. Note 
that no anatomical information 
whatsoever has been plugged 
into the model and structure 
emerges entirely from optimi- 
zation. 

daughter), each data point representing one particular bifurcation. Fig. 3 (left) shows 
the model results, whereas the right panel (labeled Corrosion Cast) shows the 
experimental results from (Zamir and Chee, 1986). In accordance with the experi- 
mental measurements the model yields a rising tendency of 01 with increasing r2/rl 
and values of 01 larger than 40 ~ occur but are rare. Also the spread of 01 is 
comparable to the experimental findings. 

Interestingly, the visual inspection of Fig. 3 (/eft, Model) suggests to discriminate 
two subgroups of bifurcations, each showing a different dependence on r2/rl. In the 
first group, data points (open squares) seem to form a cluster in the shape of a cone, 
with its axis representing a rising tendency for increasing r2/rl. Within the second 
cluster (solid squares) there is less spread and data points seem to gather around an 
arc connecting (01 = 0 ~ rg/rl -- 0.6) and (01 ~ 35 ~ r2/rl = 1), cf Fig. 3. 
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It took some time to find out that in fact a very simple criterion excellently 
discriminates between the two groups: Let 

fnumber  of terminal segments]  
NDISTi = |distal  (--downstream) ~ . (11) 

[ o f  segment i J 

Then we may form one group with NDISTi = 2, representing those segments 
branching into nothing but two terminals. These are shown as solid squares in Fig. 3 
and obviously constitute the ensemble we are looking for. The  second group (open 
squares) comprises all other cases NDISTi > 2. Further splitting within group 2 failed 
to offer any additional power of  discrimination. 

In addition to the branching angles obtained from our model, Fig. 3 also shows a 
solid curve representing a theoretical prediction for 01 given by ZAMIR (Zamir, 
1978). He derived that, for minimum lumen volume, the following relation should be 
valid: 

(1 + 0t3/2) 4/3 4" 1 - ot 2 
cos 01 -- , with a = (r2/rl) 2 (12) 

2(1 + a3/2) 2/a 

If  both daughters have equal radii, 01(~ = 1) -- 37.5 ~ is predicted. 

A B, O_~," C 

, I 0,<o 

FW, URE 2. Definition of branching 
angles. Schematic (nonquantitative) 
display of the three possibilities for 
positive and negative branching 
angles. (A) Usual configuration 
01 > 0, 02 > 0. (B) Major branch with 
negative angle 01 < 0, 02 > 0. (C) 
Minor branch with negative angle 
0~ > 0,0~ < 0. 

Fig. 4 compares the values of  02 obtained from the model with those measured by 
ZAMIR. He also gave the theoretical prediction 

(1 + a3/2) 4 / 3 -  1 + ot 2 
COS 0 2 ~--- 20t(1 + aa/2)2/a (13) 

In the model, the distribution of 02 also suggested two groups to be discriminated in 
the same way as for 01. Again, the angular distribution obtained from the model for 
NDIST > 2 closely resembles measured data (Zamir and Chee, 1986) in showing a 
declining trend from rectangular (for highly asymmetric bifurcations) to 30 to 40 ~ 
near  r2/rl = 1. Of  note, because 01 = 02 for a symmetrical bifurcation, Eqs. 12 and 13 
(must) yield equal predictions for a = 1: 01(or = 1) = 02(a = 1) = 37.5 ~ 

Considering the total angle 01 + 02 between both daughters, again we find a good 
agreement  with the study of corrosion casts (Zamir and Chee, 1986), see Fig. 5. 
Starting at 90 ~ , the trend is slightly falling towards symmetric bifurcations, approach- 
ing the theoretical limit of  2"37.5 ~ = 73 ~ Similar to the individual distributions, the 
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total angle 01 + 02 also forms separate clusters for bifurcations with NDISTi = 2 and 
NDISTi > 2. 

D I S C U S S I O N  

Comparison between Model Results and Branching Angles in Real Coronary 
Artery Trees 

When comparing the branching angles in the model with measurements on corrosion 
casts, we have to bear in mind that no anatomical information whatsoever has been 
plugged into the model, and all structural features have solely emerged from the 
governing influence of the optimization principle under the constraint of appropriate 
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9C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D 
6C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ = ~ =~ " 

= = o% o # 
~,~ %. o= . , =  o~ 

a ~~ ~ "  ." �9 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
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Corosion Cast (Zamir, 1986) 
. . . .  i . . . .  , 

A 

-. : . . . .  
�9 . �9 , . . . . . .  " : ' . .  " t .  ~ ' .  !.. ': 

, 
, ' ' ' " "  . . - , ' . ' ; ~ ' ~ - ' x " : . ~ "  " ")-r  ~ 

. . . . . . .  

0.5 1 

FIGURE 3. Branching angles of the major daughters. According to the definitions shown in 
Fig. 2 the branching angle of the daughter with the larger radius is shown on the vertical axis. 
(Horizontal axis) Ratio of daughter radii, r2/ri. Data from the model (Model) are reported in 
exactly the same form as the experimental data in the literature Corrosion Cast/(ZAMIR 1986) 
(reproduced with kind permission by the National Research Council, Canada). (m) Segments 
with NDIST = 2; ([-1) NDIST > 2. (Solid line) Theoretical prediction of optimum branching 
angles for constant shear stress and minimum lumen volume. 

boundary conditions. Hence, any accordance with a real arterial tree can be seen as a 
positive test for the parameters chosen and the method of constrained constructive 
optimization itself. 

In general, the distributions of branching angles obtained from the model 
resemble those found experimentally (Zamir and Chee, 1986). In particular the 
following similarities may be discussed�9 

Regarding the branching angle of the larger daughter (Fig. 3) we realize that at 
highly asymmetric bifurcations, i.e., when a major artery gives off a tiny branch 
(r2/rl << 1), the major artery proceeds almost in its previous direction (small value of 
0]). Conversely, for bifurcations close to symmetric (r2/rl ~ 1), the majority of  angles 
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is found between 30 and 40 ~ , which is similar to the experimental results and in 
agreement with the theoretical prediction (37.5~ 

The branching angles of the smaller daughters (Fig. 4) are close to rectangular for 
highly asymmetric bifurcations and show a declining tendency as bifurcations become 
more and more symmetric. It is remarkable, however, that only a small percentage of 
angles 02 are larger than theoretically predicted, whereas the distribution of 01 
appears fairly balanced around the theoretical estimate. 

In accordance with the experimental results, the model yields (a small portion of) 
negative branching angles down to ~ - 3 0  ~ First we realize that a priori only one 
(either Ox or 02) can be negative, because otherwise, we would simply have to swap 
(i.e., exchange) indices 1 and 2, cf Fig. 2 b. Second, one negative angle indicates that 
both daughter segments branch to the same side, relative to the parents' axis. If 01 is 
negative, it follows that the smaller branch aberrates more from the parent's axis 

M o d e l  

180 ~l 
15C . . . . . . . . . . . . . . . . . . . . . . . . .  

12C . . . .  . . . . . . . . . . . . . . . . . . . . . . .  

~ o~176 
�9 . " . . . ; ; . o . "_  -, . . . . . . . . . . . . . . . . . . . . . . . . . .  

so L . . . . . . . . . . . . . . .  , . " . . , ~  : ' ~ " < ,  oj .?,~ . . . . . . . .  

0 ~ "  ~ o=== ~t l ~  '. , 

-30 L 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C o r o s i o n  C a s t  ( Z a m i r ,  1 9 8 6 )  

. . . .  i . . . .  , 

18o A 

e2 
150 

�9 �9149 � 9  

120 ..,,'-.�9 ) . ,  '." ... � 9 1 4 9  . 

. .  .. �9149 . . .  

0o �9 i ; :  �9 
�9 : -�9 " . : . ~ i .  i: eo :: :~.~-:i -, ' .-" 

�9 ........, ;.:,.. . r 
eo �9 . , . . .  - . . . . . . , .-~... . . .  : , ~ . ~ .  

o 

-30 

0.5 1 

ratio o{ daughter radii r2/r 1 d2/d i 

FIGURE 4. Branching angles of the minor daughters. Notation similar to Fig. 3. (Right panel 
reproduced with permission by the National Research Council, Canada.) 

than does the larger one: 0~ > [01 l, cf Fig. 2 b. This case is frequently seen in both 
the corrosion casts and the model. Conversely, 02 < 0 implies that the smaller branch 
deviates less from the parent's direction than does the larger one: [02] < 01, cf Fig. 
2 c. Again, in agreement with experimental results, only very few such cases occur in 
the model�9 

An interesting question is "why do we find negative branching angles at all ?" 
Obviously they are exceptional and seem to violate what we would expect to result 
from an optimization. But still they occur. 

Regarding real coronary arteries we can nothing but speculate what the reason 
might be. (a) Anatomic substructures (e.g., the direction of the myofibers) may 
enforce angular deviations�9 (b) We cannot expect real arteries to obey mathematical 
laws exactly�9 Deviations may be nothing but the normal and ordinary biological 
spread encountered throughout the life sciences. 
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All in all, negative angles in real trees are not really a puzzle. In computer  
generated trees however, which we claim to be optimized, the need for an explana- 
tion becomes urgent. In fact, it can be given as follows. 

It is true that optimizing the position of a bifurcation for minimum intravasal 
volume can never yield a negative branching angle for one of its daughters. However, 
a branching angle also changes if one daughter should change direction. The latter 
occurs whenever a new terminal is connected to that daughter and the newly 
generated bifurcation is then optimized. In the majority of  cases, angles change but 
remain positive, in some cases they switch to negative, however. Because either 
daughter  can become the parent of a new terminal, negative angles may occur for the 
smaller as well as for the larger daughter. 

The  reason for negative branching angles to occur in the model is the fact that 
bifurcations proximal to a site of  growth of the tree are not reoptimized. The  location 
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FIGURE 5. Angles between both daughters�9 The sum of angles, 01 + 02, is displayed in symbols 
similar to Fig. 3. (Right panel reproduced with permission by the National Research Council, 
Canada.) 

of such a proximal bifurcation, which was optimized in a preceeding step of growth, is 
no longer opt imum within the final tree. The  model kind of inherits structures from 
previous stages of  development, which is a remarkable analogy to phyllogenetic 
development�9 

The  computer  model could be generated even to overcome this natural deficiency. 
In addition to balancing the bifurcation ratios, we could also reoptimize the location 
of each bifurcation proximal to a site where a new terminal was attached. This would 
in fact mean that even established vessel segments may slightly change their locations 
as a result of adding new branches�9 This process would mimic some kind of secondary 
adaption process triggered by growth in distal subtrees. At present, we can only state 
that it would be interesting to investigate if this finds a parallel in reality. 
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Considerations Regarding Dimensionality 

A major assumption of the present model is that the tissue to be perfused is 
two-dimensional. In fact, the geometry of  a small tree of  arteries (16 terminals) in the 
mesentery of a dog (considered representative for a two-dimensional t issue) has been 
investigated experimentally (Kamiya and Tatsuo, 1972). A model of tubes with the 
same given topology was established and the geometric locations of bifurcations were 
optimized according to minimum intravasal volume. Because the result was seen to 
reproduce the geometry found in the mesentery, we may consider minimum volume 
to be a reasonable optimization target. 

Another question is if and how the model, which is currently two-dimensional, 
could be generalized to three dimensions. We have to discriminate three different 
cases. 

(a) The two-dimensional surface is not flat any more but curved in space, e.g., like 
the retina in the eye. Then we may assume that the centerlines of all segments lie, 
e.g., on the surface of a sphere and are great circles. In this case, a different 
representation of  geometrical coordinates and distances suffices to generalize the 
model. 

(b) We consider a real three dimensional, volume-filling part of tissue which is 
convex, homogeneous and isotropic. A possible candidate may be the liver. In this 
case the extension to three dimensions requires us to use (x,y,z) instead of  (x,y) as 
geometrical coordinates, which is conceptually straight forward. 

(c) A conceptual addition becomes necessary, however, when we consider organs 
like the ventricle of the heart: coronary arteries must not cross through the 
ventricular chambers but run entirely within the ventricular wall; and phasic intra- 
myocardial pressure increases from epi- to endocardium and may cause endocardial 
segments to collapse during systole. Consequently, the main conveying vessels run at 
the epicardial surface. To incorporate these features within the framework of the 
present model, additional assumptions would become inevitable, and we rather 
restrict the present work to display the concepts of CCO together with key results. 

Conclusions and Synopsis for Previous Models and CCO 

In general, the modeling of arterial trees may follow one of four different lines. 
Lumped parameter models. They condense features of complex structures into 

representatives (i.e., compartments). 
Detailed anatomical modeling. Morphometric parameters, such as lengths of 

segments, radii and the real branching geometry are implemented in a model to 
represent a certain vessel and its major branches in detail and specifically (Rooz, 
Weisher, and Nerem, 1985). Typically, these models consider a few dozen segments. 

Deterministic and stochastic fractal modeling. In the deterministic approach, known 
features of real arterial trees, such as the average shrinkeage of segment lengths and 
radii, are used as a basis. Starting from the root, segments are generated for several 
bifurcation orders, with all parameters changing in a fully deterministc way from one 
bifurcation order to the next (West and Goldberger, 1987; Peiosi, Saviozzi, Trivella, 
and L'Abbate, 1987). (The law according to which parameters are to be changed is 
called the generator). The result is a structure which is self-similar regarding the 
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parameters considered: subareas on a smaller scale repeat  the properties already 
seen on a larger scale. These models are evaluated to check if an appropriately 
designed self-similar structure is able to reproduce the key features of its real 
counterpart  in a statistical sense, and if so, can we simultaneously expect the 
hemodynamic properties (volumes, resistances, compliances) to match? 

However, even if all quantities match, there is no guarantee that it will be possible 
to arrange such a structure in space. Consequently, the possibility of  arrangement  in 
space is considered a further criterion in the selection of generators. 

In the stochastic approach (Dawant, Levin, and Popel, 1985; Levin, Dawant, and 
Popel, 1986), spread is added to the generator in that the transition laws from one 
order to the next become stochastic, e.g., with given mean and standard error. These 
models overcome the rigidity of deterministic fractal models and thus can (in 
principle) get closer to reality. The question of arrangeability in space, however, is 
even more complicated to answer than for deterministic fractal models. 

Constrained constructive optimization (CCO). Similar to fractal modeling (items 2 
and 3 above) CCO also aims at representing the vascular tree by single segments 
rather than by compartments.  However, the present method of CCO neither uses 
anatomical knowledge to arrange the segments geometrically nor does it resort on 
statistical properties of vessel segments. Hence, it is even more surprising that these 
can be reproduced fairly well by constrained constructive optimization alone. Its key 
mechanism draws on two concepts: (a) right from the start, the geometric arrange- 
ment  of  segments is considered important and at any stage influences the future 
growth of the tree. Hence, configurations which are geometrically meaningless 
cannot even occur and arrangeability in space remains guaranteed at any time. In 
fractal terminology we may say that the existing transient structure itself constitutes 
the major part  of  the generator which, as a consequence, concomitantly develops. (b) 
The stochastic process of  adding terminals is not a priori defined (like in the case of  
stochastic fractal models) but is constantly and implicitely influenced via the structure 
already existing: tossing for terminal sites is repeated until the distance to an existing 
segment exceeds a (declining) threshold, so that new terminals are preferentially 
added within regions of hitherto low density (of terminals). 

Finally, calculated statistical and hemodynamic properties, serving as criterions for 
the fidelity in modeling a real tree, emerge from CCO without any possibility to plug 
them in or alter them by intent. If  the boundary conditions and the target function 
are selected properly, the resulting tree will yield realistic statistics and hemodynamic 
characteristics. And hence we may envisage to test several choices of  (boundary 
conditions and target functions for) CCO against each other, so as to get more insight 
into the targets and rules that might have governed the evolutionary process of 
arterial trees in mammals. 
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