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A B S T R A C T  We have studied the role of Mg 2+ in the inactivation of inwardly 
rectifying K + channels in vascular endothelial cells. Inactivation was largely elimi- 
nated in Mg2+-free external solutions and the extent of inactivation was increased 
by raising Mgo ~+. The dose-response relation for the reduction of channel open 
probability showed that Mg2o + binds to a site (KD = ~25 ~M at -160 mV) that 
senses ~ 38% of the potential drop from the external membrane surface. Analysis of 
the single-channel kinetics showed that Mg 2+ produced a class of long-lived closures 
that separated bursts of openings. Raising Mgo 2+ reduced the burst duration, but less 
than expected for an open-channel blocking mechanism. The effects of Mgo 2+ are 
antagonized by Ko + in manner which suggests that K + competes with Mg 2+ for the 
inactivation site. M~  + also reduced the amplitude of the single-channel current at 
millimolar concentrations by a rapid block of the open channel. A mechanism is 
proposed in which Mg 2+ binds to the closed channel during hyperpolarization and 
prevents it from opening until it is occupied by K +. 

I N T R O D U C T I O N  

There is now abundant evidence which indicates that Mg ~+ prevents the flow of 
outward current through the inwardly rectifying K + channels of cardiac and skeletal 
muscle by blocking the channel pore during depolarization (Vandenberg, 1987; 
Matsuda, Saigusa, and Irisawa, 1987; Matsuda, 1988; Burton and Hutter, 1989; 
Ishihara, Mitsuiye, Noma, and Takano, 1989). There is less information concerning 
the mechanism which causes the inward current through the channels to decline 
during hyperpolarization (Ohmori, 1978; Standen and Stanfield, 1979; Sakmann and 
Trube, 1984b; Matsuda and Stanfield, 1989; Harvey and Ten Eick, 1989; Silver and 
DeCoursey, 1990). Evidence suggests that the decay of inward current results from 
block of the channel by extracellular Na + (Ohmori, 1978; Fukushima, 1982). 
Sakmann and Trube (1984b), however, observed inactivation of the inward current in 
the absence of extracellular Na + and concluded that inactivation was due either to 
block of the channel pore by divalent cations at physiological concentrations or to an 
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intrinsic ga t ing  process.  Biermans,  Vareecke,  and  Carmel ie t  (1987) showed that  
removing  divalent  cat ions f rom the ex te rna l  solut ion r educed  the ex ten t  o f  inactiva- 
tion, suggest ing a b locking mechanism.  T h e  blocking mechanism,  however, has not  
been  tested at the  s ingle-channel  level. 

T h e  expe r imen t s  in this p a p e r  invest igated the role o f  Mg 2+ in the  ga t ing  o f  single 
inwardly rectifying K + channels  in aort ic endothe l ia l  cells. T h e  results show that  
Mg 2+ inhibits both  the inward and  outward currents  th rough  the channel .  Block of  
the  outward cur ren t  is sufficiently fast that  it is likely to account  for the r ap id  
rectifying p roper t i e s  o f  this channel .  Inact ivat ion of  the  inward current  cannot  be 
exp la ined  by a s imple mode l  in which Mg 2+ blocks the open  channel .  T h e  results 
suggest,  instead,  that  inact ivat ion arises from the b ind ing  o f  Mg 2+ to the  closed 
channel .  K + competes  with Mg 2+ for occupancy o f  this site in a m a n n e r  suggest ing 
close coupl ing  between K + t r anspor t  and  channel  opening .  Prel iminary results of  this 
work have been  r e p o r t e d  as abstracts  (Elam and  Lansman,  1990, 1992). 

M E T H O D S  

Preparation of Cells 

Bovine aortas were obtained from local slaughterhouses (Hoehner Meat Packing Co., San 
Leandro, CA; Ferrera Meats, San Jose, CA). The descending aorta was isolated and rinsed with 
a cold Ca~+-free saline solution containing 5 U/ml of heparin. The vessel was stored in a cold 
HEPES buffered Dulbecco's Modified Eagle Medium (DMEM) containing streptomycin and 
penicillin for transport back to the laboratory. 

Endothelial cells were isolated after the procedure described by Pearson, Slakey, and Gordon 
(1983). Excess connective tissue was removed from the exterior of the aorta and the distal end 
and accessory vessels were sutured shut. The vessel was filled with a warm (37~ solution of 
0.2% collagenase B (Boehringer Mannheim Corp., Indianapolis, IN) in DMEM, clamped shut 
and incubated at 37~ for ~ 15 min. The perfusate and one rinse with DMEM were collected 
and centrifuged at 100 g for 4 min. The cell pellet was washed twice with DMEM, resuspended 
in a growth media consisting of DMEM containing 20% fetal calf serum, 5% glutamine, and 
antibiotics, and plated into 35-mm tissue culture dishes (Coming Glass, Inc., Coming, NY). 
Cultures were maintained at 37~ in an atmosphere of 5% CO2/95% air. The tissue culture 
media was replaced every 1-2 d with fresh media. Endothelial cells were identified by their 
characteristic cobblestone morphology when grown to confluence and by immunofluorescent 
staining for Von Willebrand's Factor (laffe, Nachman, Becker, and Minick, 1973). Cultures 
were used for experiments during the first five passages when they had reached ~50-75% 
confluency. We found during the course of these experiments that the density of inwardly 
rectifying K § channels changed with time in culture. Freshly dissociated cells had a low density 
of channels which increased with time (data not shown). During the first few days in culture, 
only about a third of the recordings from cell-attached patches contained channel activity. By 
day 14 (fourth passage), membrane patches often contained five or more channels. 

Electrophysiological Methods 

Single-channel activity was recorded from cell-attached and cell-free membrane patches 
following the technique described by Hamill, Marty, Sakmann, Sigworth, and Neher (1981). 
Patch electrodes were made from Boralex hematocrit glass (Rochester Scientific, Rochester, 
NY) and had resistances of 3-7 MI~ with 150 mM KCI in the patch electrode and 150 mM 
K-aspartate in the bath. Membrane seal resistances ranged from 5-30 G~. 
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The bathing solution was an isotonic K-aspartate solution which contained 150 mM aspartic 
acid, 150 mM KOH, 2 mM MgCI2, 10 mM glucose, 1 mM EGTA, and 10 mM HEPES. A 
Mg2+-free K-aspartate solution was made by omitting Mg ~+ and adding 10 mM EDTA and 2 
mM EGTA. The isotonic K § bathing solution was used to zero the cell membrane potential so 
that the patch potential would be the same as the voltage command applied to the patch clamp 
amplifier. In some experiments, the single-channel current-voltage relation was measured after 
excising the patch from the cell surface. The shift of the single-channel current-voltage relation 
indicated a maximum voltage error of ~ 10 mV. 

The electrode filling solution contained 150 mM KCI, 2 mM MgCI~, 10 mM glucose, and 10 
mM HEPES. In experiments in which the Mg ~+ concentration of the external solution was 
varied, Mg 2+ and EDTA were added at appropriate concentrations according to the equations 
given by Blinks, Wier, Hess, and Prendergast (1982) to give the final free Mg 2+ concentration. 
The concentration of K + was varied by replacing it with an equimolar concentration of choline 
chloride. The osmolarity of the solutions was adjusted to 290--310 mosm by adding glucose. 
The pH was adjusted to 7.4 by adding KOH. All experiments were done at room temperature 
(22-24~ 

Data Analysis 

Current signals were recorded with a List-EPC-7 amplifier and stored on video tape (A. R. 
Vetter Co., Inc., Rebersburg, PAL In some experiments, currents were recorded directly onto 
the hard disk of the computer. Current signals were filtered with an eight-pole Bessel filter ( - 3  
dB) and digitized at 0.05-2.0 ms directly onto the hard disk of a laboratory computer (LSI 
11/73) for analysis. 

Open- and closed-time durations were measured from idealized records produced by a 
half-threshold detection method (Colquhoun and Sigworth, 1983). Histograms of open- and 
closed-time durations were fit with the sum of up to three exponential components by use of a 
maximum-likelihood fitting routine. The fits to the histograms of open and closed times were 
corrected for missed events by setting a cutoff at 0.4 ms which was subtracted from the 
maximum-likelihood estimate of the time constants. Channel open probability (Po) was 
calculated by dividing the total length of the current record by the sum of the idealized open 
times measured from the single-channel currents. 

Bursts of channel activity were defined as a series of rapid transitions between the open and 
closed states that were separated by longer-lived Mg~§ closures (see Fig. 8). The 
duration of the Mg2§ closures was measured by fitting the sum of three exponen- 
tials to the histograms of all closed times. The interburst interval was assumed to be equal to the 
time constant of the slowest component. Burst lengths were measured by excluding all closures 
in the record that were shorter than a set cut-off value. We chose 300 ms as the cut-off time 
because it is at least four times the mean duration of the longest Mg~+-independent closures. 
This cut-off ensures that fewer than ~ 2% of the Mg2+-independent closures will be mistakenly 
counted as Mg~+-dependent closures. This method of defining a burst, however, overestimates 
the true burst lifetime because it misses all Mg2+-dependent closures less than the cut-off'value. 
The true burst durations were calculated from the measured burst durations following the 
procedure described by Blatz and Magleby (1986): 

/b(true) = tb(app) * exp (--tc/tibi) -- /ibi[l -- (1 + tc/libi) exp (--tc/libi)], (1) 

w h e r e  tb(true ) is the true burst duration, tb(app) is the measured apparent burst duration, tc is the 
cut-off time (300 ms), and/ibi is the duration of the Mg2+-dependent interburst intervals. 
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R E S U L T S  

Previous studies have shown that vascular endothelial cells express inwardly rectifying 
K § channels (Johns, Freay, Adams, Lategan, Ryan, and VanBreemen, 1987; Takeda, 
Schini, and Stoeckel, 1987; Olesen, Clapman, and Davies, 1988; Silver and Decour- 
sey, 1990). Silver and DeCoursey (1990) studied whole-cell inward rectifier currents 
in vascular endothelial cells and concluded that virtually all the rectification is 
independent of  intracellular Mg 2+ (Mgi2+). We reexamined the role of  Mgi 2+ in the 
mechanism of inward rectification at the single-channel level to determine whether 
the channels in endothelial cells differ from those in cardiac and skeletal muscle. 

Fig. 1 shows the single-channel activity recorded from a cell-attached patch at 
different holding potentials. The patch electrode contained 150 mM KCI and 2 mM 
Mg 2+. The  single-channel current-voltage relationship was linear with a slope 
conductance of 24.1 -+ 2.9 pS (mean -+ SD, n = 13) in 150 mM KCI. This value is 
similar to that reported for inwardly rectifying K + channels in other cells (ventricular 
myocytes: Sakmann and Trube, 1984a; macrophages: McKinney and Gallin, 1988; 
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FIGURE 1. Single-channel currents 
recorded from a cell-attached patch 
which contained a single inwardly rec- 
tifying K + channel. The patch elec- 
trode contained 150 mM KCI sand 2 
mM MgCI2. Each record represents 
~ 6 rain of continuous channel activ- 
ity at the indicated holding potential. 
Currents were sampled at 500 Hz and 
filtered at 100 Hz. 

skeletal muscle: Matsuda and Stanfield, 1989). Consistent with the behavior of 
inwardly rectifying K + channels, the reversal potential shifted ~ 59 mV for a 10-fold 
change in K + and the single-channel conductance varied with the square root of K + 
(Hagiwara and Takahashi, 1974). 

Mg 2+ Block of Outward Current through the Channel 

Analysis of  the role of Mg 2+ in blocking the outward current through these channels 
is hampered by the rundown of activity in excised membrane patches. Fig. 2 A shows 
an experiment in which a patch was excised into a bathing solution which contained 
millimolar Mg 2+. Channel activity persisted for only ~ 20 s after excision of the patch 
from the cell surface (arrowhead). We found, however, that prior addition of 0.5 mM 
8-bromo-cyclic-adenyl-monophosphate (8-Br-cAMP) to the bath slowed the loss of  
channel activity after patch excision. Fig. 2 B shows an experiment in which 0.5 mM 
8-Br-cAMP was added to the bathing solution at the start of the experiment.  In this 
experiment, channel activity remained high after excision. In the cells pretreated 
with 8-Br-cAMP, channel activity persisted for 16.0 _+ 9.6 rain (mean - SEM, n=5).  
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8-Br-cAMP did not  appear  to act directly on the channel  because adding it to the 
bath after the channel  activity dissappeared did not  restore it to previous levels (data 
not  shown). Fig. 2 C shows, on the o ther  hand, that there was virtually no loss o f  
channel  activity when patches were excised into a Mg2+-free bathing solution. In this 
experiment ,  channel  activity persisted for more  than 20 min. These  results show that 
Mg 2+ at the cytoplasmic surface causes a relatively rapid rundown of  channel  activity, 
perhaps  by promot ing  channel  dephosphorylat ion.  In the experiments  described 

A T 5 mM MgCI2 

B 5 mM MgCt2; 0.5 mM 8-Br-cAMP 

T 
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C 0 mM MgCI2 
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FIGURE 2. Effects of internal 
Mg ~+ on the stability of channel 
activity in membrane patches, 
(A) Single-channel currents re- 
corded from a cell-attached 
patch before and after excision 
of the patch into a solution con- 
taining 150 mM K-aspartate 
a~ad 5 mM MgCI~. The arrow 
indicates the time at which the 
patch was excised from the 
membrane. (B) Single-channel 
currents recorded from a differ- 
ent patch before and after exci- 
sion into a solution containing 
150 mM K-aspartate and 5 mM 
MgCI2 to which 0.5 mM 8-Br- 
cAMP was added, There were 
about four channels in this 
patch. (C) Single-channel cur- 
rents recorded from a patch 
before and after excision into 
an Mg2+-free, 150 mM K-as- 
partate solution, Each record 
represents ~3.5 rain of con- 
tinuous channel activity re- 
corded at a holding potential of 
- 5 0  mV in A and B and -60  
mV in C. Currents were filtered 
at 100 Hz and sampled at 500 
H z .  

below, patches were excised directly into a Mg2+-free bathing solution to minimize 
rundown. 

Fig. 3 A provides evidence that Mg~ + blocks the flow of  outward current  th rough  
the channel,  Although there were clearly resolved inward currents when the patch 
was held at - 4 0  mV, there was no detectable single-channel activity at +40  inV. After 
excising the patch into the MgU+-free bathing solution, both inward and outward 
currents were detected (Fig. 3 B). The  single-channel current-voltage relationship 
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before and after excision into the Mge+-free bathing solution was linear (Fig. 3 C). 
After patch excision, the single-channel conductance was 22.6 +- 1.3 pS and current  
reversed at +3.3 -+ 4.9 mV (mean -+ SD, n=3) ,  similar to the values obtained in 
recordings f rom cell.attached patches. It was unlikely that the Mgi~+-free solution 
unmasked silent channels, because outward currents were detected after excision only 
when inward currents were initially present and the number  o f  channels in the patch 
did not  change.  

Although removing Mgi 2+ produced outward currents, channels opened  only 
transiently dur ing the positive voltage step. Fig. 4 A shows the outward currents in 
the Mg2+-free bath solution during a long voltage step. The  voltage step to +50  mV 

Attached Excised 
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FIGURE 3. Outward currents pro- 
duced by the removal of internal 
Mg ~§ (A) Single-channel currents re- 
corded from a ceil-attached patch 
which contained two channels. There 
were no outward currents when the 
patch was held at +40 mV. (B) Single- 
channel currents recorded after excis- 
ing the patch into a Mge+-free (< 1 
nM) K-aspartate solution showing the 
outward currents flowing through the 
channel at +40 mV. In this experi- 
ment, there was a voltage offset of 
~ 10 mV when the patch was excised 
into the Mge+-free solution. The elec- 
trode contained a Mg2+-free, KCI so- 
lution. Currents were sampled at 1 
kHz and filtered at 200 Hz in both A 
and B. (C) The amplitude of single- 
channel currents recorded from an 
excised membrane patch plotted as a 
function of the patch holding poten- 
tial. The current-voltage relationship 
was linear and reversed near zero 
mV. The conductance was 22.6 pS 
(mean _+ SD, n = 3). 

p roduced  an initial burst o f  openings at the onset of  the pulse. After the initial burst 
o f  openings,  however, the channel  remained closed and reopened  only infrequently. 
The  time course of  the Mgi~+-independent gating of  the outward current  was 
measured by holding the patch potential at - 4 0  mV and then stepping it to positive 
test potentials. The  currents recorded in response to repetitive voltage steps were 
averaged to obtain the mean  current  at each test potential. Fig. 4 B shows the mean  
currents recorded from a single patch in response to voltage steps to +40,  +60,  +80,  
and + 100 mV. Fig. 4 C shows the time constants describing the decay of  the mean  
currents that were obtained by fitting the records with a single exponential .  At 
potentials more  positive than ~ +70  mV, the rate of  decay became essentially voltage 
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insensitive. T h e  results  a re  consis tent  with the  idea  that  Mg~ + p roduces  a r a p i d  block 
of  outward current ,  but  that  there  is an intrinsic vo l t a ge -de pe nde n t  ga t ing  process  
that  causes channel  closure in the absence o f  Mg 2+ (Matusda,  1991). 

Mg a +-dependent Inactivation of Inward Current 

Fig. 5 shows the inact ivat ion o f  the inwardly rectifying K + channels  dur ing  m e m b r a n e  
hyperpo la r i za t ion  (see also Sakmann  and  Trube ,  1984b). In  these exper iments ,  the 
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FIGURE 4. Time course of the outward current through inwardly rectifying K + channels in the 
absence of internal Mg ~§ (A) Outward currents recorded in response to a voltage step from a 
holding potential of - 4 0  mV to the indicated test potentials. Recording from a membrane 
patch excised into a Mg2+-free internal solution. Current records were filtered at 1 KHz and 
sampled at 5 KHz. (B) Voltage dependence of the outward current.The mean currents were 
obtained from averaging the outwards currents that were evoked in response to ~ 90 identical 
voltage steps to either +40, +60, +80, and +100 mV (from top to bottom). (C) The time 
constant of the single exponential fit to the decay of the outward current was plotted as a 
function of the potential of the test pulse (mean - SD, n=4). 

s ingle-channel  activity was measu red  f rom patches  conta in ing  one to five channels .  
Dur ing  hyperpo la r i z ing  vol tage steps, the  s ingle-channel  activity was h igh  at the  
beg inn ing  o f  the  test pulse  and  then  decreased  (Fig. 5 A). T h e  m e a n  cur ren t  at each 

test po ten t ia l  was ob ta ined  by averaging  the individual  cur ren t  responses  to a large 
n u m b e r  o f  ident ical  test  pulses. Fig. 5 B shows the mean  currents  ob ta ined  in one  
such e x p e r i m e n t  scaled so that  the peak  ampl i tudes  are  the same. T h e  decay o f  the 



A 
-40 mV ., -70 mV 

-110 mV -150 mV 

0.5 s 

B T i m e  ( m s )  
0 500 lOOO 1500 2000 2500 

ooo I I . . . .  I 

~ .mV 

=-.= / /  . f  

1 . ~  ~ "'" ; " - -40  m V  

C 
~ 1.0 

0.6 

0.4 

i ._'  ' . ' , , , , , , , 

Test Potential (mV) 

D 

c ~  
o c 

- E  

- 1 6 0  - 1 2 0  - 8 0  - 4 0  0 

Test Potential (mV) 

FIGURE 5. Voltage-dependent  inactivation of  the inward current  dur ing  hyperpolar izing 
voltage steps. (A) Single-channel currents  recorded dur ing  voltage steps to - 4 0 ,  - 7 0 ,  - 1 1 0 ,  or 
- 1 5 0  mV from a holding potent ial  of 0 mV that  lasted 2,720 ms. The  solid lines indicate 
zero-current  levels in each record. Leak and  capacitive currents  were subtracted. The  pa tch  
electrode conta ined 150 mM KCI and  2 mM MgCI2. Currents  were sampled at 1 KHz and 
filtered at 200 Hz. (B) Time course of  the mean  current  at different test potentials.  Mean 
currents  were obtained by averaging the current  responses to 70-100 identical voltage steps to 
the indicated potentials.  T he  smooth lines th rough  the currents  are the fits to a single 
exponent ia l  decaying to a nonzero  level. The  mean  currents  are normalized so that  initial 
ampli tudes  are the same. (C) Dependence  of the extent  of inactivation of the mean  current  on 
the test pulse potential .  Fraction of channels  remain ing  open  at the end  of the voltage step was 
obtained from the ampli tude of the steady state current  divided by the ampl i tude  of the current  
at t=0.  The  points are fit to a Bol tzmann distribution with half  inactivation of  - 6 3  mV and  
slope of 23 mV. (D)Dependence of the rate of inactivation of the mean  current  on the test pulse 
potential.  T he  t ime constants  for the decay of the mean  current  was obtained from the 
single-exponential  fit and  plot ted as a function of  the test pulse potential.  
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mean  current  was well fit by a single exponent ia l  function decaying to a nonzero  level 

(solid lines). Both the extent  of inactivation (Fig. 5 C) and  its rate (Fig. 5 D) d e p e n d e d  

on m e m b r a n e  potential .  
We examined  the effect of extracellular Mg 2+ (Mgo 2+) on the vol tage-dependent  
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FIGURE 6. Effect of external Mg 2+ on  time course of inactivation. (A) Single-channel activity 
recorded from cell-attached patches in which the patch electrode contained either 2 mM, 50 
0,M, or 0 Mgo 2+. Patches contained approximately five to seven channels. The patch was held at 
0 mV then stepped to - 120 mV for 2,720 ms. (B) The mean currents obtained by averaging the 
current responses to ~ 100 identical voltage steps to -120  mV from 0 mV with either 2 mM, 50 
~M or 0 mM Mg 2+ in the patch electrode. The mean currents were fit by single exponentials 
decaying to a nonzero level. In the presence of 2 mM Mgo 2+, the current decayed to 46% of its 
initial value by 695 ms, with 50 ~M Mgo 2+, the current decayed to 72% of its initial by 2,074 ms. 
Records were corrected for leak and capacitive currents. 

inactivation of the inward current .  Recordings were made from mul t ichannel  patches 
exposed to different concentra t ions  of Mgo 2+. The  patch potent ial  was held at 0 mV 
and  then s tepped to different test potentials for ~ 3 s before r e tu rn ing  to the holding 
potential .  Fig. 6A shows that with 2 mM Mg 2+ in the electrode, s ingle-channel  
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FIGURE 7. The effect of external Mg 2+ 
concentration on the extent of inactivation. 
Mean currents were fit by a single exponen- 
tial. The extent of inactivation was deter- 
mined in each experiment as the steady 
state current during the voltage step to 
-120  mV divided by the current at t=0. 
Each data point is the mean -+ SD (n=2-5). 
Mgo ~+ produced half-maximal inactivation at 
~ 300 p,M. 

activity decayed  rapidly.  In  the  absence of  Mgo 2+, the inward cur ren t  showed little 
inactivation.  Inact ivat ion d e p e n d e d  only on  the presence  of  Mgo ~+, because excising a 
pa tch  into ba th ing  solut ions conta in ing  e i ther  zero ( < 1 nM) or  2 mM Mg 2+ had  no 
effect on the  inactivation t ime course in e i ther  the  presence  o f  absence o f  Mg2o + in the  
pa tch  e lec t rode  (data  not  shown). 

Fig. 7 shows that  increas ing Mgo 2+ increased the ex ten t  o f  inactivation,  with 
hal f -maximal  inactivation at Mgo 2+ = ~ 3 0 0  I~M. At mi l l imolar  concentra t ions ,  
however,  inactivation was incomple te  and  was even r educed  at concentra t ions  
exceed ing  several mil l imolar .  Al though  the ex ten t  o f  inactivation d e p e n d e d  on 
Mgo 2+, the  ra te  o f  inact ivat ion d id  not  change  systematically with Mgo 2+ over  a three  
orders  of  magn i tude  concent ra t ion  change  (data  not  shown). I f  Mg 2+ acts by 
occluding the channel  pore ,  then  the ra te  as well as the  ex ten t  o f  inact ivat ion is 
expec t ed  to d e p e n d  on  Mgo ~+ (e.g., Armst rong ,  1969). Tha t  the  rate  was relatively 
insensitive to Mgo 2+ indicates  that  the  mechanism is likely to be more  compl ica ted  
than occlusion o f  the open  channel .  This  issue is cons idered  in more  detai l  below. 

Fig. 8 shows that  Mgo ~+ causes the ga t ing  o f  the single channel  to occur in 
well-defined bursts  o f  open ings  (Sakmann and  Trube ,  1984b). In  the absence o f  

2 mM Mg2. 

10 IJM Mg2. 

=wllrulal"'l  

<1 nm Mg2, 

15S, 

FlGURE 8. Single-channel activity in the 
presence of different concentrations of 
Mgo ~+. The patch electrode contained 150 
mM KCI solutions and either 2.0 mM, 10 
o,M, or 0 (< 1 nM) Mg 2+. The membrane 
potential was held at -120  mV. Currents 
were sampled at 500 Hz and filtered at 
100 Hz. 
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2+ Mgo , the channel  fluctuated rapidly between open  and closed states, but  was open  
~ 95% of  the time. By contrast, channel  activity recorded in the presence o f  either 2 
mM or  10 IxM Mgo 2+ occured in bursts that were separated by long closed periods. In 
addition to its effects on gating, Mgo 2+ reduced the ampli tude o f  the single-channel 
current  at millimolar concentrations. Shioya, Matsuda, and N o m a  (1993) repor ted  
that high concentrat ions o f  Mg z+ produced  a rapid block of  inwardly rectifying K + 
channels in ventricular myocytes. The  results shown in Fig. 9 support  the idea that 
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FIGURE 9. Reduction of the 
amplitude of the single-channel 
current by Mgo 2+. (A) Single- 
channel current-voltage rela- 
tionships measured in the pres- 
ence of various concentrations 
of Mgo ~+. The single-channel 
conductances were 37, 35, 32, 
23, 21, 16, and 12 pS awith 
Mgo 2+ = <1 nm, 2 I~M, 200 
I.tM, 2, 4, 10, and 20 mM, re- 
spectively. (B) Fractional reduc- 
tion of the single-channel cur- 
rent (i/im~x) with increasing 
Mgo 2+ at two different mem- 
brane potentials (open circles, 
-120  mV; filled circles, - 8 0  
mV). The apparent KD = ~ 8 
mM at both -120  and - 8 0  
mV. Each data point represents 
the mean of two to seven re- 
cordings. The patch electrode 
contained 150 mM KCI with 
the indicated concentration of 
Mg 2+. 

Mg 2+ reduces the single-channel current  by binding to a low affinity site. Fig. 9 A 
shows the single-channel current-voltage relation as a function o f  Mgo ~+. The  
ampli tude o f  the single-channel current  was reduced when Mgo ~+ exceeded ~ 200 
wM. Fig. 9 B shows the reduct ion o f  the single-channel current  with increasing 
Mgo ~+ at - 1 2 0  mV (open circles) and - 8 0  mV (filled circles). The  apparen t  Ko was ~ 8 
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mM and independen t  o f  m e m b r a n e  potential .  T h e  value of  the KD for the fast 
blocking process is similar to that  r epor t ed  by Shioya et al. (1993). 

Evidently, there is a low affinity Mg 2+ blocking site located outside the m e m b r a n e  
field (KD = 8 mM), as well as a higher  affinity site (KD = ~ 300 IxM) associated with 
the inactivation process. We analyzed the dose-response  relat ionship to de te rmine  
the location of  the high affinity inactivation site within the m e m b r a n e  field. I f  the 
Mg 2+ binding site lies within the m e m b r a n e  field, then the appa ren t  affinity is 
expec ted  to depend  on m e m b r a n e  potential  according to the model  o f  Woodhull  
(1973). Fig. 10 shows that  the relat ionship between channel  open  probabili ty and 
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FIGURE 10. Dose-response relation for the reduction of channel open probability by Mgo z+. 
Each point represents the mean -+ SEM. The data were fit by Eq. 4 with a Hill coefficient of 
0.48 and Kt~ = 25 I~M. The Hill coefficient was unaffected by the membrane potential over the 
entire range examined. (Inset) Change in the apparent binding affinity (KD) with membrane 
potential. The KD decreased ~ 10-fold/33 mV hyperpolarization. 

Mg 2+ can be fit with a relat ionship of  the form: 

Po = Pmax -- Pmax {[n/(1 + (KD/Mg2+)n]} (2) 

where Po is the channel  open  probabili ty in the presence  of  Mg ~+ (at - 1 6 0  mV), Pmax 
is the m a x i m u m  open  probabili ty in the absence of  Mg 2+, KD is the appa ren t  
dissociation constant,  and n is the Hill coefficient describing the steepness of  the 
change  in open  probabili ty with Mgo ~+. T h e  fit to the exper imenta l  points gave a KD = 
~ 2 5  I~M at - 1 6 0  mV and a Hill coefficient (n) o f  0.54 -+ 0.03 (mean -+ SEM, n = 5). 
Fig. 10 (inset) shows that  the KD depended  strongly on m e m b r a n e  potential.  T h e  
dependence  of  the appa ren t  Mg 2+ affinity on m e m b r a n e  potential  was fit to a 
relation describing a voltage d e p e n d e n t  binding equil ibrium of  the form: 

KD(V ) = KD(0 ) exp ( - zOVF/RT)  (3) 
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IxM, and 2 mM external Mg 2+, respectively. 
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where  z is the  valence o f  the  blocking part ic le  and  d is the  fractional  electrical  
d is tance between the ex te rna l  surface o f  the  m e m b r a n e  and  the Mg 2+ b ind ing  site 
(Woodhull ,  1973). The  s lope of  the regress ion line gave a value o f d  = 0.38 + 0.07, 
(mean - SEM), suggest ing that  Mg 2+ binds  to a site that  is loca ted  ~ 38% of  the  
poten t ia l  d rop  f rom the ex te rna l  m e m b r a n e  surface. 

T h e  results o f  Fig. 10 are  r ep lo t t ed  in Fig. 11 to show the vo l t a ge -de pe nde n t  
ga t ing  in the  presence  of  different  Mg2o +. With Mg2o + r e duc e d  to ~ 100 nM, there  was 
only a small change  in o p e n i n g  probabi l i ty  with vol tage over  the r ange  studied.  With 
Mg 2+ equal  to 50 IxM or  2 mM, the re la t ionship  between channel  open  probabi l i ty  
and  vol tage was well fit by a Boi tzmann relat ion.  T h e  re la t ion measured  with Mg2o + = 
2 mM was shifted a long the vol tage axis towards posit ive potent ia ls  by ~ 100 mV 
c o m p a r e d  with that  measu red  in the  p resence  o f  50 wM Mg 2+. T h e r e  was also a 
co r r e spond ing  increase in the  s teepness  o f  the re la t ion ( ~  e-fold p e r  32 and  41 mV in 
2 mM and  50 IxM Mgo 2+, respectively).  T h e  magn i tude  o f  the shift is much la rger  than  
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FIGURE 12. Effect of Mgo 2+ on chan- 
nel opening and closing rates. (A) 
Histograms of open times in either 
the presence or absence of Mg 2+ were 
well fit by single exponentials with 
similar time constants. In the pres- 
ence of external 0.2 mM Mg 2+, to = 
228 ms whereas in the absence of 
external Mg 2+, to = 200 ms. (B) His- 
tograms of closed times in the pres- 
ence of Mg 2+ were fit by three expo- 
nential components. In the absence of 
Mgo z+, only two exponentials were re- 
quired to fit closed time distribution. 
(Inset) Histogram of long-lived clo- 
sures (> 250 ms) which are observed 
when Mg 2+ is present in the electrode 
solution. The time constants and rela- 
tive amplitudes of the multiexponen- 

tial fit to the closed time distribution are 0.84 ms (.29), 17.3 ms (.61), and 2,803 ms (.10) in the 
presence of 0.2 mM external Mg 2+ and 0.72 ms (.44) and 24.5 ms (.56) ms in in the absence of 
Mg 2+. The patch potential was - 8 0  inV. 
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expected for a reduction of the membrane surface potential by Mgo 2+ (e.g., Ohmori 
and Yoshii, 1977). 

Subsequent experiments investigated the effects of Mgo 2+ on the single-channel 
kinetics. Fig. 12 A shows the histograms of channel open times that were obtained 
from measurements of  channel activity in the presence or the absence of Mgo ~+. The 
open time histograms were well fit by a single exponential, consistent with the 
existence of a single open state. Fig. 12 B shows that at least three exponential 
components were required to fit the histogram of channel closed times in the 
presence of Mg 2+. In the absence of Mg 2+, however, only two components were 
required to fit the distribution of closed times. The kinetic constants obtained from 
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FIGURE 13. The voltage dependence of 
channel opening and closing is not affected 
by Mgo 2+. (A) The mean open time plotted as 
a function of membrane potential (filled 

2+ filled circles, 0.2 mM squares, 2 mM Mg o ; 
Mgo2+; open circles, 0 Mgo~+). (B) Time con- 
stants of the two rapid components of the 
closed time distribution plotted as a func- 
tion of membrane potential (filled symbols, 
0.2 mM MgoZ+; open symbols, 0 MgoZ+). 

from the exponential fits to the open and closed time distributions are shown in Fig. 
13. Fig. 13 A shows that as the holding potential was made more positive, the mean 
open time increased, both in the presence (filled symbols) or absence (open symbols) of 
Mg 2+. There  was a small prolongation of the mean open time in the presence of 
Mgo 2+ which may arise from a reduction in the dosing rate when the fast block site is 
occupied. Fig. 13 B shows that durations of  the two brief closed periods were also 
relatively insensitive to external Mgo 2+. The results shown in Figs. 12 and 13 indicate 
that Mg~o + produces slow closures in the single-channel records, but does not affect 
channel opening and closing within a burst. 

Previous studies have suggested that the inactivation of inwardly rectifying K + 
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FIGURE 15. Voltage dependence 
of  the burst kinetics in the pres- 
ence of  2.0 mM Mgo 2+. (A) The 
interburst interval plotted as a 
function of  membrane poten- 
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brane potential. (Inset) The dis- 
tribution of burst durations 
showing that it is well fit by a 
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channels involves block o f  the open  channel  by a physiological ion (Fukushima, 1982; 
Sakmann and Trube,  1984b; Biermans et al., 1987). The  effects o f  Mg 2+ on the 
single-channel current  are strikingly reminiscent o f  pore-blocking behavior in which 
the slow transitions between bursts and intervening silent periods reflect Mg 2+ entry 
and exit f rom the pore. The  predictions of  an open-channel  blocking mechanism, 
however, have not been rigorously tested. The  Mg~o+-dependent gating transitions 
(bursts and interburst intervals) are much slower than MgoZ+-independent opening  
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FIGURE 16. The effect of Ko + 
on the single-channel activity in 
the presence of 2 mM Mg 2+. 
(,'1) Single-channel activity re- 
corded from a cell-attached 
patch. The patch electrode 
contained 200 mM KCl and 2 
mM Mg 2+. (B) Single-channel 
activity recorded from another 
cell-attached patch. The elec- 
trode contained 20 mM KC1 
and 2 mM Mg 2+. Each record 
represents ~ 7 min of continu- 
ous channel activity at - 80  inV. 
Channel open probability was 
0.54 in 200 mM KC! and 2 mM 
Mg 2+ and 0.04 in 20 mM KC! 
and 2 mM Mg 2+. Currents were 
sampled at 500 Hz and filtered 
at 100 Hz. 

and closing transitions. Consequently, the slower transitions between the Mg 2+- 
dependen t  bursts and interburst intervals can be used to obtain the apparen t  rates of  
Mg z+ association and dissociation from its site. 

I f  Mg 2+ binds to the open  channel, then the reaction follows bimolecular kinetics 
and the inverse o f  the burst durat ion is linearly related to Mg 2+. Interburst  intervals 
represent  the first-order dissociation o f  Mg 2+ from its binding site and are concen- 
tration independent .  Burst durations and interburst intervals were measured as 
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descr ibed  in the  Methods.  Fig. 14 shows the effect o f  Mgo z+ on the burs t  dura t ion .  We 
found  that  a ~ 100-fold change  in Mgo 2+ r e duc e d  the burs t  dura t ion  only fourfold,  
considerably  less than  expec ted  for a b imolecular  react ion between Mg 2+ and  the 
open  channel .  T h e  slow burs t ing  kinetics in the presence  of  Mgo ~+ are, nonetheless ,  
consis tent  with the  movemen t  o f  the  postively cha rged  cat ion to a b ind ing  site within 
the m e m b r a n e  field. Fig. 15 A shows that  hyperpo la r i za t ion  p r o l o n g e d  the in terburs t  
interval,  as expec t ed  if  Mg 2+ is he ld  more  t ighlty at its b ind ing  site by the imposed  
voltage.  Hyperpo la r i za t ion  also r educed  the burs t  dura t ion  in a m a n n e r  consis tent  
with an enhanced  entry ra te  for a positively cha rged  molecule.  
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FIGURE 17. Effect of K + on the 
Mg2+-dependent bursts and inter- 
burst intervals. (.4) Burst durations 
plotted as a function of K~ (mean -+ 
SE, n=3-7;  filled circles, holding po- 
tential = - 8 0  mV; open circles, hold- 
ing potential = -120  mV). The ap- 
parent KD was ~90 mM at - 8 0  mV 
and ~ 60 mM at -120  mV. (B) Mean 
lifetime of the Mg~+-dependent clo- 
sures plotted as a function of K~ 
(mean -- SEM, n=3-7).  

Effect of External K + Concentration 

T h e  vol tage d e p e n d e n c e  o f  the Mg2+-dependen t  bursts  and  in terburs t  intervals 
provides  add i t iona l  suppor t  for a b ind ing  site that  is located within the m e m b r a n e  
field. In  the  subsequent  exper iments ,  we asked whether  the p e r m e a n t  ion K + can also 
b ind  to this site. Fig. 16 shows the s ingle-channel  activity in the presence  o f  200 mM 

K + (top record) and  in the  presence  of  20 mM K + (bottom record). The  dura t ion  o f  the  
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bursts and of the MgZ+-dependent interburst intervals were measured in the presence 
of different concentrations of  Ko +, but with Mgo ~+ fixed at 2 mM. In high K~ (200 
mM), the burst duration is longer than in the presence of low K § (20 mM). Fig. 17 A 
shows that, at a fixed Mg 2+ concentration, the burst duration increased as Ko + was 
increased and could be fit with a simple saturating function for one to one binding. 
The  apparent  KD for K + was ~ 9 0  mM at - 8 0  mV (filled symbols) and 120 mM at 
- 1 2 0  mV (open symbols). Fig. 17B shows that, by contrast, the Mg2+-dependent 
interburst intervals did not depend on Ko +. The  prolongation of the burst duration 
can be explained if K + competes with Mg 2+ for a site in the channel. 

D I S C U S S I O N  

The results in this paper  show that inward rectification in bovine aortic endothelial 
cells arises from Mg2+-dependent and -independent gating processes. The Mg 2+- 
dependent  rectification is fast (Sakmann and Trube, 1984b), while the Mg 2+- 
independent rectification is much slower and is voltage dependent.  While both of 
these components may contribute to the inward rectification in vascular endothelial 
cells, the high concentration of Mg 2+ and rapid time course of  the Mg2+-dependent 
suppression of outward current suggests that, under  physiological conditions, Mgi 2+ is 
likely to contribute substantially to the inward rectification of the K + channels in 
endothelial cells. 

Voltage-dependent Inactivation 

During hyperpolarization, the current through inwardly rectifying K + channels 
inactivates. The  effects of Mg2o + on the inactivation process can be summarized as 
follows. (a) Removing Mg 2+ largely eliminates inactivation. (b) Mgo 2+ reduces channel 
open probability at negative voltages more than at more positive voltages. (c) Mgo 2+ 
produces a class of  long-lived closures, but does not affect the rapid transitions 
between the closed and open states within a burst. (d) Mgo 2+ reduces the duration of 
the bursts of  openings, but less than expected for a bimolecular reaction with the 
open channel. The last observation and the finding that the rate of  inactivation did 
not depend on Mg 2+ made it necessary to reject a simple open channel blocking 
mechanism. Thus, the mechanism of MgZ+-dependent inactivation of inwardly 
rectifying K + channels differs from the inactivation of delayed K + currents produced 
by quatenary ammonium compounds (Armstrong, 1969). 

The voltage dependence of the inactivation process was consistent with a simple 
model in which Mg 2+ binds to a site within the membrane field. A similar conclusion 
was reached by Fukushima (1982) who studied the inactivation of single inwardly 
rectifying K + channels by Sr  2+ in a tunicate egg cell. The electrical distance for the 
inactivation site was estimated at 34% of the potential drop from the external surface 
(Fukushima, 1982), close to the value of 38% found for Mg 2+ in this study. Unlike the 
inactivation produced by Sr 2+, however, we found no evidence for relief of inhibition 
at large negative membrane potentials. Consequently, Mg 2+ does not appear  to exit 
towards the cytoplasmic surface once it has bound. This conclusion is further 
supported by the finding that exposing the cytoplasmic surface to high Mgi 2+ in the 
absence of Mgo 2+ did not cause inactivation. 
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The  effects of  K + on the burst kinetics suggested that K + competes with Mg 2+ for a 
single site. We found no evidence for an effect of  K+on the interburst interval that 
would suggest ion-ion interactions in multiple binding sites. The apparent  K + 
affinity that was estimated from the prolongation of the burst duration by K + was 
voltage dependent.  This finding suggests that K + binding is also influenced by the 
applied voltage. In addition, the affinity of K + for the inactivation site was similar to 
the affinity measured from the dependence of the single-channel conductance on 
K +. Thus, Mg z+ may bind to a site that is normally occupied by K + during ion 
transport. 

It is possible to account for many of the experimental observations by a model in 
which Mg 2+ binds to the channel only when it is in the closed state 

slow fast 
CBI(Mg ) (-) C (-) O (4) 

where C represents the Mgo~+-independent closed states, O is the open state, and CBI 
is the Mg2+-bound closed state (the two Mg2+-independent closed states have been 
lumped together). The equations relating the rate constants in the model to the 
experimentally measured burst durations and interburst intervals are given in 
Sakmann and Trube (1984b, their Eqs. 10 and 19). It is noted here that the inverse of 
the interburst interval is approximately equal to the Mg 2+ dissociation rate, because 
Mg 2+ association is slow compared with opening. Because there are two Mg 2+ 
binding sites that can be reached from the outside, however, Eq. 4 must be modified 
to account for the rapid block of the open channel 

slow fast fast 
CBl(Mg ) (-) C (-) O (-) OB2(Mg ) (5) 

where OBz has been added and is the open-blocked state (d=0). If  the channel 
cannot close easily when Mg 2+ occupies the fast block site, then the probability that 
Mg 2+ will bind to the closed channel is reduced. One prediction of the model that is 
born out by the results is that inactivation is incomplete and is even reduced as the 
fast block site becomes occupied a larger fraction of the time at high Mgo ~+. 
Moreover, the finding that the dose-response relation is less steep than expected for 
one-to-one binding (Hill coefficient = ~0.5) can be readily interpreted in terms of 
negative cooperativity between the two bindings sites on the closed and open 
channel. 

The physical picture for MgZ+-dependent inactivation that emerges differs funda- 
mentally from one in which a blocker obstructs current flow by lodging within the ion 
conduction pathway. We speculate that inwardly rectifying K + channels possesses a 
gate that is in close proximity to a site that can bind either Mg z+ or K +. The gate 
moves more or less freely at negative membrane potentials between its open and 
closed positions, but the affinity of the site for Mg z+ is high only when it is closed. 
Accordingly, binding of Mg 2+ stabilizes the gate in its closed position and the channel 
does not become free to open until Mg 2+ dissociates and the site is occupied by K +. A 
similar model was proposed by Armstrong and Cota (1991) to explain the effects of 
external Ca 2+ on the voltage dependence of Na + channel opening. They suggested 
that divalent cations stabilize the channel in the closed state by interacting with the 
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channel  voltage sensor. The  Mg2+-dependent  inactivation described here differs in 
that there is little intrinsic voltage dependence  to channel  gating. 

The  mechanism of vol tage-dependent  gat ing of inwardly rectifying K + channels  is 

of interest because the c loning of a channel  with similar propert ies from mouse 
macrophages  shows that it lacks most of the hydrophobic segments characteristic of 
other  voltage-gated K + channels  (Kuno, Baldwin, Jan,  and  Jan,  1993). Moreover, 

there is only limited homology of the NH2-terminal  region to the $4 region of other  
voltage-gated K + channels.  The  absence of structural elements associated with 

vol tage-dependent  gat ing highlights the impor tance  of the b ind ing  of physiological 
ions in channel  gating. 
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