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ABSTRACT The sarcolemmal Na+-Ca 2+ exchanger is regulated by intracellular 
Ca ~+ at a high affinity Ca 2+ binding site separate from the Ca ~+ transport  site. 
Previous data have suggested that the Ca 2+ regulatory site is located on the large 
intracellular loop of the Na +-Ca 2+ exchange protein, and we have identified a high- 
affinity 4SCa2+ binding domain on this loop (Levitsky, D. O., D. A. Nicoll, and K. D. 
Philipson. 1994. Journal of Biological Chemistry. 269:22847-22852). We now use 
electrophysiological and mutational analyses to further define the Ca ~+ regulatory 
site. Wild-type and mutant  exchangers were expressed in Xenopus oocytes, and the 
exchange current was measured using the inside-out giant membrane patch 
technique. Ca ~+ regulation was measured as the stimulation of  reverse Na+-Ca ~+ 
exchange (intracellular Na + exchanging for extracellular Ca ~+) by intracellular 
Ca ~+. Single-site mutations within two acidic clusters of the Ca 2+ binding domain 
lowered the apparent  Ca ~+ affinity at the regulatory site from 0.4 to 1.1-1.8 ~.M. 
Mutations had parallel effects on the affinity of  the exchanger loop for 45Ca~+ 
binding (Levitsky et al., 1994) and for functional Ca 2+ regulation. We conclude that 
we have identified the functionally important  Ca ~§ binding domain. All mutant  
exchangers with decreased apparent  affinities at the regulatory Ca 2+ binding site 
also have a complex pat tern of  altered kinetic properties.  The  outward current of  
the wild-type Na+-Ca 2§ exchanger declines with a half time (th) of  10.8 _+ 3.2 s upon 

Dr. Matsuoka's present address is Department of Physiology, Faculty of Medicine, Kyoto University, 
Sakyo-ku, Kyoto 606, Japan. 

Dr. Hryshko's present address is Department of Physiology, University of Manitoba, Winnipeg, 
Manitoba, Canada R2H 2A6. 

Dr. Levitsky's present address is Laboratoire de Physiologie Generale, Universite de Nantes Faculte 
des Sciences et des Techniques, Nantes, France. 

Address correspondence to Dr. Kenneth D. Philipson, Cardiovascular Research Laboratory, MRL 
3-645, UCLA School of Medicine, Los Angeles, CA 90024-1760. 

J. GEN. PHYSIOL. �9 The Rockefeller University Press �9 0022-1295/95/03/0403/18 $2.00 
Volume 105 March 1995 403-420 

403 



404 T H E  J O U R N A L  O F  G E N E R A L  P H Y S I O L O G Y  �9 V O L U M E  105 �9 1 9 9 5  

Ca 2+ removal, whereas the exchange currents of several mutants decline with th 
values of 0.7-4.3 s. Likewise, Ca 2+ regulation mutants respond more rapidly to Ca 2+ 
application. 

Study of Ca 2+ regulation has previously been possible only with the exchanger 
operating in the reverse mode as the regulatory Ca 2+ and the transported Ca 2+ are 

then on opposite sides of the membrane. The use of exchange mutants with low 
affinity for Ca 2+ at regulatory sites also allows demonstration of secondary Ca z+ 
regulation with the exchanger in the forward or Ca 2+ el:flux mode. In addition, we 
find that the affinity of wild-type and mutant Na+-Ca 2+ exchangers for intracellular 
Na + decreases at low regulatory Ca 2+. This suggests that Ca z+ regulation modifies 
transport properties and does not only control the fraction of exchangers in an 
active state. 

I N T R O D U C T I O N  

Na+-Ca 2+ exchange activity of the cardiac sarcolemmal membrane has an important 
role in controlling cytoplasmic Ca 2+, primarily as a Ca 2+ extrusion mechanism (for 
reviews see Blaustein, DiPolo, and Reeves, 1991; Philipson and Nicoll, 1992). The 
cardiac exchanger was first found to be regulated by cytoplasmic Ca 2+ in whole-cell 
recordings of the outward exchange current of intact myocytes (Kimura, Noma, and 
Irisawa, 1986). The regulation has been studied in single ventricular cells (Miura and 
Kimura, 1989; Noda, Shepherd, and Gadsby, 1988) and characterized in detail using 
giant patches of excised membranes (Hilgemann, 1990; Hilgemann, Collins, and 
Matsuoka, 1992a). 

The canine cardiac Na+-Ca 2+ exchange protein has been cloned and expressed in 
Xenopus oocytes (Nicoll, Longoni, and Philipson, 1990). The protein is modeled to 
consist of two groups of transmembrane segments separated by a large intracellular 
loop. The loop comprises more than half of the exchanger protein by itself, but is not 
essential for transport. Deletion of a portion of the loop, however, completely 
eliminates secondary Ca 2+ regulation (Matsuoka, Nicoll, Reilly, Hilgemann, and 
Philipson, 1993). The data suggest that the large cytoplasmic loop is involved in Ca 2+ 
regulation and demonstrate that the binding site responsible for Ca ~+ regulation can 
be functionally separated from the site which mediates Ca 2+ transport. 

Levitsky, Nicoll, and Philipson (1994) subsequently identified and characterized a 
region of the cytoplasmic loop of the exchanger which could bind 45Ca2+ with high 
affinity. Several single-site mutations within this region markedly reduced Ca 2+ 
binding affinity. The number of Ca 2+ ions binding in this region was not quantified 
but could be more than one. It was hypothesized that this Ca 2+ binding site, 
identified by biochemical techniques, was also the functionally important Ca z+ 
regulatory site. 

To test this hypothesis, we performed electrophysiological studies of Na+-Ca 2+ 
exchangers with mutations in the putative Ca~+-regulatory region. We demonstrate 
that the 45Ca2+ binding region is indeed responsible for cytoplasmic Ca 2+ regulation 
and we characterize the altered kinetic properties of Ca 2+ binding mutants. In 
addition, we present evidence that both the Ca 2+ influx and Ca z+ efftux modes of the 
exchanger are regulated by intracellular Ca 2+. 
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M E T H O D S  

Preparation of  Mutant Na +-Ca 2 + Exchangers 

Mutation reactions were performed as previously described (Levitsky et al., 1994) and the 
mutated cassettes were subcloned into full-length exchanger clones. Capped RNA was synthe- 
sized with T3 mMessage mMachine (Ambion, Austin, "IX) after linearization with Hind III. 
Unincorporated nucleotides were removed on ChromaSpin-100 DEPC-H20 columns (Clontech 
Laboratories, Paio Alto, CA). 

Electrophysiology 

Na+-Ca 2+ exchange currents were measured in inside-out giant excised patches as described 
previously (Matsuoka et al., 1993). In brief, RNA (46 nl) was injected into Xenopus oocytes and 
membrane currents were measured 3-6  d later. For electrophysiological studies, oocytes were 
placed in a hypertonic solution containing (in millimolar) KOH (100), MES (100), HEPES (20), 

T A B L E  I 

Experimental Solutions 

Cytoplasmic Pipette Pipette 
solution solution A solution B 

mM raM raM 
NaOH - -  - -  140 
CsOH 20 20 20 
NaOH + CsOH 100 - -  - -  
EGTA 10 - -  10 
CaCO3 0-10 8 - -  
Mg(OH)2 1-1.5 2 4 
TEA-OH 20 20 20 
HEPES 20 20 l0 
Ouabain - -  0.25 0.25 
Ba(OH)2 - -  2 2 

MES 100 100 140 
N-methyl-o-glucamine - -  100 - -  

EGTA (5), Mg(OH)2 (5), K-aspartate (100), pH = 7.0 adjusted with MES to permit  removal of 
the vitellin layer. Oocytes were then moved to a second solution containing KOH (100), MES 
(100), HEPES (20), EGTA (5), Mg(OH)2 (5) or MgCI2 (5), pH 7.0 for seal formation. Glass 
pipettes (inner diameter 20-35 lzM) were coated with a parafilm/light mineral oil (Sigma 
Chemical Co., St. Louis, MO) mixture (Collins, Somlyo, and Hilgemann, 1992). n-Decane 
(Sigma Chemical Co.; 1-5%) was occasionally added to the mixture to facilitate seal formation. 

Membrane currents were measured using an Axopatch-lC or - ID amplifier (Axon Instru- 
ments, Inc., Foster City, CA) and recorded by Axotape software (acquisition rate 30 Hz). 
Experiments were carried out at 30~ 

Experimental Solutions 

Experimental  solutions were similar to those previously described (Matsuoka et al., 1994) and 
are listed in Table I. The  pH of all solutions was adjusted to 7.0 with MES. Pipette solutions A 
and B were used for outward and inward Na+-Ca ~+ exchange current measurements, respec- 
tively. To  minimize proteolysis (see Results), protease inhibitors (leupeptin, 2 Izg/ml, aprotinin, 
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1 I~g/ml and pepstatin, 2 ~g/ml; Boehringer Mannheim Corp., Indianapolis, IN) were added 
to the initial bathing solution and cytoplasmic solutions. Outward Na+-Ca ~§ exchange currents 
were well regulated by cytoplasmic Ca 2+ during the experimental protocol (20-30 vain). Free 
Ca 2+ and Mg 2+ concentrations were calculated using MAXC software (Bers, Patton, and 
Nuccitelli, 1994). The free Mg 2+ concentration was 1 rnM for all cytoplasmic solutions. To 
suppress the endogenous Ca ~+ activated CI- current, 0.1 mM niflumic acid (Sigma Chemical 
Co.; 200 mM stock solution in DMSO) was added to the pipette solutions and chloride was 
replaced with MES in all cytoplasmic and pipette solutions. 

For measurements of outward Na+-Ca ~§ currents, background Ca~+-sensitive currents were 
first assessed by applying 1 ~M cytoplasmic Ca ~+ in the absence of Na +. Current amplitudes 
were typically 0-10 pA and ran down quickly. For inward current measurements, background 
Ca~+-sensitive currents were estimated by applying 1 ~M Ca 2+ in the presence of 100 mM Na +. 
Na + (100 raM) has previously been reported to completely suppress the inward Na+-Ca 2+ 
exchange current activated by 1 ~.M Ca 2+ (Hilgemann, Matsuoka, Nagel, and Collins, 1992b). 
Patches were usually formed in CI- free bath solution to avoid possible CI- contamination of 
the pipette solution during seal formation. Background Ca~+-sensitive currents were typically 
0-5 pA and they declined rapidly. 

R E S U L T S  

Outward Na+-Ca 2+ Exchange Currents from Wild-Type and Mutant Exchangers 

Levitsky et al. (1994) demonst ra ted  the presence of  a high affinity Ca2+-binding 
domain encompassed by amino acids 371 to 508 of  the cytoplasmic loop of  the 
Na+-Ca 2+ exchanger.  Mutations o f  two acidic segments within this domain affected 
45Ca~+ binding. Fig. 1 shows the amino acid sequences o f  these two acidic segments. 
Both segments have a motif  of  three consecutive aspartic acid residues (DDD) and 
the mutants  analyzed below are shown. Correlations between the effects of  mutations 
on 45Ca2+ binding (Levitsky et al., 1994) and on exchange currents are presented in 
Table II and in the Discussion. 

Fig. 2 shows representative outward Na+-Ca 2+ exchange currents f rom the wild- 
type and three mutant  exchangers.  The  pipette contained solution A (8 mM Ca 2+ 
and 0 mM Na+). Outward current was activated by applying 100 mM Na § to the 
cytoplasmic surface o f  the excised oocyte membrane.  Currents at different levels of  
cytoplasmic regulatory Ca 2+ (0, 0.3, 1, and 10 o.M) are superimposed.  For the 
wild-type exchanger,  outward exchange current  has a transient componen t  due to 
Na§ or I1, inactivation as previously repor ted  (Hilgemann, 1990). Stimu- 
lation of  current  by regulatory Ca 2+ is modeled as the removal of  a second type of  
inactivation (I2) which is Na + independent ,  though  Ii  inactivation can also be 
modula ted  by Ca 2+ (see Fig. 12 below). Both types of  inactivation can be removed by 
t reatment  with chymotrypsin which puts the exchanger  into an activated, or  deregu-  
lated, state. In this study, we are primarily concerned with the 12 form of  regulation 
(activation of  exchange current  by Ca2+). 11 inactivation occurs over several seconds 
after Na + application (Fig. 2), and 12 can be assessed by measuring peak current  just  
after Na + application before the occurrence of  substantial 11 inactivation. 

With increasing cytoplasmic Ca 2+, the ampli tude of  peak and steady state currents 
increased for both wild-type and all mutant  exchangers.  The  mutant  E509L showed 
characteristics similar to those of  the wild-type exchanger.  Peak current  at 1 ~M Ca 2+ 
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FIGURE 1. A m i n o  acid sequences of  
two acidic segments in the large cyto- 
plasmic loop of the Na+-Ca 2+ ex- 
changer. Amino acids indicated by 
smal l  capitals represent point muta- 
tions; e.g., arginine at position 441 to 

leucine (R441L) .  A deletion mutant (A450-56) is denoted by the dashed line. Mutants m a r k e d  

with asterisks had altered Ca ~+ r e g u l a t i o n .  

was ~80% of  the current at 10 IrM Ca 2+ and activation by Na + was rapid. Mutant 
exchangers R441L and D453V also had unaltered behavior (not shown). 

In contrast, altered kinedc characteristics were observed for mutants D448V and 
D500V. Upon Na + application, the outward current was activated slowly at 0.3 and 1 
~M Ca ~+. The activation became faster as Ca ~+ concentration increased and became 
almost instantaneous between 10 and 100 tiM. In these mutants, current amplitude 
at 1 ttM Ca 2+ was about half o f  that at 10 ttM Ca ~+, and the Na+-dependent 
inactivation was slower than that of  the wild-type Na+-Ca 2+ exchanger. The mutants 
D447V, D498K, D498I, D447V + D498I, and A450-456 all exhibited these aberrant 
properties (not shown). The level o f  expression o f  the wild-type and mutant 
exchangers was variable in different batches of  oocytes. Mutant D500V tended to 
generate higher exchange currents (e.g., see Fig. 2) than other exchangers. We are 
uncertain as to whether this is due to an increase in the number of  functional 
exchangers or whether mutant D500V molecules have an inherently higher exchange 
activity. In any case, the characteristics of  different exchangers did not vary with level 
of  expression. 

T A B L E  II 

Pro~rties of Ca ~+ Regulation 

th (S) upon  th (S) upon  45Ca2+ 
Exchanger Kh (~M) Ca 2+ removal Ca ~+ addition binding 

GROUP A 
Wild-type 0.4 • 0.2 (6) 10.8 • 3.2 (4) 7.5 • 1.5 (4) High 
R441L 0.5 • 0.3 (3) 14.2 • 0.9 (2) 8.8 • 1.1 (2) High 
D453V 0.2 • 0.0 (2) 9.8 • 1.6 (4) 9.4 • 3.6 (3) High 
G503P 0.3 • 0.3 (3) High 
ES09L 0.4 • 0.1 (2) 11.9 • 3.3 (4) 9.2 -+ 4.5 (3) High 

GROUP B 
IM47V 1.8 4- 0.6 (3) 1.1 4- 0.7 (5) 2.0 4- 0 3  (4) Low 
IM48V 1.7 4- 0.7 (3) 4.3 • 1.0 (4) 11.0 • 5.8 (3) Low 
A450-456 1.6 4- 0.2 (3) 0.9 -+ 0.6 (5) 1.3 4- 0.6 (4) Low 
D498I 1.3 4- 0.4 (7) 1.9 4- 0.8 (4) 5.1 4- 2.4 (5) Low 
D498K 1.4 4- 0.6 (3) 1.1 _+ 0.4 (3) 3.8 • 0.9 (2) Low 
D500V 1.7 4- 0.3 (3) 0.7 4- 0.1 (5) 1.2 • 0.3 (3) 
D447V+ 1.1 4- 0.6 (3) 1.2 4- 0.3 (6) 2.4 • 0.8 (5) Low 
D498I 

All values are given as means 4- SD. The number of experiments (n) is given in parentheses. 4~Ca2+ binding 
data are from Levitsky et al. (1994). 
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In the absence of cytoplasmic Ca ~+, a small but significant outward current was 
activated by 100 mM Na + for all exchangers. In water-injected control oocytes, 100 
mM Na § induced only a small inward shift of current (0-3 pA; not shown). The 
Ca2+-insensitive current, therefore, is due to exchange activity. The Ca~+-insensitive 
component was more substantial in our previous report  (Matsuoka et al., 1993). 
Here, we included protease inhibitors in the cytoplasmic (bath) solutions (see 
Methods) which may have reduced partial deregulation which occurred in the prior 
study. 

The extent of the initial (Ii) inactivation of outward exchange current was 
somewhat variable. Nevertheless, one trend was quite clear. All mutant exchangers 
with altered Ca 2+ regulation had a reduced transient component. This is seen for 
mutants D448V and D500V in Fig. 2 and for D498I in Fig. 10. The inactivation of the 
current from the wild-type exchanger in Fig. 2 is smaller than usual (compare with 
the results shown in Fig. 10 or with results from the wild-type-like mutant E509L in 
Fig. 2). The  I1 inactivation process of the wild-type Na+-Ca 2+ exchanger expressed in 

WT D448V 

Ca2 + (,aM) 10 s 10s  

z FIGURE 2. Representative out- 
0.3 ward currents from the wild- 1 

]2o pA 0. pA type (WF), D448V, D500V, and 
= ~0 ]30j0 E509L Na+-Ca 2+ exchangers. 

D500V ES09L Solution A (8 InM Ca 2§ was 
1 0 s  10 ~ present in the pipette. Currents 

1 ~  l 1 ! ~  were activated by l00 mM Na + 
at four different cytoplasmic 

o.3 Ca 2+ concentrations (0, 0.3, 1, 
0.3 200pA and I0 t~M) as indicated. 

o ]~0pA 

0~  100 mM Na* ~ _  0~ 100 mM NR + ~ _  

oocytes is less pronounced than that observed for the native exchanger in sarcolem- 
mal patches (Hilgemann et al., 1992b). Perhaps this suggests that there are extrinsic 
factors present in the cardiac cells which modulate exchanger function. 

Cytoplasmic Ca 2+ Dependence of Wild-Type and Mutant Na+-Ca 2+ Exchangers 

Fig. 3 shows representative cytoplasmic Ca ~§ dependencies of outward Na+-Ca ~+ 
exchange currents for the wild-type, D448V, D500V, and E509L exchanger mutants. 
Again, the transported Ca z+ is at the extracellular surface within the patch pipette 
and only Ca 2+ binding at the intracellular regulatory site is being varied. Data were fit 
to the Hill equation and normalized to maximum current. Current amplitudes always 
declined at the highest Ca 2+ levels as Ca 2+ competes with Na + at the transport site 
(Matsuoka and Hilgemann, 1992). For the wild-type, D448V, D500V, and E509L 
exchangers the Kh (Ca ~+ concentration at half maximal activation) values were 0.3, 
1.1, 1.4 and 0.3 ~M and the corresponding Hill coefficients were calculated as 0.9, 
1.5, 1.0, and 1.1, respectively. 
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A summary  o f  the Kh values o f  the wild-type and  mu tan t  exchangers  is shown in 
Fig. 4. Mutants  could be  ass igned to two groups  based  u p o n  a p p a r e n t  affinities for 
regula tory  Ca 2+ (Fig. 4 and  Table  II, co lumn 2). Exchangers  in g roup  A, which 
includes the  wild- type exchanger ,  had  relatively h igh  a p p a r e n t  affinities o f  0.5 IxM 
Ca 2+ or  less. Mutan t  exchangers  in g roup  B had  lower a p p a r e n t  affinities o f  1.1 IxM 
Ca 2§ or  higher .  I t  is notable  that  only single site muta t ions  o f  aspar t ic  acid res idues  o f  
the  DDD motifs  induced  a decrease  in a p p a r e n t  Ca 2+ affinity. As shown in Fig. 3, h igh  
Ca 2§ levels inhibi ted exchange  currents  due  to compe t i t i on  with Na  § at the  t r anspor t  
site. This  inhibi t ion tends  to nega te  the  activation of  exchange  by Ca 2+ at the  
regula tory  site at h ighe r  Ca 2+ levels. T h e  ne t  effect is to lower the  Kh values; the  effect 
will be greates t  for the g roup  B mutan ts  for which inhibi t ion may begin  to occur 
before  the Ca 2+ regula tory  site is saturated.  Thus,  the affinity for regula tory  Ca 2+ for 
g roup  B mutan t s  may be substantial ly lower than  the observed Kh values. 

1.o o WT 
�9 D448V �9 �9 
v D500V 

0.8 �9 E509L ~ v 

0.6 

0.2 

0 . 0  ' ' ' 
0 . 0 1  0 . 1  1 10 100 

Ca 2+ (/zM) 

rent declined at I00 ~M Ca 2+ due to competition between Na + 
text). These data were not included in the analysis. 

FIGURE 3. Representative de- 
pendencies on cytoplasmic 
Ca ~+ of outward currents for 
the wild-type and various mu- 
tant exchangers. Data are from 
wild-type (open circles), D448V 
(closed circles), D500V (open tr/- 
angles), and E509L (closed tri- 
angles). Current amplitudes 
were measured at peak current 
and the Ca2+-insensitive cur- 
rent was subtracted. Data were 
normalized to the maximal cur- 
rent and the solid curves repre- 
sent fits to the Hill equation. As 
shown by the data points, cur- 
and Ca ~+ at transport sites (see 

Mutant  exchange r  G503P was distinctive in that  the outward exchange  cur ren t  
d isp layed a large Ca2+-insensitive c o m p o n e n t  which const i tu ted  80-100% of  the total  
current .  In  this case, the  Ca~+-sensitive componen t ,  when present ,  still had  an 
a p p a r e n t  Ca ~+ affinity similar  to that  of  the wild-type exchanger .  

Time Course of Current Change on Removing and Applying Cytoplasmic Ca 2+ 

Mutat ions  which affect the a p p a r e n t  affinity for Ca 2+ b ind ing  might  also affect the 
kinetics of  Ca z+ b ind ing  and  regula t ion.  We therefore  m e a s u r e d  the t ime courses of  
the changes  in outward exchange  currents  u p o n  removing  and  app ly ing  cytoplasmic 
regula tory  Ca 2+. 

Fig. 5 shows represen ta t ive  cur ren t  traces o f  the decl ine in outward cur ren t  u p o n  
removal  o f  cytoplasmic Ca z+ for the  wild-type,  D448V, D500V, and E509L exchang-  
ers. T h e  outward currents  were first act ivated by 100 mM Na + in the presence  o f  1 



410  

3.0 

THE JOURNAL OF GENERAL PHYSIOLOGY �9 VOLUME 105 �9 1995 

2.5 

2.0 

1.5 

1.0 

0.0 1 
, .  < ,m ,o 

FIGURE 4. S u m m a r y  o f  Kh val- 

ue s  for  r egu l a to ry  Ca  2+ for t he  

wi ld- type  a n d  va r ious  m u t a n t  

Na+-Ca  e+ e x c h a n g e r s .  Data  a re  

s h o w n  as m e a n s  +- SD. 

wM Ca ~+ . When current was at steady state level, cytoplasmic Ca 2+ was removed as 
indicated. Half times (th) for the current changes were 12.4, 3.4, 0.8, and 9.6 s, 
respectively. The data could not easily be fit to a single exponential, and fast and slow 
components appear  to exist. The  origin of the different components is unknown, but 
perhaps reflects the presence of multiple active exchanger states. 

Fig. 6 (top) and Table II (column 3) summarize the th values for the current decline 
for wild-type and mutant exchangers. For mutant exchangers D447V, A450-56, 
D500V, and D447V + D498I, the current changes were sufficiently fast as to possibly 
be limited by the rapidity of the solution change. There  is a strong inverse correlation 
for the different exchangers between the apparent affinity for regulatory Ca 2§ (Kh) 

VVT lOs 

40 ~ 1 
D, av J o 

\ 
D500V o 

E509L 

1~ o pM Ca ;t* / 

100 pA 

]o 

101~ 
]o 

FIGURE 5. R e p r e s e n t a t i v e  c u r r e n t  

t races  o b t a i n e d  u p o n  r e m o v a l  o f  reg-  

u la to ry  (cytoplasmic)  Ca  2+. T h e  out -  

wa rd  Na+-Ca  2+ e x c h a n g e  c u r r e n t  was 

first ac t iva ted  by 100 m M  Na  + in t he  

p r e s e n c e  o f  1 p.M Ca  2+ (not  shown).  

Af ter  c u r r e n t s  r e a c h e d  s t eady  s tate  

levels, cy top lasmic  Ca  ~+ was r e m o v e d  
r e su l t i ng  in t he  decay  o f  c u r r e n t  as 
shown.  C u r r e n t s  a re  f r o m  the  wild- 

type,  D448V, DS00V, a n d  E509L ex-  

c h a n g e r s ,  as indica ted .  
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and the th values for current  u p o n  Ca 2+ removal (Table II). The  data are consistent 
with the idea that an enhanced  off  rate contributes to the lower Ca 2+ affinity o f  
mutants  with altered Ca 2+ regulation. 

Fig. 6 (bottom) and Table II (column 4) summarize the th values for the increase in 
exchange current  u p o n  applying 1 IzM Ca ~§ Na § (100 mM) was already present  in 
the bath medium when the regulatory Ca 2+ was added.  Exchangers that responded 
rapidly to the addit ion o f  regulatory Ca 2§ (Fig. 6, bottom) also responded  rapidly to 
the removal o f  regulatory Ca 2+ (Fig. 6, top) with the exception o f  mutant  D448V. 

Regulation of lnward Na +-Ca 2+ Exchange Currents by Cytoplasmic Ca 2+ 

Manifestation o f  Ca 2+ regulation o f  Na+-Ca 2+ exchange is most  readily observed for 
outward currents where the exchanger  operates in the "reverse" mode.  In this case, 
the t ranspor ted Ca z+ and the regulatory Ca z+ are on opposite sides of  the membrane  
and regulatory effects o f  Ca ~+ are apparent .  With the exchanger  in the "forward" 

Ca2+Off 

15 

=1 

O'- 

Ca2+On 

15 

FIGURE 6. Summary of half 
times (th) of current decay 
(Ca 2+ Off) and current devel- 
opment (Ca 2+ On) of wild-type 
and mutant Na+-Ca 2+ exchang- 
ers during the removal and re- 
application of 1 IxM regulatory 
Ca 2+. Pipette Ca 2+ and bath 
Na + were present at all times; 
only the level of regulatory 
Ca 2+ was changed. Data are 
shown as means -+ SD. 

mode,  however, the t ransported and regulatory Ca 2+ are at the same membrane  
surface. Changes  in the Ca 2+ level will alter both t ransport  and regulation and the 
dual effects are not easily separated. Thus, it is not  known whether  the forward (Ca ~+ 
efflux) mode  of  the exchanger  is Ca ~+ regulated. The  Ca 2+ regulation mutants  
afforded an oppor tuni ty  to investigate this possibility. 

Fig. 7 shows typical inward exchange currents for the wild-type and the double 
mutant  (D447V + D498I) exchangers.  Within the pipette was solution B (140 mM 
Na § and 0 mM Ca 2+). Currents were activated with increasing levels of  cytoplasmic 
Ca 2+. The  time course of  current  activation was similar for wild-type and mutant  
D447V + D498I, as shown, and also for mutants  D447V and D500V (not shown). 
Inward currents for other  mutants  were not  examined.  The  results contrast with those 
obtained with outward currents (Fig. 2) where activation o f  currents with Na § was 
significantly slower for mutants  D447V, D500V, and D447V + D498I. 

The  Ca 2+ dependence  o f  the inward current  o f  the wild-type Na+-Ca 2+ exchanger  



412 THE JOURNAL OF GENERAL PHYSIOLOGY �9 VOLUME 1 0 5 "  1 9 9 5  

is shown in Fig. 8 (top). The  Kh was 6.9 ~M and the Hill coefficient was 1.1 (n -- 6). 
The  Kh value might  reflect either regulatory or  transport  Ca 2+ dependencies.  
However, the apparen t  affinity at the regulatory site was estimated above (Fig. 4) to 
be 0.4 p,M Ca 2+ and the Kh value for inward current  would be domina ted  by a lower 
Ca 2+ affinity at the t ransport  site. a-chymotrypsin t reatment  eliminates Ca 2+ regula- 
tion (Hilgemann, 1990) and allows Ca ~+ dependence  for t ransport  to be measured in 
the absence o f  regulation. After ~x-chymotrypsin treatment,  the Kh for Ca 2+ decreased 
only slightly to 5.6 p-M (n = 3). These data are consistent with measurements  from 
giant membrane  patches o f  guinea pig ventricular cells (Hilgemann et al., 1992a). 

For the mutant  exchanger  D447V + D498I, however, the apparen t  affinity for 
Ca 2+ activation of  inward Na+-Ca 2+ exchange current  was much lower than for the 
wild-type exchanger.  The  Kh was 46 p-M with a Hill coefficient of  1.1 (Fig. 8, bottom, 

WT D447V+D4981 

Ca2*(pM) 
1 

10s 

o m 

-50 pA 1 

10s 

0 

-20 pA 

FIGURE 7. Inward currents from the wild-type (W~) and double mutant (D447V + D498I) 
Na+-Ca 2+ exchangers. Solution B (140 mM Na +) was present in the pipette. Currents were 
activated by increasing cytoplasmic Ca 2+ from 0 to 1, 3 or 5 ~M. Note the fast activation of 
current by Ca 2§ for both exchangers. 

n = 4). This Kh value is 6.7-fold higher than that observed for the wild-type 
exchanger.  After a-chymotrypsin treatment,  the Kh value decreased to 5.0 p-M 
(n = 3) with a Hill coefficient of  0.9. That  is, the Kh value became similar to that of  

the wild-type exchanger.  
For the mutant,  the Kh value for activation at the regulatory site was estimated from 

outward exchange currents (Fig. 4) to be higher  than for the wild-type exchanger.  As 
pointed out above, the Kh values for Ca z+ to activate the outward current  are 
underest imated for mutants  of  group B, because of  competi t ion of  Ca 2+ with Na + at 
the t ransport  site. This may at least partially account for the discrepancy between the 
Kh values for regulatory Ca 2+ obtained from outward currents (1.1 p,M) and from 
inward currents (46 p-M) for the mutant  D447V + D498I. Indeed,  in the study of  
Levitsky et al. (1994), it appeared  that the double mutant  D447V + D498I had an 
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especially low affinity for 4SCa2§ at the regulatory site. Thus,  for D447V + D498I, we 
interpret  the low affinity for Ca 2+ activation of  inward current to be due to the low 
affinity for Ca 2+ binding at the regulatory site. After cx-chymotrypsin treatment,  Ca 2+ 
regulation is removed and activation o f  inward current by Ca 2+ reflects only affinity at 
the t ransport  site. T he  data demonst ra te  that the inward (forward) mode  of  Na+-Ca 2§ 
exchange current  is regulated by Ca 2+. This conclusion applies to mutant  D447V + 
D498I but presumably applies also to the wild-type exchanger.  

Activation of Outward Exchange Current by Na § 

One difference between mutants  in group B and the wild-type exchanger  is the slow 
activation o f  the outward current  u p o n  application of  cytoplasmic Na + (Fig. 2). As 
shown in Fig. 9, ~x-chymotrypsin t reatment  eliminates this slow activation. The  
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FIGURE 8. Ca 2+ dependence of in- 
ward currents from wild-type (WF) 
and D447V + D498I. Current ampli- 
tudes were normalized to the fit maxi- 
mal current using the Hill equation 
and are shown as means +_ SD. Cur- 
rents were measured under control 
conditions (open circles) and after 
treatment with 1-2 mg/ml a-chymo- 
trypsin (closed circles). 

outward current  for mutan t  D447V + D498I was first activated by 100 mM Na + in 
the presence o f  cytoplasmic Ca 2+. Slow current  activation by Na + was similar to that 
shown for mutants  D448V and D500V (Fig. 2). After cx-chymotrypsin treatment,  the 
current  was activated immediately by 100 mM Na § with no requirement  for 
cytoplasmic Ca 2+. cx-chymotrypsin had the same effect on mutants  D500V and D498I 
(not shown). T he  results suggest that  the slow activation by Na + is related to the 
abnormal  Ca 2+ regulation. We therefore further  investigated Na + effects on the 
mutant  exchangers.  

The  cytoplasmic Na + dependence  for outward exchange current  was examined at 
different levels o f  cytoplasmic regulatory Ca ~+. For both the wild-type and a mutant  
exchanger,  Ca 2+ levels above and below the Kh value were chosen. In the top of  Fig. 
10, the cytoplasmic Na § dependence  of  the wild-type exchanger  was studied at 1 (left) 
and 0.01 I~M Ca 2+ (right) for the same excised patch. At 1 p~M Ca 2+, the current  
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FIGURE 9. The  effect of a-chymo- 
trypsin on the double mutant, D447V 
+ D498I. The outward current was 
first activated by 100 mM Na + in the 
presence of  1 IzM Ca 2+ (left) before 2 
mg/ml  a-chymotrypsin was applied to 
the cytoplasmic surface. The  right 
panel shows the current after a-chy- 
motrypsin treatment. Note the imme- 
diate activation by 100 mM Na § and 
the loss of Ca z+ regulation. 

ac t iva ted  by 50 m M  Na  + was ~ 80% o f  the  c u r r e n t  ac t iva ted  by 100 m M  Na +, a n d  the  

N a + - d e p e n d e n t  inac t iva t ion  b e c a m e  less p r o n o u n c e d  as the  Na  + c o n c e n t r a t i o n  was 

dec r ea sed .  T h e s e  t e n d e n c i e s  a re  cons i s ten t  wi th  d a t a  f r o m  g ian t  m e m b r a n e  pa t ches  

f rom g u i n e a  p ig  ven t r i cu l a r  cells ( H i l g e m a n n  et  al., 1992b). At 0.01 p.M Ca 2+, cu r r en t  
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FIGURE 10. Outward currents for the wild-type (top) and D498I Na+-Ca ~+ exchangers (bottom) 
at different Na + and Ca 2+ concentrations. Currents were activated by different levels of 
cytoplasmic Na + as indicated. For the wild-type exchanger, currents were measured at 1 (/eft) 
and 0.01 o,M Ca 2+ (right). Note the slow development of  outward current activated by 100 mM 
Na + at the lower Ca 2+ concentration. For D498I, currents were measured at 1 (left) and 5 p.M 
Ca ~+ (right). At 1 p.M Ca ~+, currents in D498I are similar to those of  W-I" at 0.01 IzM Ca 2+. At 
higher Ca (5 ~M), currents for D498I appear similar to WT at 1 ~M Ca ~+. 
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activation by 100 m M  Na  + was slower than  at  1 I~M Ca 2+. Currents  at low Na + and  
Ca 2+ for this pa tch  were relatively large as the  exchangers  were par t ia l ly  de regu la ted .  
T h e  par t ia l  de regu la t ion  does  not  a p p e a r  to have affected the  results,  however,  as 
s imilar  results  were ob ta ined  with several  o the r  pa tches  (see below). 

In  the  b o t t o m  o f  Fig. 10, the  Na + d e p e n d e n c e  o f  a g roup  B mutant ,  D498I,  was 
d e t e r m i n e d  at 1 (/eft) and  5 ttM Ca 2+ (r/ght). T h e  activation by 100 mM Na + at  1 itM 
Ca 2+ is slow, similar  to o the r  mutan t s  in g roup  B (Figs. 2 and  9). This  t endency  is 
s imilar  to that  for wild-type exchange  currents  at  0.01 p,M Ca 2+. T h e  same pa tch  was 
then  e x p o s e d  to 5 I~M Ca 2+ and  Na + d e p e n d e n c e  was e x a m i n e d  in the  lower r ight  
panel .  Cur ren t  act ivat ion by 100 mM Na  + was faster  than  at  1 p,M Ca 2+. 

We found  that  the  cytoplasmic  Na  + d e p e n d e n c e  var ied  with the level o f  regula tory  
Ca 2+. In Fig. 1 l ,  p eak  cur ren t  ampl i tudes  are  p lo t t ed  agains t  Na  + concent ra t ion  at  

WT D4981 

350 

300 

250 

150 

100 

50 

7O 
o Chymo. 1 Ca 
�9 ICa / 6 0  

v O.1Ca / 50 

o 
10 100 

Na + (mM) 

o Chymo. 1 Ca 
�9 5Ca 
v 1 Ca 

lO 

Na + (mM) 

/o- 

,/ 
i 

100 

FIGURE 11. Na § dependence of the outward current from the wild-type (left) and D498I 
(right) Na+-Ca 2+ exchangers. Current amplitudes were measured at the current peak. For the 
wild-type exchanger, the current was measured at 1 p,M Ca ~+ (closed circles), 0.1 ~M Ca 2§ (open 
triangles), 0.01 o.M Ca 2+ (closed triangles), and at 1 ~M Ca 2+ after ~t-chymotrypsin treatment 
(open circles). For the D498I mutant, the current was measured at 1 ~M Ca 2+ (open triangles), 5 
}~M Ca ~+ (closed circles) and at 1 p,M Ca 2+ after a-chymotrypsin treatment (open circles). Data are 
fit to the Hill equation. 

d i f ferent  Ca 2+ levels and  also after  a -chymot ryps in  t rea tment .  T h e  Kh values for Na + 
increased as the level o f  regula tory  Ca 2+ decreased.  For  the wild-type exchanger ,  the  
Kh values were 109, 39, and  25 mM Na § at 0.01, 0.1, and  1 o,M Ca 2+, respectively.  
After  a -chymot ryps in  t rea tment ,  the  Kh values for Na + were 20 m M  in the  presence  
o f  1 p,M Ca ~+ and  18 m M  in the  absence o f  Ca 2+ (not shown). Similar  results  were 
ob ta ined  with pa tches  con ta in ing  the wild-type (n = 3) and  two g roup  A mutants ,  
D453V (n = 3) and  R441L (n = 4). For  mutan t  exchanger  D498I,  the  Kh values for 
Na § were 510, 28, and  20 mM at 1 p,M Ca 2+, 5 p~M Ca 2+ and  after  0t-chymotrypsin 
t rea tment ,  respectively.  Hill coefficients for all curves in Fig. 11 r anged  f rom 1.4 to 
2.1. Consis tent  results  were ob ta ined  f rom ano the r  pa tch  conta in ing  D498I and  from 
the o the r  g roup  B mu tan t  exchangers ,  D448V (n = 3) and  D500V (n = 3). Kh values 
for Na § were ob ta ined  by curve fit t ing and  values g rea te r  than  100 mM are  unlikely 
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to be quantitatively accurate as no Na § levels above 100 mM were used in the 
experiments.  Nevertheless, the tendency of  the Kh value for Na § to increase as Ca 2+ 
was decreased was always qualitatively clear. 

D I S C U S S I O N  

Intracellular Ca ~+ regulates activity o f  the cardiac Na+-Ca z+ exchanger  at a binding 
site separate f rom the Ca z+ transport  site. Experimentally Ca ~+ regulation is most  
easily studied in inside-out giant excised patches with the exchanger  in the reverse 
mode  (extracellular Ca 2+ exchanging for intracellular Na+). For optimal exchange 
activity, Na § and Ca 2+ must be on opposite sides o f  the patch membrane  but trace 
Ca 2+ must  also be in the bath medium. Regulation o f  exchanger  activity by Ca 2+ is 
demonst ra ted  in Fig. 2. The  stimulatory effect o f  regulatory Ca 2+ has been modeled 
in detail as the removal of  a form of  inhibition referred to as Is inactivation 
(Hilgemann et al., 1992a). T he  effects o f  regulatory Ca 2+ are complicated by the fact 
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FIGURE 12. Transport cycle and regulation 
of the Na+-Ca 2§ exchanger. The ion bind- 
ing sites alternately face the intracellular or 
extracellular medium in the Et or E2 states, 
respectively. The reaction mechanism is 
consecutive with three Na + ions or one Ca 2+ 
ion being translocated in separate reaction 
steps. The exchanger can enter two inacti- 
vated states, I] and 12. The binding of three 
Na + ions at the cytoplasmic surface leads to 
the El '3Na state from which a fraction of the 

exchangers enters the 11 inactivated state. The population of 11 exchangers is modulated by 
Ca 2+ as indicated by Ca in parentheses. The presence of Ca 2+ will tend to decrease occupancy 
of the Ii state. In contrast, 12 (Na+-independent) inactivation is directly controlled by the 
binding of Ca 2+ at a regulatory site. For detailed analyses of 1~ and 12 inactivation, see 
Hilgemann et al., 1992a, b; Matsuoka and Hilgemann, 1994. 

that Ca ~+ also has a modulatory influence on a second form of  inactivation, Ii or  
Na+-dependent  inactivation (Hilgemann et al., 1992a). Thus,  for example,  higher  
levels o f  regulatory Ca 2+ tend to decrease the magni tude  of  I1 inactivation. This is 
shown schematically in Fig. 12. 

The  cloning of  the Na+-Ca 2+ exchanger  (Nicoll et al., 1990) has facilitated the 
study o f  Ca 2+ regulation. Analysis o f  mutants  expressed in Xenopus oocytes initially 
suggested that the large intracellular domain of  the exchanger  was involved in Ca z+ 
regulation (Matsuoka et al., 1993). Subsequently, using biochemical techniques, we 
found that a region of  the intracellular loop bound  45Ca2+ with high affinity (Levitsky 
et al., 1994). The  Ca 2+ binding region extended from amino acid 371 to amino acid 
508. Mutations of  certain aspartic acid residues within two acidic segments (Fig. 1 
and Table II) markedly decreased Ca ~§ binding. Here, we address the question of  
whether  the biochemically determined Ca ~+ binding site is also the functionally 
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important  Ca 2+ regulatory site. Additionally, we examine the functional conse- 
quences of  mutations within this region. 

The data demonstrate that the Ca 2+ binding region is the site of  Ca 2+ regulation. 
There  is an excellent correlation between effects of  mutations on Ca 2+ binding and 
on Ca z+ regulation. As shown in Table II, all exchangers with reduced Ca 2+ binding 
also had reduced affinity for Ca 2+ regulation. We conclude that we have identified the 
Ca 2+ binding site responsible for secondary Ca 2+ regulation of the Na+-Ca 2+ 
exchanger. 

Outward Na+-Ca z+ exchange current declines and becomes inactivated when 
regulatory Ca ~+ is removed from the bath (intracellular) medium (Figs. 5 and 6; 
Table II). Mutation of the Ca 2+ binding region altered the kinetics of  the inactivation. 
For mutants with decreased Ca 2+ affinity (group B), inactivation was much more 
rapid. This is consistent with a more rapid dissociation of Ca ~+ from a binding site 
with decreased Ca 2+ affinity. However, the time courses are relatively slow (e.g., 
th ---- 10.8 s for the wild-type exchanger) and the rate limiting step is perhaps more 
likely to be a slow conformational change subsequent to the Ca 2+ dissociation step; 
mutants with altered Ca 2+ binding sites may undergo these conformational changes 
more rapidly. In any case, the correlation between apparent  Ca 2+ affinities and 
inactivation rates is quite striking. 

Outward Na+-Ca 2+ exchange currents can also be activated by the application of 
regulatory Ca ~+ to an intracellular bathing medium which already contains Na + (Fig. 
6, bottom; Table II). Again, altered kinetics are induced by mutation of the Ca 2+ 
binding site. Group B exchangers activate more rapidly than group A exchangers. 
Here, a possible interpretation is even more complex as the rate of net Ca 2+ binding 
will depend on both the association and dissociation rate constants, and the rate of 
exchanger activation probably again depends on slow conformational changes. An 
increase in the Ca 2+ dissociation rate constant would by itself lead to an increase in 
the rate of net Ca 2+ binding in the absence of any change in the Ca 2+ association rate 
constant. 

Modulation of 11 (Na+-dependent) inactivation by Ca 2+ may also play a role. That  
is, for the wild-type exchanger, Ca ~+ has a direct regulatory effect by relieving Iz 
inactivation but also decreases the extent of  Na+-dependent  (Ii) inactivation over a 
period of several seconds (Hilgemann et al., 1992a,b), presumably due to a slow 
conformational change of the protein. Mutations of  the Ca 2+ binding site could alter 
the kinetics of  activation and inactivation of exchange currents by modulating I1 
inactivation. Indeed, Na+-dependent  inactivation was consistently much less pro- 
nounced in exchanger mutants with reduced Ca 2+ affinity. This is seen, for example, 
in Figs. 2 and 10 where the transient component  of  current for the wild-type 
exchanger is almost absent for group B mutants D448V, D498I, and D500V. Since 
the response of exchangers in the 11 inactivated state to Ca 2+ is slow, the response to 
Ca 2+ of mutants with diminished Na+-dependent inactivation (I1) would be more 
rapid and this may contribute to the observed effects. The results suggest that the 
modulation of 11 inactivation by Ca 2+ is due to the same Ca 2+ binding site which 
controls 12 inactivation. Overall, regulation of the exchanger system displays a high 
degree of complexity. 

The activation of outward current upon application of Na + to exchangers preincu- 
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bated with regulatory Ca 2+ was altered for mutants in group B; activation was slower 
than that for the wild-type exchanger (Fig. 2). We hypothesize that the slow activation 
is related to abnormal Ca 2+ regulation. Perhaps, for mutants with low Ca 2§ affinity, 
Na § is able to interact with the Ca 2+ regulatory site to produce the slow activation but 
further work is needed to clarify this mechanism. In contrast, activation of inward 
current by Ca 2+ was rapid for both mutant and wild-type exchangers (Fig. 7). In this 
case, no Na § is present at the intracellular surface. No Na+-dependent inactivation 
will occur and the rapid response is consistent with the interpretation that Ca ~§ 
regulation is slowed by I1 inactivation. 

Interestingly, we have recently cloned a second Na+-Ca 2§ exchanger isoform 
(NCX2; Li, Matsuoka, Hryshko, Nicoll, Bersohn, Burke, Lifton, and Philipson, 1994) 
with some properties similar to the low Ca 2+ affinity mutants of NCXl described 
here. The affinity of NCX2 for regulatory Ca 2§ was low (Kh ------ 1.5 v,M) and NCX2 
also showed rapid inactivation kinetics upon the removal of  regulatory Ca 2§ Several 
splicing isoforms of NCXl also exist (Kofuji, Lederer, and Schulze, 1994; Lee, Yu, 
and Lytton, 1994) for which Ca 2§ regulation has not yet been characterized. 

Although it has been clear that intracellular Ca 2+ has a strong modulatory effect on 
reverse Na+-Ca 2+ exchange, it has never been clear as to whether Ca 2+ also regulates 
the forward or Ca 2+ efflux mode of exchange (intracellular Ca 2+ exchanging for 
extracellular Na§ The problem has been that in the forward mode an alteration of 
intracellular Ca 2+ directly affects the level of Ca 2§ at both the transport and 
regulatory sites. The  availability of mutants with low affinity for Ca 2+ regulation 
allowed us to address this problem. For the wild-type exchanger, the apparent  
affinities for regulatory and transported Ca 2§ are ~ 0.4 and 7 v,M, respectively, and 
the activation of inward current (Fig. 8) is thus controlled by the availability of Ca 2+ at 
the transport site. For a mutant  with especially low affinity for Ca 2+ such as D447V + 
D498I (Levitsky et al., 1994), however, the activation curve is limited by the 
availability of  Ca 2§ at the regulatory site (Fig. 8, bottom). This interpretation is 
confirmed by the results obtained after tx-chymotrypsin treatment, which removes 
Ca 2+ regulation and leaves the exchanger in an activated state. After ct-chymotrypsin, 
the Ca 2+ dependence of inward exchange current is only a function of the Ca 2+ level 
at the transport site. As would be excepted, the Ca 2§ activation curve for the 
wild-type exchanger is unaffected by 0t-chymotrypsin, as the Ca 2+ dependence was 
already dominated by the Ca 2+ level at the transport site. For mutant exchanger 
D447V + D498I, however, the apparent  affinity for Ca ~+ activation shifts from that at 
the regulatory site to that at the transport site. After 0t-chymotrypsin treatment, the 
wild-type and mutant  exchangers are indistinguishable (Fig. 8). We conclude that 
forward mode Na+-Ca 2§ exchange is modulated by Ca 2§ at the regulatory site. In 
vivo, with Ca 2+ at the submicromolar level, secondary Ca 2+ regulation may exert an 
important influence on Ca 2§ extrusion. 

We investigated the Na + dependence of the exchanger at different levels of  
regulatory Ca 2+ for wild-type and mutant exchangers (Figs. 10 and 11). This led us to 
the finding that at low intracellular Ca 2+ the apparent  affinity for intracellular Na § 
decreased markedly for both wild-type and mutant exchangers. The mechanism for 
this effect is unclear. Exchange activity is diminished at low regulatory Ca 2§ and, 
perhaps, the rate limiting step of the exchanger transport mechanism is altered. Such 
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an a l te ra t ion  by itself could  modify the  a p p a r e n t  affinity for Na  + (Hi lgemann,  Nicoll, 
and  Phil ipson,  1991). Alternatively,  the resul t  could  indicate  that  Ca 2+ regula t ion  
modif ies  intr insic t r anspor t  characterist ics of  the exchanger .  Previously, H i l g e m a n n  
et  al. (1992a) had  m o d e l e d  Ca ~+ regula t ion  to only modu la t e  the  n u m b e r  o f  
exchangers  in an active state. 

T h e  physiological  impl ica t ion  o f  the a l te red  Na § affinity is that  at low diastolic 
Ca ~+ levels the exchange r  will t end  to inactivate for mul t ip le  reasons.  T h e  low Ca 2§ 
will inhibi t  Ca 2§ efflux by l imit ing the  Ca 2+ level at the  Ca 2+ t r anspor t  site and  will 
inhibi t  bo th  influx and  efflux by causing Ca 2+ to dissociate f rom the Ca 2+ regula tory  
site. Addi t ional ly ,  Ca 2§ influx will be fur ther  inhib i ted  by the decrease  in a p p a r e n t  
Na + affinity at  the in t racel lu lar  Na  + t r anspor t  site. These  mechanisms  may decrease  
unnecessary  ion t r anspor t  du r ing  diastole.  

In  summary,  we have unequivocal ly ident i f ied  the  reg ion  o f  the  Na+-Ca 2§ ex- 
change  p ro t e in  respons ib le  for Ca ~+ regula t ion.  In  addi t ion,  we demons t r a t e  that  
bo th  the  Ca 2+ influx and  the Ca 2+ efflux modes  o f  the exchange r  are regu la ted  by 
in t racel lu lar  Ca 2+. Mutants  with a l te red  b ind ing  o f  regula tory  Ca ~+ have distinctive 
and  complex  kinetic pa t te rns  which are  not  fully in te rpre tab le .  Fu ture  muta t iona l  
analysis and  mode l ing  may improve  u n d e r s t a n d i n g  o f  the  exchange r  regula tory  
processes.  
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