Skip to main content
. 1998 Jun 1;111(6):795–805. doi: 10.1085/jgp.111.6.795

Table I.

Rate Constants Used in Simulation of Schemes I–III

Scheme SI (coupled model)
k 01 = 110 exp[−1.0(F/RT) (V + 120)] s−1
  (τact, −120 to −80 mV; see Fig. 7, Zhou et al., 1998)
k 10 = 66/{1.0 + exp[−0.70(F/RT) (V + 20)]} s−1
  (τtail, −20 to 80 mV; see Fig. 7, Zhou et al., 1998)
k 12 = 10 exp[−1.5(F/RT) (V + 120)] s−1
  (τi, −120 to 80 mV; see Fig. 8, Zhou et al., 1998)
k 21 = 4 exp[1.0(F/RT) (V − 40)] s−1
  (τrecovery, 40 to 0 mV; see Fig. 8, Zhou et al., 1998)
k 23 = 0.005 exp[−1.7(F/RT) (V + 30)] s−1
  (use dependent inactivation, hysteresis)
k 32 = 0.005 exp[3.0(F/RT) (V + 30)] s−1
  (use dependent recovery, hysteresis)
Scheme SII (independent model)
k 01, k 10, k 12, k 23, k 32 (same as Scheme I)
k21 = 4 exp[1.0(F/RT) (V) s−1
Scheme SIII (modified from Wang et al., 1997)
k 01 (same as Scheme I)
k10 = 2*30.8266 exp[0.64(F/RT) (V)] s−1
  (double values uses by Wang et al., 1997)
 (All other rate equations shifted by −5 mV)
k12 = 0.0689 exp[−1.1(F/RT) (V + 5)] s−1
k21 = 13.733 exp[1.0(F/RT) (V + 5)] s−1
k23 = 36.778 s−1
k32 = 23.761 s−1
k34 = 47.002 exp[−1.6(F/RT) (V + 5)] s−1
k43 = 22.348 exp[0.3(F/RT) (V + 5)] s−1

V is membrane potential in millivolts, F is Faraday's constant, R is the gas constant, T is temperature.