Table I.
Scheme SI (coupled model) |
k 01 = 110 exp[−1.0(F/RT) (V + 120)] s−1 |
(τact, −120 to −80 mV; see Fig. 7, Zhou et al., 1998) |
k 10 = 66/{1.0 + exp[−0.70(F/RT) (V + 20)]} s−1 |
(τtail, −20 to 80 mV; see Fig. 7, Zhou et al., 1998) |
k 12 = 10 exp[−1.5(F/RT) (V + 120)] s−1 |
(τi, −120 to 80 mV; see Fig. 8, Zhou et al., 1998) |
k 21 = 4 exp[1.0(F/RT) (V − 40)] s−1 |
(τrecovery, 40 to 0 mV; see Fig. 8, Zhou et al., 1998) |
k 23 = 0.005 exp[−1.7(F/RT) (V + 30)] s−1 |
(use dependent inactivation, hysteresis) |
k 32 = 0.005 exp[3.0(F/RT) (V + 30)] s−1 |
(use dependent recovery, hysteresis) |
Scheme SII (independent model) |
k 01, k 10, k 12, k 23, k 32 (same as Scheme I) |
k′21 = 4 exp[1.0(F/RT) (V) s−1 |
Scheme SIII (modified from Wang et al., 1997) |
k 01 (same as Scheme I) |
k″10 = 2*30.8266 exp[0.64(F/RT) (V)] s−1 |
(double values uses by Wang et al., 1997) |
(All other rate equations shifted by −5 mV) |
k″12 = 0.0689 exp[−1.1(F/RT) (V + 5)] s−1 |
k″21 = 13.733 exp[1.0(F/RT) (V + 5)] s−1 |
k″23 = 36.778 s−1 |
k″32 = 23.761 s−1 |
k″34 = 47.002 exp[−1.6(F/RT) (V + 5)] s−1 |
k″43 = 22.348 exp[0.3(F/RT) (V + 5)] s−1 |
V is membrane potential in millivolts, F is Faraday's constant, R is the gas constant, T is temperature.