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abstract

 

HERG encodes an inwardly-rectifying potassium channel that plays an important role in repolariza-
tion of the cardiac action potential. Inward rectification of HERG channels results from rapid and voltage-depen-
dent inactivation gating, combined with very slow activation gating. We asked whether the voltage sensor is impli-
cated in the unusual properties of HERG gating: does the voltage sensor move slowly to account for slow activation
and deactivation, or could the voltage sensor move rapidly to account for the rapid kinetics and intrinsic voltage
dependence of inactivation? To probe voltage sensor movement, we used a fluorescence technique to examine
conformational changes near the positively charged S4 region. Fluorescent probes attached to three different res-
idues on the NH

 

2

 

-terminal end of the S4 region (E518C, E519C, and L520C) reported both fast and slow voltage-
dependent changes in fluorescence. The slow changes in fluorescence correlated strongly with activation gating,
suggesting that the slow activation gating of HERG results from slow voltage sensor movement. The fast changes in
fluorescence showed voltage dependence and kinetics similar to inactivation gating, though these fluorescence
signals were not affected by external tetraethylammonium blockade or mutations that alter inactivation. A work-
ing model with two types of voltage sensor movement is proposed as a framework for understanding HERG chan-
nel gating and the fluorescence signals.
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I N T R O D U C T I O N

 

The human ether-à-go-go related gene (HERG)* K

 

�

 

channel is one of the myriad of ion channels responsi-
ble for generating the cardiac action potential. HERG
codes for a voltage-activated potassium channel that is
especially important during the repolarization phase of
the action potential (Curran et al., 1995; Sanguinetti et
al., 1995; Trudeau et al., 1995). Current through this
channel is thought to correspond to a potassium cur-
rent previously studied in myocytes, named I

 

Kr

 

 (Shi-
basaki, 1987; Sanguinetti and Jurkiewicz, 1990; San-
guinetti et al., 1995).

The hydropathy plot for the HERG protein suggests
that this channel resembles the 

 

Shaker

 

 potassium chan-
nel; both have a six transmembrane region subunit
structure with a highly charged fourth transmembrane
segment. Despite this similarity, HERG channels be-
have very differently from 

 

Shaker

 

 channels: HERG be-
haves like an inward rectifier rather than an outward
rectifier (Sanguinetti et al., 1995; Trudeau et al., 1995).
This anomalous behavior is due to the unusual kinetics
of HERG gating, with slow activation gating and fast in-
activation gating. During depolarization, HERG chan-
nels slowly activate then rapidly inactivate, resulting in
little outward current; during subsequent hyperpolar-

ization, channels recover rapidly from inactivation but
deactivate slowly, resulting in a large inward current.

The fast inactivation mechanism of HERG channels
resembles the C-type inactivation mechanism observed
in 

 

Shaker

 

 potassium channels (Schönherr and Heine-
mann, 1996; Smith et al., 1996). C-type inactivation re-
sults from a constriction of the outer mouth of the pore
that occludes the flow of potassium ions (Choi et al.,
1991; Hoshi et al., 1991; Yellen et al., 1994; Liu et al.,
1996). This process occurs slowly over several hundred
milliseconds and is not intrinsically voltage-dependent.
HERG inactivation also appears to result from a confor-
mational change at the outer mouth of the pore; how-
ever, HERG inactivation is very fast, occurring in milli-
seconds, and it is intrinsically voltage-dependent. In
voltage-gated sodium and potassium channels, the ap-
parent voltage dependence of inactivation derives not
from an intrinsic voltage dependence of inactivation
but rather from its coupling to voltage-dependent acti-
vation. This cannot be the case for HERG because acti-
vation is much slower than inactivation.

What molecular mechanisms underlie the voltage-
dependent gating of HERG channels? The voltage de-
pendence of this family of potassium channels has long
been attributed to the highly charged fourth trans-
membrane segment (S4). Experiments on 

 

Shaker

 

 potas-
sium channels show that the S4 region moves rapidly in
response to voltage and that channel activation follows
this movement (Larsson et al., 1996; Mannuzzu et al.,
1996; Cha and Bezanilla, 1997). Assuming that the S4
region is at least partly responsible for the voltage-

 

Address correspondence to Dr. Gary Yellen, Department of Neurobi-
ology, Harvard Medical School, 220 Longwood Avenue, Boston, MA
02115. Fax: (617) 432-0121; E-mail: gary_yellen@hms.harvard.edu

*

 

Abbreviations used in this paper

 

: HERG, human ether-à-go-go re-
lated gene; TMRM, tetramethylrhodamine maleimide. 



 

276

 

Fast and Slow Voltage Sensor Movements in HERG

 

dependent gating of HERG channels, we asked how
movement of the HERG S4 region relates to gating.
Perhaps, the voltage sensor moves slowly, and this ac-
counts for the slow activation and deactivation kinetics.
Alternatively, the voltage sensor might move rapidly,
and the transitions after voltage sensor movement that
lead to channel opening are slow. If the voltage sensor
were to move quickly, this movement might also ac-
count for the voltage dependence of inactivation.

We sought to answer this question using fluorescence
measurements to monitor S4 movement in HERG
(Mannuzzu et al., 1996; Cha and Bezanilla, 1997; Man-
nuzzu and Isacoff, 2000). A cysteine engineered into
the channel is covalently labeled with a fluorescent
probe, and changes in the fluorescence of the attached
probe are then monitored as the voltage is changed us-
ing a cut-open oocyte voltage clamp. These changes in
fluorescence are believed to reflect conformational
changes that occur in the region of the protein near the
probe. In 

 

Shaker

 

, such fluorescence changes correlate
with S4 movement as monitored by gating currents.

We studied three consecutive positions in HERG at
the NH

 

2

 

-terminal end of the S4 region on the external
side of the channel. Although these positions are lo-
cated next to one another, each revealed a very differ-
ent fluorescence profile. The measured fluorescence
changes have both fast and slow components. The slow
component correlates well with both the kinetics and
voltage dependence of activation gating, and the fast
component bears similarity to the kinetics and voltage
dependence of inactivation. The results suggest that a
slow conformational change occurs near the S4 region
of HERG, which could account for the slow activation
observed in HERG.

 

M A T E R I A L S  A N D  M E T H O D S

 

Molecular Biology and Channel Expression

 

The cDNA encoding wild-type HERG was subcloned between the
EcoRI and the HindIII restriction sites in the pGEMHE expres-
sion vector. pGEMHE, provided by Emily Liman (University of
Southern California, Los Angeles, CA), was constructed by sub-
cloning the 3

 

�

 

 and 5

 

�

 

 untranslated regions of the 

 

Xenopus

 

 

 

�

 

-globin
gene in the pGEM3Z expression vector (Liman et al., 1992).
HERG mutants were constructed using an oligonucleotide-
directed mutagenesis method, and all mutants were sequenced to
confirm mutation. The NH

 

2

 

-terminal deletion mutant, HERG

 

�

 

2–137, was provided by Roderick MacKinnon (Rockefeller Uni-
versity, New York, NY).

cRNA was transcribed using the T7 mMessage machine kit
(Ambion). 50–100 nL of cRNA was injected into each 

 

Xenopus

 

oocyte, and experiments were performed 1–7 d after injection.
Oocytes were incubated in the following solution: 98 mM NaCl, 2
mM KCl, 1.8 mM CaCl

 

2

 

, 1.0 mM MgCl

 

2

 

, 10 mM HEPES, 50 U/ml
penicillin, and 50 

 

�

 

g/ml streptomycin, pH 7.6.

 

Labeling Oocytes

 

For labeling, oocytes were incubated in a depolarizing solution
containing 100 mM KCl, 1.8 mM CaCl

 

2

 

, 1.0 mM MgCl

 

2

 

, 10 mM

HEPES and 5 

 

�

 

M tetramethylrhodamine-5-maleimide (Molecu-
lar Probes) at pH 7.6 for 30 min. The solution was cooled on ice
before and during labeling.

 

Treatment of Oocytes before Recording

 

We encountered a persistent problem while recording from 

 

Xeno-
pus

 

 oocytes expressing HERG channels, which we had never ob-
served while recording from HEK cells expressing HERG. During
depolarization to 

 

�

 

10 mV, the outward current increases to a
seemingly steady-state level, and then it suddenly increases again
to a new steady-state level. This was observed at depolarizations be-
tween about 

 

�

 

20 and 40 mV and not at greater depolarizations.
When this effect was seen during the depolarizing step, the tail
current decay upon hyperpolarization was greatly slowed. The se-
verity of this problem varied widely between batches of oocytes,
but it was consistent enough to prevent accurate recordings of the
kinetics of both current and fluorescence traces. This problem was
never observed in recordings from 

 

Xenopus

 

 oocytes expressing the
HERG “inactivation removed” mutant (G628C:G631C).

We suspected that this effect was due to potassium accumula-
tion on the external side of the membrane during the course of
depolarization; the accumulation somehow interferes with chan-
nel gating and/or voltage-clamping of the membrane to produce
the time-dependent changes in the measured current. Potassium
accumulation can occur easily in oocytes because the membrane
has numerous invaginations. If the currents are large or sus-
tained over a long period of time, significant potassium accumu-
lation may occur in the small spaces created by invaginations of
the membrane. We found that incubating the labeled oocytes in
a hypoosmotic solution (50% ND96) for 20–30 min before re-
cording eliminated the effect. Presumably pre-swelling the oo-
cytes in this solution smooths the surface of the membrane suffi-
ciently to reduce potassium accumulation. Unless otherwise
noted, we performed all physiological measurements in a solu-
tion containing 10 mM KCl, 88 mM NaCl, 1.8 mM CaCl

 

2

 

, 1.0 mM
MgCl

 

2

 

, and 10 mM HEPES, pH 7.6.

 

Data Acquisition and Analysis

 

Ionic currents and fluorescence measurements were acquired
with a Digidata 1200A board (Axon Instruments, Inc.) interfaced
to a Pentium-based PC using pClamp7 software (Axon Instru-
ments, Inc.). Currents and fluorescence were simultaneously ac-
quired in two different channels of the Digidata 1200A; both
current and fluorescence data were filtered at 0.2–1 kHz and dig-
itized at 0.5–10 kHz. Fluorescence data were filtered using an
8-pole Bessel filter (Frequency Devices).

All analysis was performed using pClamp7 software. Some
traces have been additionally filtered for display. Exponential fits
were done using Chebyshev minimization. Because the baseline
fluorescence decreases during recording due to photobleaching
of the fluorophore, all fluorescence traces have been corrected
for bleaching. In every experiment, the fluorescence change at a
constant potential (generally the holding potential) was mea-
sured and fit to a single or double exponential. This fit was sub-
tracted from all traces collected from the oocyte.

 

Fluorescence Setup

 

The fluorescence setup is modeled after that used by Cha and
Bezanilla (1997). The IM-35 Zeiss microscope (Carl Zeiss, Inc.)
houses most of the optics. The light source is a 150-W tungsten-
halogen lamp powered by a 6542A DC power supply (Hewlett-
Packard); the output of the lamp is controlled by a TTL trig-
gered shutter (Vincent Associates) to minimize photobleaching
of the fluorescent probe. Incoming light is filtered with a
525RDF45 excitation filter (Omega Optical) and transmitted
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through a 560DRLP dichroic mirror. Light transmitted through
the excitation filter is focused with a 20

 

�

 

 objective, numerical
aperture of 0.5 (Spindler and Hoyer), into a fiber optic cable
(FSUS780800920; Polymicron Technologies) 760 

 

�

 

m in diame-
ter and numerical aperture of 0.66. The 0.75-m cable extends
from 

 

�

 

1 cm above the microscope objective to 

 

�

 

0.5 cm above
the oocyte. Light collected from the oocyte through the fiber op-
tic is transmitted through the dichroic mirror then filtered with a
565EFLP emission filter. Light exiting through the camera port
on the microscope is focused with two lenses, focal lengths 40
mm and 6 mm, (Edmund Scientific) onto a photodiode (model
PIN020A; UDT Sensors); both the lenses and the photodiode are
mounted directly on the camera port of the microscope. Output
from the photodiode is amplified by an Axopatch 200B amplifier
(Axon Instruments, Inc.).

Voltage-clamp of the oocyte membrane was performed using a
Dagan CA-1B cut-open oocyte clamp (Dagan Corporation, Min-
neapolis, MN). The bottom of the upper chamber was painted
with black India ink to assure that the emitted fluorescence was
coming only from the cap of the oocyte where currents are re-
corded. To gain electrical and chemical access to the inside of
the oocyte the membrane facing the bottom chamber was per-
meabilized with 0.5% saponin.

 

R E S U L T S

 

Unlabeled and Labeled Cysteine Mutants Gate 
Almost Normally

 

To investigate the role of S4 in HERG activation and in-
activation, we studied the fluorescence of three HERG

cysteine mutants covalently labeled with a fluorescent
dye, tetramethylrhodamine maleimide (TMRM). These
three mutant sites (E518C, E519C, and L520C) are lo-
cated on the NH

 

2

 

-terminal end of the S4 region on the
external side of the channel, as shown in Fig. 1 A. For
comparison, Fig. 1 B shows the amino acid sequence of
both HERG and 

 

Shaker

 

 near the S4 region, with the
three HERG residues studied here underlined. The un-
derlined residues in the 

 

Shaker

 

 sequence indicate sites
that have been studied previously using this fluores-
cence approach (Mannuzzu et al., 1996; Cha and Beza-
nilla, 1997, 1998; Loots and Isacoff, 1998). Fluorescence
changes measured from probes attached to these sites
in the 

 

Shaker

 

 channel correlate with movement of the S4
region, as assayed by gating currents and ionic current.

Before studying the fluorescence of probes attached
to these introduced cysteines, we characterized the gat-
ing of the mutant channels before and after reaction
with TMRM. The general behavior of all three HERG
mutants both before and after modification with
TMRM is similar to the behavior of wild-type HERG, al-
though some differences in gating can be noted. The
g-V and the steady-state inactivation-voltage (h

 

∞

 

) rela-
tionships are shown in Table I. All three mutations de-
crease the slope of the g-V relationship; the largest de-
crease is seen in E518C (z

 

	

 

 decreases by 1.6 equivalent

Figure 1. Location of HERG cysteine mutants. (A) Putative transmembrane topology of a single subunit of the HERG potassium chan-
nel. Mutations are located at the end of the S3-S4 linker nearest to the S4 segment, shown by the cartoon dye molecule at the top. (B)
Amino acid sequence of the S4 region for HERG and the Shaker potassium channel. Positively charged residues are shown in bold. The un-
derlined residues in the HERG sequence were individually mutated to cysteines and labeled with a fluorescent probe for further study.
The underlined residues in the Shaker sequence have been studied previously using this fluorescence technique (Mannuzzu et al., 1996;
Cha and Bezanilla, 1997, 1998; Loots and Isacoff, 1998).
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charges). Modification by TMRM generally shifts the
midpoint of the g-V negative by 5–10 mV; modification
also decreases the slope of the g-V for L520C by 

 

�

 

20%.
Mutation has little effect on the h

 

∞

 

 

 

curves for E520C
and E519C, but the h

 

∞

 

 

 

curve of E518C is shifted to
slightly more positive voltages. Wild-type HERG chan-
nels treated with TMRM showed no voltage-dependent
changes in fluorescence (unpublished results); there-
fore, it is unlikely that the observed fluorescence
changes are from TMRM labeling of native cysteines in
other regions of the channel.

 

Fluorescence Signals in Response to a Single Voltage Step 
Contain Fast and Slow Components

 

Fig. 2 shows simultaneous measurements of fluores-
cence and ionic current for the three labeled cysteine
mutants in response to a 1-s voltage step to 30 mV. Al-
though the labeled residues are adjacent to one an-
other, they exhibit very different fluorescence signals.
The fluorescence signals recorded from E518C-TMRM
and E519C-TMRM are markedly biphasic. The two
components of the signal have very different time
courses (fast and slow), and the fluorescence changes
occur in different directions (increase and decrease).
On depolarization, the fluorescence signal from E518C-
TMRM reveals a small, rapid decrease followed by a

slow increase to a steady-state level; upon hyperpolar-
ization, the fluorescence rapidly decreases and then
slowly increases to a steady-state level. The fluorescence
signal for E519C-TMRM has fast and slow components
similar to E518C-TMRM, although the relative magni-
tude of the components is quite different. The magni-
tude of the rapid decrease on depolarization is much
greater in fluorescence traces recorded from E519C-
TMRM. Curiously, for both mutants, the fluorescence
changes in response to both depolarizing and hyperpo-
larizing voltage steps are in the same direction (a fast
decrease followed by a slow increase). In contrast to
E518C and E519C, fluorescent probes attached to
L520C (the position closest to the S4 region) exhibit
fluorescence changes with only a slow component. The
fluorescence decreases slowly upon depolarization and
increases slowly upon hyperpolarization.

 

The Slow Component of the Fluorescence in L520C-TMRM Is 
Correlated with Activation Gating

 

We used L520C-TMRM to focus on the properties of
this slow component of the fluorescence signal. In Fig.
3, the kinetics of the activating and deactivating cur-
rent are compared with the kinetics of the fluorescence
changes for L520C-TMRM. Because the outward cur-
rent during depolarization was very small, we measured
the kinetics of activation by plotting the development
of the tail current over time (Fig. 3, top left panel, enve-
lope of tails protocol). The activation kinetics closely
match the kinetics of the fluorescence during depolar-
ization (Fig. 3, solid line, bottom panel). A similar com-
parison for deactivation is shown on the right side of
Fig. 3. The deactivating tail current (dashed line) has
two components measuring 

 

�

 

80 and 

 

�

 

330 ms. The
faster component (thick gray line) is larger in magni-
tude, comprising 83% of the total current, and it
closely follows the kinetics of the fluorescence change
upon hyperpolarization.

 

1

 

To provide additional evidence for the relationship
between the slow fluorescence and activation gating,
we used an NH

 

2

 

-terminal deletion mutant that speeds
the rate of deactivation (Schönherr and Heinemann,
1996; Spector et al., 1996; Wang et al., 1998). The NH

 

2

 

-

 

T A B L E  I

 

Gating Parameters for Mutant and Modified Channels

 

Midpoint z

 

	

 

n

 

g-V:

Wild type

 

�

 

17.6 

 




 

 0.7 3.6 

 




 

 0.2 7

E518C

 

�

 

21.4 

 




 

 1.6 2.0 

 




 

 0.1 3

E518C-TMRM

 

�

 

30.2 

 




 

 2.2 2.2 

 




 

 0.2 5

E519C

 

�

 

15.4 

 




 

 3.0 2.6 

 




 

 0.1 6

E519C-TMRM

 

�

 

20.6 

 




 

 1.3 2.3 

 




 

 0.1 6

L520C

 

�

 

15.0 

 




 

 0.8 3.1 

 




 

 0.1 4

L520C-TMRM

 

�

 

25.6 

 




 

 2.4 2.4 

 




 

 0.1 7

Steady-state Inactivation-V

 

 

 

(h

 

∞

 

):

Wild type

 

�

 

96.4 

 




 

 4.1 0.7 

 


 

 

0.1 5

E518C

 

�

 

76.0 1.1 1

E518C-TMRM

 

�

 

75.4 

 




 

 5.9 0.9 

 




 

 0.1 3

E519C

 

�

 

79.7 

 




 

 3.4 0.9 

 




 

 0.1 3

E519C-TMRM

 

�

 

90.9 

 




 

 3.0 0.7 

 




 

 0.1 3

L520C

 

�

 

95.8 

 




 

 3.3 0.8 

 




 

 0.1 3

L520C-TMRM

 

�

 

98.7 

 




 

 8.3 0.7 

 




 

 0.1 2

(g-V) To obtain these values currents from 

 

Xenopus

 

 oocytes expressing
each construct were recorded in response to 2-s voltage steps to potentials
ranging from 

 

�

 

90 to 70 mV followed by a step to 

 

�

 

110 mV. Plots for each
experiment were fit to a Boltzmann function, and the average midpoint
and slope (z

 

	

 

) are shown with standard errors. 

 

n

 

 is the number of
experiments for each construct. To obtain the g-V curve, the peak current
during the hyperpolarizing step was plotted against the voltage of the
depolarizing step. (h

 

∞

 

) The steady-state inactivation as a function of
voltage for each mutant was plotted using the protocol described in Fig. 7. 

 

1

 

In many experiments, fits of the current and the fluorescence reveal
that activation is slightly slower than the slow fluorescence and that de-
activation is slightly faster than the fluorescence (by up to 

 

�

 

20%). This
discrepancy may be due to a difference in the activation and deactiva-
tion kinetics of labeled and unlabeled channels. The fluorescence is
reporting changes that occur exclusively in labeled channels, but the
current reports the kinetics of both labeled and unlabeled channels.
For all three mutants, the g-V relationship of labeled channels is
shifted 5–10 mV to the left of the g-V of unlabeled channels, and this
slight shift may account for the slight difference between the fluores-
cence and current kinetics. Over a range of voltages, the steady-state
fluorescence-voltage relationship (F-V; Fig. 4, closed circles) and the
g-V relationship (Fig. 4, open circles) are nearly identical.
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Figure 2. Fluorescence signals and current simultaneously recorded in response to a single voltage step from oocytes expressing E518C,
E519C, or L520C and treated with TMRM. In each recording, the membrane was held at �90 mV, depolarized to 30 mV for 1 s, and then
stepped to �110 mV.

Figure 3. L520C-TMRM fluorescence signals during channel activation and deactivation. (top left) Currents resulting from an envelope
of tails protocol (voltage records shown below); oocytes were depolarized from �90 to �30 mV for varying durations, and then hyperpolar-
ized to �110 mV. The time course of the peak inward tails reveals the time course of activation during the depolarizing step. (top right) De-
activating tail current measured at �110 mV after a 2-s depolarization to �30 mV. (bottom) The kinetics of the fluorescence are compared
with the kinetics of activation and deactivation. From a holding potential of �90 mV, the membrane was depolarized to �30 mV for 2 s, and
then stepped to �110 mV. The fluorescence trace is unaveraged. The solid gray line at left plots the kinetics of activation as measured by
currents resulting from the envelope of tails protocol (top left); the peak tail current upon hyperpolarization to �110 mV is plotted as a
function of time (� � 84 ms). The thin solid line at right shows the deactivating tail current from the top right panel, scaled to the magni-
tude of the fluorescence change. This tail current was best fit with two exponentials; the faster component (� � 83 ms) comprises 83% of
the total magnitude, and the slower component (� � 334 ms) makes up the remaining 17%. The solid gray line at right plots only the faster
of the two components, scaled to match the fluorescence. For comparison, �F on depolarization � 67 ms and �F on hyperpolarization � 88 ms.
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terminal deletion combined with L520C-TMRM (giv-
ing L520C:

 

�

 

2–137-TMRM) shows both the predicted
faster deactivation and correspondingly faster kinetics
of fluorescence on hyperpolarization (Fig. 5). Little
change occurs in the channel opening kinetics or in
the fluorescence signal during depolarization (unpub-
lished results).

 

A Fast Component of Fluorescence in E519C-TMRM and 
E518C-TMRM Tracks Inactivation

 

The fast fluorescence changes seen with E519C-TMRM
and E518C-TMRM upon hyperpolarization are particu-
larly interesting because they occur while rapid voltage-
dependent recovery from inactivation is observed. We

compared the kinetics of the current and fluorescence
signals, both during recovery from inactivation and
during reinactivation (Fig. 6), using a three-step proto-
col (Smith et al., 1996). After a long depolarizing step
to activate and inactivate the channels, a brief hyperpo-
larization allows recovery from inactivation and a sec-
ond depolarizing step produces reinactivation. Fig. 6
(bottom panels) shows fluorescence traces (thin solid
line) and the current traces (thick solid line) scaled to
match the magnitude of the fluorescence changes. For
E519C-TMRM, the kinetics of the current and fluores-
cence traces are very similar both during recovery from
inactivation and during reinactivation. The current
shown for E518C-TMRM slightly leads the fluorescence
signal during recovery from inactivation and slightly
lags the fluorescence signal during reinactivation.

The voltage dependence of the fast component of the
fluorescence is compared with the steady-state inactiva-
tion-voltage relationship for E519C-TMRM and E518C-
TMRM in Fig. 7. Fig. 7 A shows the protocol used to de-
termine the steady-state inactivation-voltage curve for
each mutant. During an initial 1-s depolarization, chan-
nels activate and then rapidly inactivate. During the brief

Figure 4. Voltage dependence of the current and the slow fluo-
rescence change reported by L520C-TMRM. (A) Fluorescence
changes measured during 2-s voltage steps ranging from �90 to 70
mV. The holding potential is �90 mV; the membrane is hyperpo-
larized to �110 mV after depolarization. (B) Voltage dependence
of the fluorescence at the end of a 2-s voltage pulse (closed circles,
indicated by the arrow in A). The F-V curve shown is an average of
six normalized F-V curves. Each point in an individual F-V curve
represents the average of the last 20 data points during depolariza-
tion. The average, normalized g-V relationship measured during
the same experiments is plotted for comparison (open circles, n �
6). Each g-V relationship was constructed as described for Table I.
Error bars denote the standard error. The curves shown are Boltz-
mann fits of each dataset (for F-V, Vmid � �30 mV, and z	 � 2.3 e0;
for g-V, Vmid � �28 mV, and z	 � 2.2 e0).

Figure 5. An NH2-terminal deletion produces similar effects on
deactivation and the fluorescence signal of L520C-TMRM. Current
traces (top) and fluorescence signals (middle) recorded from oo-
cytes expressing L520C-TMRM and L520C:�2–137-TMRM. Chan-
nel deactivation is monitored after a prolonged step to �30 mV (2 s
for L520C-TMRM; 1 s for L520C:�2–137-TMRM).
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Figure 6. Kinetics of the fast fluorescence changes for E519C-TMRM and E518C-TMRM parallel the kinetics of channel gating during
recovery from and re-onset of inactivation. (top) Fluorescence changes and current recorded from oocytes expressing 519C-TMRM (left)
or 518C-TMRM (right) during a three-step voltage protocol. The 519C-TMRM trace is the average of 10 recordings acquired at a sampling
rate of 1 kHz; the 518C-TMRM trace is the average of 20 recordings acquired at a sampling rate of 10 kHz. (bottom) The fluorescence
traces shown on an expanded time scale. Solid black lines show the current trace scaled to correspond to the magnitude of the fluores-
cence. Each segment of the pulse protocol was scaled independently to allow for a comparison of the kinetics.

 

hyperpolarizing pulse, channels recover from inactiva-
tion, and the degree of recovery depends on the voltage
of the pulse. The membrane is stepped to a constant po-
tential (0 mV) to allow outward current to flow through
the open channels. The magnitude of the outward cur-
rent immediately after the second depolarizing step (ar-
row) reflects the number of open channels at the end of
the previous brief pulse or, in other words, the fraction
of channels that have recovered from inactivation dur-
ing the brief pulse. Fig. 7 B shows a plot of the current at
the arrow as a function of voltage (Fig. 7 B, open cir-
cles). The current falls off at negative potentials because
the channels also begin to deactivate during the 30-ms
pulse; however, we can correct the current magnitude
for the amount of deactivation at each voltage. We fit de-
activating tail currents with an exponential function and

then back-extrapolated the fit to the beginning of the hy-
perpolarizing pulse. Assuming that deactivation and re-
covery from inactivation occur independently, we esti-
mated the fraction of channels that deactivate during a
30-ms pulse from the extrapolated fit and increased the
outward current (at the arrow) accordingly. The cor-
rected data (Fig. 7 B, closed circles) are well fit by a Boltz-
mann function, from which we estimate the voltage de-
pendence of HERG inactivation (z

 

	

 

 

 

�

 

 0.75 e

 

0

 

; V

 

mid

 

 

 

�
�

 

93 mV).
To obtain the magnitude of the initial fast change in

fluorescence upon hyperpolarization, the fluorescence
measured during hyperpolarizing voltage steps (Fig. 7,
C and E) was fit with either a single or double exponen-
tial function. The magnitude of the fast component of
the fluorescence signal (open triangles) as well as the
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Figure

 

 7. The voltage dependence of steady-state inactivation compared with the voltage dependence of the fast fluorescence change
measured for 519C-TMRM and 518C-TMRM. (A) Protocol used to determine the voltage dependence of inactivation. Oocytes injected
with wild-type HERG were depolarized to 30 mV for 1 s, briefly hyperpolarized to voltages ranging from 

 

�

 

130 to 10 mV for 30 ms and
stepped to 0 mV for 300 ms. (B) Open circles represent the current measured immediately after the second depolarizing step to 0 mV (A,
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steady-state inactivation (closed circles) are plotted as a
function of voltage for E519C-TMRM and E518C-TMRM
(Fig. 7, D and F, respectively). We find that the voltage
dependence of the fast fluorescence change on hyper-
polarization is similar to the voltage dependence of inac-
tivation for both E519C-TMRM and E518C-TMRM.

The caveat for these comparisons is that none of the
curves has reached a plateau by 

 

�

 

130 mV. Our ability to
measure the steady-state inactivation-voltage curve was
compromised at more negative voltages by the inability
to correct reliably for deactivation; as the decaying tail
currents get faster, the correction becomes more prone
to error (Fig. 7, A and B). The fluorescence magnitudes
shown in these curves were determined by fitting the
fluorescence with an exponential function. At very neg-
ative potentials, it is difficult to separate the kinetic com-
ponents of the fluorescence because the rates are faster
and the difference between components is less pro-
nounced than at positive potentials.

 

Manipulations that Alter HERG Inactivation Do Not Alter 
Fluorescence Changes

 

Application of external TEA slows the kinetics of
HERG inactivation, as though channels cannot inacti-
vate when TEA is bound (Smith et al., 1996). We exam-
ined the effect of 50 mM TEA on the fluorescence mea-
sured during the second depolarizing pulse of a three-
step protocol. Fig. 8 A shows that although TEA has a
large effect on the kinetics of inactivation, the kinetics
of the fluorescence are unchanged. We also measured
the fluorescence of E519C in the presence of a dou-
ble mutation (G628C:G631C) that effectively removes
HERG inactivation (Smith et al., 1996).

To assure that there was no fluorescence signal result-
ing from labeling of the cysteines located at positions
628 and 631, we recorded the fluorescence of the dou-
ble mutant G628C:G631C without E519C after treat-
ment with TMRM. No voltage-dependent fluorescence
changes were observed from the double mutant (unpub-
lished results), which is consistent with the possibility
that these two cysteines may form a disulfide bonded
pair. Such a disulfide is structurally reasonable, as judged
from the KcsA crystal structure (Doyle et al., 1998).

Fig. 8 B shows the current and fluorescence mea-
sured from E519C:G628C:G631C-TMRM. The current
trace confirms that inactivation has been removed; the
outward current is large compared with the inward cur-
rent, and during the second depolarization, we observe
no inactivation. The fluorescence trace is unaffected by
the removal of inactivation; all components of the fluo-
rescence seen with E519C-TMRM are observed in the
inactivation removed mutant. This result is similar to
the results found upon application of TEA; modulating
inactivation has no effect on the fluorescence signal.

At first glance, these results seem to rule out the pos-
sibility that the fluorescence change is associated with
the inactivation. Indeed, they do imply that the fast
fluorescence changes cannot simply be reporting inac-
tivation gating itself (i.e., the movement that results in
occlusion of the pore). But it remains possible that the
fluorescence signal reports a movement of the voltage
sensor that is coupled to inactivation.

Even if the coupling between the voltage sensor and
inactivation gating at the pore is not very strict, manip-
ulations of the pore should alter the behavior of S4
(and thus the fluorescence signal) under some condi-
tions, if the two are functionally connected. In the pres-
ence of TEA, the h

 

∞

 

 

 

curve is shifted to the right of the
control curve by 

 

�

 

20 mV (unpublished results), which
is consistent with the idea that TEA stabilizes the noni-
nactivated state. If there is coupling, this shift also
should be reflected as a shift in the voltage dependence
of the fluorescence signal, but it would be difficult to
measure this convincingly because of the potential er-
rors introduced by noise, by separating the multiple ki-
netic components in the fluorescence signal, and by
the need to correct for deactivation.

 

The Fast Component of Fluorescence Seen on Initial 
Depolarization Is Faster than any Observable Gating

 

To examine the fast component of the fluorescence sig-
nal seen upon the initial depolarization (from rest) in
greater detail, we applied a short depolarizing pulse and
measured the response from E519C-TMRM (Fig. 9
A). The fluorescence decreases rapidly on depolariza-
tion and increases rapidly on hyperpolarization. These

 

arrow) as a function of voltage. Currents decrease at negative potentials due to deactivation during the 30 ms pulse. The current after cor-
rection for deactivation (see 

 

results

 

) is shown by the closed circles. (C) Fluorescence signals reported by E519C-TMRM in response to a
tail current protocol; the membrane was depolarized to 30 mV for 1 s from a holding potential of 

 

�

 

90 mV, then stepped to potentials vary-
ing from 

 

�

 

130 to 

 

�

 

10 mV in 40-mV steps. Each trace is the average of 10 recordings acquired at a sampling rate of 1 kHz. (D) Voltage de-
pendence for the fast fluorescence change (

 

�

 

F) on hyperpolarization, normalized to the maximum observed 

 

�

 

F (closed circles). Fluores-
cence signals measured during the second voltage step were fit with either a single or double exponential to obtain the magnitude of the
initial fast change in fluorescence upon hyperpolarization. The average steady-state inactivation-voltage curve for E519C-TMRM is also
shown (open circles, 

 

n 

 

� 

 

3) normalized to a maximum value of 1. Steady-state inactivation-voltage curves were constructed as described for
B. (E) Fluorescence signals reported by E518C-TMRM in response to a tail current protocol; the membrane was depolarized to 90 mV for
200 ms from a holding potential of 

 

�

 

90 mV, and then stepped to potentials varying from 

 

�

 

130 to 

 

�

 

10 mV in 40-mV steps. Each trace is
the average of 20 recordings acquired at a sampling rate of 10 kHz. (F) Voltage dependence for the fast fluorescence signal of E518C-
TMRM, together with the steady-state inactivation curve (both determined as for D). Throughout, the error bars indicate SEM.
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changes are extremely fast: they occur in the millisec-
ond after the membrane potential is changed, while the
capacity transient is still settling. The fact that the fluo-
rescence changes are so fast raises the possibility that
this component may simply be a direct electrochromic
effect of the voltage on the dye (Loew et al., 1985). In
other words, a change in voltage may cause a very fast
electronic rearrangement in the dye molecule, and this
rearrangement could alter the fluorescence output.

This component of the fluorescence is weakly volt-
age-dependent; Fig. 9 B shows the fluorescence result-
ing from a family of short voltage pulses. A plot of the
fluorescence immediately after depolarization (arrow)
as a function of voltage is shown in Fig. 9 C. The shal-
low voltage dependence of this fluorescence compo-
nent is reminiscent of the voltage dependence of
steady-state inactivation; however, the midpoint of the
fluorescence-voltage relationship (

 

�

 

15 mV) is much

Figure 8. Modulation of inactivation does not affect fast fluorescence changes. (A) External TEA slows inactivation but has no effect on
the fluorescence signal of E518C-TMRM. After a short hyperpolarizing step to produce recovery, a second depolarizing step elicits rapid
reinactivation; both ionic current and fluorescence are monitored before and after application of 50 mM external TEA. For comparison,
the fluorescence traces for each condition were shifted to the same level at the end of the first depolarizing pulse; the current traces are
simply overlaid. (B) Fluorescence and current traces measured from oocytes expressing E519C:G628C:G631C-TMRM in response to a
three-step protocol. Inactivation is eliminated, but the fluorescence signal is similar to E519C-TMRM in Fig. 6 A. The external solution
contained 2 mM KCl and 98 mM NaCl.
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more positive than the midpoint of the steady-state in-
activation-voltage curve (

 

�

 

90 mV).

 

A Different Fluorophore Reports Opposite Fluorescence Signals 
but with the Same Kinetics

 

To examine how the measured changes in fluorescence
depend on the covalently attached dye, we measured
fluorescence changes reported by a different fluo-
rescent probe, Oregon green 488 maleimide (OG).
TMRM and OG are both derived from rhodamine;
however, the dyes differ in total charge. TMRM has a
net charge of 0 (with a delocalized positive charge at

the tricyclic end), and OG has a net charge of 

 

�

 

2. Fig.
10 shows fluorescence signals from E519C-TMRM and
E519C-OG resulting from a single 1-s voltage step to 30
mV. Although the TMRM and OG signals are grossly
different (with fluorescence changes in opposite direc-
tions), the kinetic components have the same time con-
stants over a range of voltages (unpublished results).

Cha and Bezanilla (1997, 1998) pointed out that one
possible source of fluorescence signals is quenching of
the dye fluorescence by another nearby dye molecule.
Our results with Oregon green argue against the idea
that the fluorescence changes seen in this work on

Figure 9. Properties of fast fluorescence change after depolarization recorded from E519C-TMRM. (A) Fluorescence and current traces
recorded from E519C-TMRM during a 20 ms voltage pulse to 30 mV. The dashed line indicates approximately the end of the capacity tran-
sient observed in the current trace upon depolarization. (B) Voltage dependence of the fast fluorescence change observed upon depolar-
ization for E519C-TMRM. Fluorescence changes recorded during a series of voltage steps 150 ms in duration ranging from �130 mV to
110 mV. (C) Plot of the fluorescence 5 ms after depolarization (B, arrow); each point is an average of 10 data points from the fluorescence
trace at each voltage. The points were fit with a Boltzmann function (Vmid � 15.6 mV, and z	 � 0.75 e0).
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HERG arise from such self-quenching of dye mole-
cules. Self-quenching should produce a decrease in
fluorescence regardless of the dye, but the same con-
formational changes that produce a decrease in TMRM
fluorescence produce an increase in OG fluorescence
(and vice versa).

 

D I S C U S S I O N

 

Fluorescence Changes Reported near the S4 Region Have Both 
Fast and Slow Components

 

HERG channels activate and deactivate slowly but inacti-
vate very rapidly, producing inward rectification. These
unique features of HERG gating led us to inquire about
the nature of movements occurring near the voltage
sensor of HERG channels. To study how S4 movement
relates to HERG gating, we recorded voltage-dependent
fluorescence changes from probes attached to three dif-
ferent sites located on the NH

 

2

 

-terminal end of the S4
segment of HERG. Although the sites of attachment
were adjacent to one another, the fluorescence changes
recorded from the three mutants were quite different.
All three reported slow fluorescence changes, and two
of the three (E518C-TMRM and E519C-TMRM) also re-
ported fast fluorescence changes.

 

The Slow Fluorescence Change and Activation Gating

In support of the idea that the slow fluorescence
changes relate to HERG activation gating, we found that
the kinetics of the slow fluorescence change observed in
all three mutants are very similar to the unusually slow
kinetics of activation and deactivation in HERG. The
fluorescence changes reported by L520C-TMRM have
only a slow component and, therefore, provide the most
direct comparison between the slow fluorescence and
activation gating. The steady-state voltage dependence
for the slow fluorescence of L520C-TMRM is almost
identical to the g-V relationship. Furthermore, if we
modulate deactivation gating by deleting a portion of
the NH2 terminus of the protein (L520C:�2–137), the
kinetics of the slow fluorescence changes are modu-
lated in parallel with deactivation. Both deactivation
and the decline of fluorescence during deactivation are
speeded by deletion of the NH2 terminus.

What is the precise relationship between the slow
fluorescence and activation gating? There are two obvi-
ous possibilities: (1) either the slow fluorescence re-
flects S4 movements that underlie HERG activation gat-
ing, or (2) the probe is able to sense conformational
changes occurring in or near the pore and, thus, simply
reports the opening and closing of the pore. We were
not able to find a clear distinction between gating of
current flow and the slow fluorescence changes re-
ported by these mutants. Both the kinetics and voltage
dependence of the slow fluorescence changes are essen-
tially identical to the kinetics and voltage dependence
of activation and deactivation. This observation in itself
does not eliminate the possibility that the fluorescence
is reporting movements of the voltage sensor. A separa-
tion between the g-V and F-V relationships is not a nec-
essary consequence of coupled S4 movement and chan-
nel opening. In Shaker K� channels a shift between the
g-V and F-V curves results from relatively independent
movements of the individual S4 segments and the re-
quirement that all S4 segments move for the channel to
open. However, if the S4 segments were to move in a co-
operative or concerted way, there need not be any volt-
age separation between S4 movement and opening.

The main argument favoring the idea that our fluores-
cent probes monitor S4 movement rather than pore gat-
ing is based on their location, by analogy with Shaker
channels. Fluorescence changes from residues at an anal-
ogous position in Shaker track gating charge movement
and not opening, whereas fluorescence changes from
residues in the outer mouth of the pore are more closely
related to ionic conductance and presumably opening
and closing of the pore (Cha and Bezanilla, 1997).

If indeed the slow fluorescence changes reflect move-
ment of the S4 region, then for HERG K� channels, S4
movement is the rate limiting step in activation and de-
activation. Any steps that occur after S4 moves must be

Figure 10. Fluorescence traces recorded from oocytes express-
ing 519C labeled with TMRM or Oregon green (OG). Fluores-
cence changes were measured in response to a 1-s voltage step to
30 mV followed by a hyperpolarizing step to �90 mV.
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fast in comparison. This result can be contrasted with
the slow opening of the Shaker mutant, Shaker ILT
(Smith-Maxwell et al., 1998a,b). In that case, most gat-
ing charge moves quickly (Ledwell and Aldrich, 1999),
but the final cooperative step of opening is slow.

Fast Changes in Fluorescence Associated with Inactivation

In addition to the slow fluorescence signal associated
with activation, E518C-TMRM and E519C-TMRM re-
ported fast changes in fluorescence that shared some
properties with inactivation gating. During both the re-
covery from inactivation and the reinactivation after a
subsequent depolarizing step, the fast component of
the fluorescence signal matches the kinetics of inactiva-
tion gating. At many voltages, it was difficult to separate
the fast and slow components, and neither the steady-
state level of inactivation recovery nor the magnitude
of the fast fluorescence signal showed clear saturation
at the most negative voltages we were able to measure.
But, in the range of our measurements, there was gen-
erally good agreement between the two.

Although the properties of these fast fluorescence sig-
nals are similar to the properties of inactivation, we
could not show a causal link between the two. The fast
fluorescence changes were not altered by application of
50 mM external TEA or by complete removal of inacti-
vation through mutations at the outer mouth of the
pore. As discussed in the results, this rules out the pos-
sibility that the fluorescence is simply reporting the clo-
sure of the pore. Rather than supposing that the corre-
spondence between these signals and inactivation gat-
ing is simply a coincidence, we hypothesize that the
fluorescence reports a fast movement of the voltage sen-
sor that drives the inactivation process (but whose cou-
pling is sufficiently loose that the voltage sensor move-
ment persists when inactivation gating is disrupted).

Fast Fluorescence on Initial Depolarization

A fast fluorescence decrease on the initial depolariza-
tion from rest is observed both for E518C-TMRM and
E519C-TMRM, although the magnitude of this compo-
nent is much greater in E519C-TMRM. The most no-
ticeable property of this component is its extremely fast
kinetics; it occurs almost immediately after the voltage
across the membrane changes, during the capacity
transient seen in the current. Does this fast fluores-
cence change reflect a very fast movement of the pro-
tein, or is this fluorescence change unrelated to pro-
tein movement? This very fast fluorescence decrease
could be due to an electrochromic effect, a change in
the properties of the dye itself resulting from the
change in voltage across the membrane. If so, it is inter-
esting that there is no reciprocal fast fluorescence in-
crease upon hyperpolarization, after activation of the
channels occurs. This might indicate that E519C-

TMRM senses the transmembrane voltage at rest, but
during activation it moves to a position that is insensi-
tive to the electric field across the membrane. In other
words, the magnitude of the electrochromic effect
would be state-dependent. Also, the fast effect of volt-
age on the fluorescence is notably nonlinear. As shown
in Fig. 9, no fast fluorescence change is seen when the
membrane is hyperpolarized from �70 to �130 mV,
but a significant change is measured when the mem-
brane is depolarized by the same amount (a step from
�70 to �10 mV). In addition, the magnitude of the fast
fluorescence changes begins to saturate at very positive
membrane potentials (above 110 mV).

Because of the state dependence and nonlinearity, it
seems likely that this fast fluorescence decrease on ini-
tial depolarization reports a movement of the channel
protein. Could this signal (like the fast signal seen with
voltage changes after channels have activated) be re-
lated to inactivation? As noted above, the fast changes
in fluorescence upon initial depolarization have a weak
voltage dependence similar to the voltage dependence
of inactivation, but the midpoint of the fluorescence
signal is shifted by �100 mV to the right (Fig. 9). This
might be explained if the fast voltage sensor movement
that drives inactivation is much more difficult to
achieve (i.e., requires more depolarization) in nonacti-
vated channels, compared with activated channels.

Modeling Ionic Currents and Fluorescence Changes

Although our analysis of each component of the fluo-
rescence signal includes a fair amount of uncertainty,
we can make all of the conclusions seem more plausi-
ble by considering an overall model for channel gating
that incorporates the fluorescence signals. Generally,
ion channel behavior is described using multi-state ki-
netic models. Given the number of states the channel
can exist in, the connectivity of the states, the rates of
transitions between states and the conductance of each
state, we can simulate the ionic current through a pop-
ulation of channels in response to changes in voltage.
These simulations are compared with real ionic current
data to assess the validity of the kinetic model. Al-
though extremely useful for modeling channel behav-
ior, ionic current measurements are limited by the fact
that they only reveal transitions to or from the open
state of the channel. Ionic current measurements can-
not directly reveal transitions occurring between non-
conducting states. In theory, fluorescence changes can
directly reflect conformational changes occurring in
the channel protein regardless of the state of the pore;
therefore, measurements of fluorescence changes are
potentially useful for constructing and testing kinetic
models for channel behavior.

In the case of HERG channels, we observe very differ-
ent fluorescence changes from the three mutants. We
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can begin to organize these data by supposing that the
conformational changes underlying the fluorescence
changes are the same for all three mutants. In other
words, the gating behavior of all the mutants is de-
scribed by the same set of state-occupancy functions
(which vary with voltage and time). The time course of
the fluorescence signal for each mutant is a linear com-
bination of these state-occupancy functions, weighted
by the fluorescence coefficient for each state. It is the
differences in these fluorescence coefficients for differ-
ent sites of dye attachment that produce the distinctive
fluorescence signals for each mutant.

The Oregon green data in Fig. 10 illustrates this idea.
The fluorescence measured from E519C-OG has the
same kinetic components as the fluorescence measured
from E519C-TMRM, but the fluorescence changes from
the two dyes occur in opposite directions. Both dyes
sense transitions among the various conformational
states, but each dye has a unique set of fluorescence co-
efficients (magnitudes) to describe the states.

A Plausible Model to Account for Both Gating and the 
Fluorescence Signals

Based on this idea, we constructed two models for the
states of the voltage sensor (Fig. 11) in which each state
represents a conformation of the protein sensed by the
mutants. The four state models we present were the
simplest models capable of giving plausible fits to our
data. Model A and Model B resemble models of Class E
and Class D, respectively, from Zagotta et al. (1994).

Model A (Fig. 11) supposes that there are two princi-
pal types of conformational motion of the voltage sen-

sor, q ↔ Q and r ↔ R, which are distinct but coupled.
The q ↔ Q transitions are fast, and the r ↔ R transi-
tions are slow. Overall, the conformation of the voltage
sensor consists of four states, with each possible combi-
nation of q/Q and r/R. The magnitude of the fluores-
cence in each state is represented by a coefficient, and
the total fluorescence is given by the sum of the four
coefficients weighted by the occupancy of each state.
Each mutant is assigned a different set of coefficients,
but they all use the same conformational model.

According to Model A, during a depolarizing pulse,
most channels move rapidly from state qr to state Qr,
and then slowly to QR. During a hyperpolarizing pulse,
they move from QR to qR, and then to qr. The data, in-
terpreted using this model, would suggest that E518C-
TMRM does not sense the transition between qr and
Qr as well as E519C-TMRM, since the magnitude of the
fast fluorescence change upon depolarization reported
by E518C-TMRM is much less than that reported by
E519C-TMRM. The data also would suggest that L520C-
TMRM can sense only the slow transitions. A compari-
son of measured fluorescence changes and simulated
fluorescence changes using Model A is shown in Fig. 12
A. The simulated traces capture the general features of
the measured fluorescence changes, although some
disparities between the two are evident (see Table II for
the parameters of the fit to Model A).

In the model, there are two types of transitions, one
fast and one slow. Given what we know about HERG
gating, we assume that the slow transitions (r ↔ R) are
between conformations of the voltage sensor that favor
the activated state and those that favor the deactivated

Figure 11. Two four-state models to describe fluorescence changes observed in HERG. Model A has two voltage dependent transitions,
one fast (q → Q) and one slow (r → R). The shaded boxes show relative magnitudes of the fluorescence coefficients used to describe fluo-
rescence changes observed for each mutant. Model B has three sequential voltage dependent transitions.
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Figure 12. Simulations of fluorescence and current data using Model A and Model B. (A, top) Simulated fluorescence and current
traces (black lines) from Model A are overlaid on fluorescence and current traces recorded during a three-step protocol (gray lines) from
oocytes expressing E518C, E519C, or L520C and labeled with TMRM. (bottom) Simulation of the occupancy of each state in Model A as a
function of time during a three-step protocol. Simulations of fluorescence changes, current and state occupancies used the parameters
shown in Table II. The kinetic parameters from fitting E519C-TMRM data were used for all simulations; only the fluorescence coefficients
were varied to simulate E518C-TMRM and L520C-TMRM fluorescence data (Table II). (B) Description of Model A showing a likely rela-
tionship between states of the voltage sensor and gating states of the pore (i.e., closed, open, and inactivated). (C, top) Simulated current
trace (black line) from Model B is overlaid on the recorded current trace (gray line). (bottom) Simulation of the occupancy of each state
in Model B as a function of time during a three-step protocol. Simulations of current and state occupancies used the parameters shown in
Table III. Simulations of fluorescence data using Model B (Table III) are nearly identical to those shown in A for Model A.
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state (i.e., they affect primarily the activation gate). On
the other hand, the fast transitions (q ↔ Q) are be-
tween conformations that favor the inactivated and the
noninactivated state, i.e., they affect the inactivation
gate. Fig. 12 B illustrates this possibility.

In this scenario, the fast change in fluorescence dur-
ing depolarization (transition qr to Qr) biases the
channel to inactivate while the voltage sensor is in state
r (thus, favoring the deactivated state as the fast transi-
tion occurs). The fast change in fluorescence during
hyperpolarization (transition QR to qR) biases the
channel to recover from inactivation while the voltage
sensor is in state R (while the activated state is favored).
If the transition between r and R somehow changes the
way the fast transition between q and Q occurs, then
the energy required to move from state qr to Qr may be
larger than the energy required to move from QR to
qR. If this were the case, we would expect to see a shift
in the midpoints between the two parallel fast transi-
tions, given that in a simple two state model with volt-
age dependence, the midpoint of the voltage depen-
dence reflects the energy difference between the two
states. With respect to the data, the fast transition qr →
Qr yields the fast F-V curve measured upon initial de-
polarization from rest (Fig. 9). The transition QR →
qR yields the fast F-V curve upon hyperpolarization,
and this corresponds to the h∞ curve (Fig. 7, D and F).
Thus, it is possible that the shift measured between
these curves reflects a difference in energy between the
qr → Qr and the QR → qR transitions of the voltage
sensor. Fits to the fluorescence data using Model A
(Fig. 12 and Table II) support this idea. Optimal fits of
the fluorescence data predict an energy difference of
�0.57 kT between states qr and Qr and an energy dif-
ference of �3.7 kT between states qR and QR. Assum-
ing z	 � 0.87, this would predict a 91-mV rightward
shift between the fast F-V curve upon depolarization
and the fast F-V curve upon hyperpolarization.

Note that in Model A, parallel transitions do not have
parallel changes in fluorescence (e.g., transition qr →
qR produces a decrease in fluorescence, but transition
Qr → QR produces an increase in fluorescence). Al-
though the q ↔ Q transition and the r ↔ R transition
are independent from one another, the combination of
the two transitions within Model A creates four unique
states, each of which can have unique dye-quenching
properties.

We examined the occupancy of each state in Model A
during a simulated three step voltage protocol (Fig. 12
A). The occupancy of state qR is similar to the occu-
pancy of the open state of HERG during a three-step
protocol. If we simply assume that the occupancy of
state qR is proportional to the occupancy of the open
state, we can simulate the current through HERG chan-
nels. Fig. 12A compares the current measured from

HERG 519C-TMRM with the simulated current from
Model A. Again, the simulated data captures the gen-
eral features of the measured current.

However, state qR and the open state probably are
not simply proportional as assumed in the current sim-
ulation in Fig. 12. We can differentially alter inactiva-
tion gating and the fast fluorescence signal suggesting
that the state of the voltage sensor and the gating state
of the pore (i.e., closed, open, inactivated) are not
strictly coupled, so it would be more accurate to sup-

T A B L E  I I

Parameters for Fit with Model A

Transition
Kinetic

Parameter
E-519C-
TMRM

qr → Qr k0 63

z	 0.70

Qr → qr k0 35

z	  �0.16

qr → qR k0 0.54

z	 1.4

qR → qr k0 1.5

z	  �0.87

Qr → QR k0 0.75

z	 1.7

QR → Qr k0 0.092

z	  �0.51

qR → QR k0 81

z	 0.33

QR → qR k0 2.1

z	  �0.53

State
F coefficient

E518C-TMRM
F coefficient

E519C-TMRM
F coefficient

L520C-TMRM

qr 0  0 0

Qr  �0.16 �0.40 0

qR  �1.0 �1.0 �1.0

QR 0.32  0.031 �1.0

Parameters of Model A fit to E519C-TMRM fluorescence data. A total of 15
fluorescence traces recorded from one oocyte expressing E519C and
labeled with TMRM were used to constrain fits to Model A (one three-step
protocol recorded during depolarizing steps to 30 mV, holding potential
�90 mV; six traces recorded during a family of depolarizing voltage steps
ranging from �70 to 30 mV; eight traces recorded during a tail current
protocol, voltage steps ranging from �130 to 10 mV after a 1-s
depolarization to 30 mV). Fits of the data were obtained using least-squares
minimization in SCOP. All transitions were assumed to be voltage-
dependent; rate constants were assumed to have an exponential
dependence on voltage given by k � k0 
 exp(z	FV/RT). k0 has units of s�1,
and z	 is given in eo charges. The program used 16 free parameters to find
the best fit. Three kinetic parameters were fixed to maintain detailed
balances and to insure that the total charge moved in parallel transitions
was the same. In addition, one of the fluorescence coefficients was fixed.
Fluorescence coefficients shown for E518C-TMRM and L520C-TMRM
were obtained by varying only the fluorescence coefficients from the fit to
E519C-TMRM data, to give the best fit to fluorescence traces recorded
during a three-step protocol (depolarizing steps to 30 mV and holding
potential of �90 mV) from oocytes expressing E518C or L520C and
labeled with TMRM.
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pose that state qR of the voltage sensor biases the gat-
ing of the pore in favor of the open state. Because the
pore and the voltage sensor are physically distinct, such
a distinction seems reasonable.

An Alternative Linear State Model

Model A includes four transitions: two parallel, fast
transitions and two parallel, slow transitions. However,
a linear, sequential model can describe the fluores-
cence data equally well. The second model (Model B,
Fig. 11) treats the two fast changes in fluorescence as
two separate conformational changes occurring near
the voltage sensor. To move from state W to state Z, the
first fast transition (W → X) must take place before the
slow transition (X → Y) can occur, and the second fast
transition (Y → Z) can occur only after the slow transi-
tion is complete.

As with Model A, each “state” of the voltage sensor is
assigned a fluorescence, and the total measured fluo-
rescence is a sum of the fluorescence in each state
weighted by the probability of being in each. During de-
polarization of E519C-TMRM, we observe a fast de-
crease in fluorescence resulting from the transition W →
X, followed by a slow increase in fluorescence to state Z.
State Y is only transiently populated because the transi-
tion Y → Z is much faster than X → Y. However, upon
hyperpolarization, we can observe the fast Z → Y transi-
tion followed by a slow increase to state W. In this in-
stance, state X is only transiently populated. Model B as-
sumes three sequential transitions. From what we know
about HERG gating, we might assume that the first tran-
sition favors a second closed state, the second favors the
open state, and the third favors the inactivated state.

Simulations of the fluorescence data using Model B
are nearly identical to those shown in Fig. 12 A for
Model A (Table III, parameters of fit to Model B). Fig.
12 C shows that the state occupancies for the four states
in Model B are similar to the state occupancies of the
four states in Model A. The principal difference occurs
between the occupancies of state Y and state qR; ini-
tially, state Y has a greater probability of being popu-
lated during a depolarizing step relative to state qR.
This difference does not compromise Model B’s ability
to simulate the fluorescence recordings; however, no
linear combination of the state occupancies resulting
from fits to Model B neatly resembles the occupancy of
the open state of HERG. The occupancy of state Y bears
the closest resemblance to the occupancy of the open
state of HERG. If we assume the occupancy of state Y is
proportional to the occupancy of the open state, we can
simulate the current through HERG channels during a
three step protocol (Fig. 12 C, top panel). Simulation of
the current trace using Model B does not follow the re-
corded current trace nearly as well as the current simu-
lation using Model A.

Both scenarios shown in Fig. 11 can account for the
general properties of the fluorescence changes ob-
served from HERG. Due to a slight difference in the
state occupancies between the two models, Model A
predicts the current through open HERG channels
more closely than Model B. Otherwise simulations of
the fluorescence data are virtually identical. Conceptu-
ally, the difference between the two models is that in
Model A, the two fast transitions occur in parallel to
one another and can be viewed as basically the same
conformational change (although the amount of en-
ergy required for the fast change between q and Q may
vary depending on whether channels are in state r or
R). In Model B, each component of the fluorescence
(two fast and one slow) is treated as a separate transi-
tion and hence a separate conformational change. As a
result of these differences in Model A, channels can
travel on one of two paths to reach state QR from rest
at qr: one path moves through state Qr, and the other

T A B L E  I I I

Parameters for Fit with Model B

Transition
Kinetic

Parameter
E519C-
TMRM

W → X k0 110

z	 0.47

X → W k0 43

z	 �0.45

X → Y k0 0.91

z	 1.6

Y → X k0 9.0

z	 �0.54

Y → Z k0 92

z	 0.51

Z → Y k0 1.3

z	 �0.58

State
F coefficient

E518C-TMRM
F coefficient

E519C-TMRM
F coefficient

E520C-TMRM

W  0 0 0

X �0.065 �0.22 0

Y �1.0 �1.0 �1.0

Z  0.21 0.017 �1.0

Parameters of Model B fit to E519C-TMRM fluorescence data. A total of 15
fluorescence traces recorded from E519C-TMRM (described in Table II)
were used to constrain fits to Model B. Fits of the data were obtained using
least-squares minimization in SCOP. All transitions were assumed to be
voltage-dependent; rate constants were assumed to have an exponential
dependence on voltage given by k � k0 
 exp(z	FV/RT). k0 has units of s�1,
and z	 is given in eo charges. The program used 15 free parameters to find
the best fit. One of the fluorescence coefficients was fixed during fitting.
Fluorescence coefficients shown for E518C-TMRM and L520C-TMRM
were obtained by varying only the fluorescence coefficients from the fit to
E519C-TMRM data to give the best fit to fluorescence traces recorded
during a three-step protocol (depolarizing steps to 30 mV and holding
potential of �90 mV) from oocytes expressing E518C or L520C and
labeled with TMRM.
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through state qR. Upon depolarization, most channels
move from qr → Qr → QR, and a small fraction move
through state qR; upon hyperpolarization most chan-
nels move from QR → qR → qr, and a small fraction
move through state Qr. In Model B, channels must
traverse both intermediate states X and Y to move be-
tween the endpoints, W and Z. Also, Model A requires
only two types of voltage-dependent transitions, but
Model B requires three.

Gating Currents in HERG

If movement of the S4 region associated with HERG ac-
tivation gating is indeed slow, then the corresponding
gating current should be very slow and small. Perhaps
for this reason, we have not observed nonlinear capaci-
tive currents that are convincingly associated with
HERG activation gating, either in HEK293 cells or in
oocytes. We have observed small, nonlinear capacitive
currents resulting from short depolarizing steps (10
ms); however, calculations of the total charge moved
(Q) based on these currents shows that Q does not sat-
urate even at depolarizations of �70 mV. This suggests
that they are not related to activation gating. They may,
however, be related to the fast fluorescence change,
which does not saturate until depolarizations of over
�110 mV are applied (Fig. 9).

In general, the fluorescence approach used here is
advantageous for measuring slow movements of a volt-
age sensor. Because the fluorescence of a probe is a
state function (rather than a change-of-state function,
like gating current), it can report on slower conforma-
tional changes for which gating current measurements
would fail. The disadvantage, of course, is the difficulty
in saying definitively that these conformational changes
involve charge movement.

Nature of the Physical Changes in the Voltage Sensor

Experiments on Shaker potassium channels have sug-
gested that charge movement (as assayed by gating cur-
rents) and conformational changes near the S4 region
(as assayed by cysteine modification experiments) oc-
cur in more than one step (Baker et al., 1998; Sorensen
et al., 2000). Many different physical situations could
account for these steps. For instance, one movement
could be a translocation of the S4 segment across the
membrane, and the other could be a twist or tilt of S4.
Several experiments on Shaker suggest that charged res-
idues in the S2 segment also play a role in the voltage
dependence of gating (Papazian et al., 1995; Planells-
Cases et al., 1995; Seoh et al., 1996); negatively charged
residues in S2 may help stabilize the positive charges in
S4 within the membrane, or S2 itself could move in re-
sponse to voltage. It is possible that movement of the S2
segment could account for one (or more) of the con-
formational changes occurring in the voltage sensor.

Conclusions

Our results show that fluorescence changes measured
from residues near the S4 region of HERG have both
fast and slow components. These data suggest that both
fast and slow conformational changes may occur near
the S4 region during HERG gating. The properties of
the slow component of the fluorescence strongly corre-
late with activation gating and provide support for the
idea that the unusually slow activation kinetics ob-
served in HERG may be attributed to slow voltage sen-
sor movement. Although we cannot definitely associate
the various fluorescence states with gating states of the
pore, we can use the data to suggest a framework to de-
scribe voltage-dependent HERG gating.
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