Oxidation of Hydrogen and Reduction of Methanol to Methane is the Sole Energy Source for a Methanogen Isolated from Human Feces

TERRY L. MILLER* AND M. J. WOLIN

Center for Laboratories and Research, New York State Department of Health, Albany, New York 12201

Received 7 September 1982/Accepted 28 October 1982

A methanogenic coccus isolated from human feces requires H_2 and CH_3OH for growth and uses H_2 to reduce CH_3OH to CH_4 . Growth does not occur with CH_3OH alone. The organism does not grow or produce CH_4 from acetate or methylamines without or with H_2 or from H_2 and CO_2 or formate. In a complex medium, CO_2 is required for formation of approximately 50% of cell carbon, whereas the methyl carbon from methanol is not incorporated into cell carbon.

Almost all methanogens obtain energy for growth by using H_2 to reduce CO_2 to CH_4 (1). Some methanogens obtain energy by producing CH_4 from the methyl group of acetate, CH_3OH , or methylamines (1). The family *Methanosarcinaceae* contains the best known examples of methanogens that produce CH_4 from methyl groups. Conversion of CH_3OH to CH_4 proceeds according to the following equation:

$$4CH_{3}OH \rightarrow 3CH_{4} + CO_{2} + 2H_{2}O \qquad (1)$$

The electrons removed during the oxidation of 1 mol of CH_3OH to CO_2 are used to reduce 3 mol of CH_3OH to methane and H_2O .

We recently isolated a methanogenic coccus from an anaerobic enrichment of human feces in a medium that contained CH_3OH as the substrate for CH_4 production. The energy metabolism of the isolate was unique when compared to those of all previously studied methanogens. The results presented in this report show that the organism grew only when it was provided with both H_2 and CH_3OH . It used H_2 to reduce CH_3OH to CH_4 and H_2O according to the following equation:

$$H_2 + CH_3OH \rightarrow CH_4 + H_2O$$
 (2)

The isolate did not grow on acetate or methylamines, with or without H_2 , or by using H_2 to reduce CO_2 to CH_4 .

MATERIALS AND METHODS

Organism. An anaerobic enrichment culture that produced CH_4 from CH_3OH had been established with an inoculum of human feces and was transferred monthly. Microscopic examination showed a large coccus, which had factor 420 fluorescence when visualized with epifluorescence microscopy, as described previously (6). Repeated attempts to isolate the coccus were unsuccessful with CH₃OH and 80% N₂-20% CO₂ (N₂-CO₂) as the gas phase. However, when the enrichment was plated on a medium which contained 0.4% CH₃OH and 101.3 kPa of 80% H₂-20% CO₂ (H₂-CO₂), a pure culture of a fluorescent CH₄-producing coccus was isolated that was morphologically similar to the fluorescent cocci in the enrichment culture. The isolate was usually in pairs or tetrads and what appeared to be clumped packets of cocci (Fig. 1). Details of the enrichment procedure and microbiological characterization of the isolate will be published separately.

Growth studies. The serum bottle modification of the Hungate technique for cultivating anaerobic bacteria was used to prepare, dispense, and autoclave media and to transfer cultures (4). All incubations were at 37°C, and liquid cultures were agitated by shaking or rolling.

The isolate was tested for its ability to grow and produce CH_4 from H_2 - CO_2 , formate, acetate, CH_3OH , and trimethylamine as described previously (6). Growth and CH_4 production with 0.5% methylamine, 0.5% dimethylamine, and 0.76% ethanol were examined under the same conditions.

The effect of CO₂ and H₂ on growth with CH₃OH and the stoichoimetry of CH₄ production were examined with cultures grown in a phosphate-buffered medium. It contained (per liter): Trypticase (BBL Microbiology Systems, Cockeysville, Md.) and yeast extract (Difco Laboratories, Detroit, Mich.), 2.0 g each; sodium acetate and sodium formate, 0.5 g each; thiamine-hydrochloride, nicotinamide, riboflavin, pyridoxine-hydrochloride, and calcium D-pantothenate, 2.0 mg each; cyanocobalamin, 0.2 mg; biotin, 10 mg; p-aminobenzoic acid, 1.0 mg; folic acid, 0.5 mg; Fe-SO₄ · 7H₂O, 1.2 mg; K₂HPO₄, 0.3 g; KH₂PO₄, 2.8 g; (NH₄)₂SO₄, 0.3 g; NaCl, 0.61 g; MgSO₄ · 7H₂O, 0.153 g; $CaCl_2 \cdot 2H_2O$, 76 mg; $MnSO_4 \cdot 7H_2O$, 5 mg; $CoSO_4$ and ZnSO₄, 1 mg each; CuSO₄ \cdot 5H₂O, AlK(SO₄)₂, H₃BO₃, and Na₂MoO₄ \cdot 2H₂O, 100 μ g each; nitrilotriacetic acid, 15 mg; NH₄Cl, 1.0 g; L-cysteine hydrochloride, 0.875 g; Na₂S \cdot 10 H₂O, 0.375 g; and resazurin, 1 mg. The pH was adjusted to 7.0 before boiling. After rapid cooling, the medium was gassed with 100%

FIG. 1. Electron micrographs of cocci from a pure culture grown on 0.3% CH₃OH and 202.6 kPa of H₂-CO₂ in phosphate-buffered medium. The OD at 660 nm of the 48-h culture was 1.3. Cells on carbon- and Formvar-coated copper grids were negatively stained with a 2% aqueous solution of ammonium molybdate.

 N_2 . Cysteine and sulfide were added as previously described (4).

All turbidity (optical density [OD]) measurements were made with 5-ml cultures in 18- by 150-mm serumfinished tubes (Bellco Glass, Inc., Vineland, N.J.). Measurements against an uninoculated medium blank were made in a Bausch & Lomb Spectronic 70 spectrophotometer at 660 nm.

¹⁴C labeling experiments. The headspaces of serum bottles of known total volume containing reduced

TABLE 1. Dependence of growth of isolate on H_2 and CH_3OH

Gas phase	OD at 660 nm with ^a		
	No addition	CH ₃ OH ^b	
H ₂ -CO ₂	0.27	1.90	
N_2 -CO ₂	0.10	0.17	

^{*a*} Highest OD during 8 days of incubation. These occurred after 96 h for the H_2 -CO₂ plus CH₃OH culture and after 24 h for the remaining cultures.

^b Final concentration, 0.45% (vol/vol).

phosphate-buffered medium were gassed with H_2 -CO₂ for 10 min. Then ¹⁴CH₃OH (1.86 μ Ci; ca. 5,000 μ mol) was added aseptically to one bottle, and cold CH₃OH (ca. 5,000 μ mol) and [¹⁴C]sodium bicarbonate (1.97 μ Ci; 0.73 μ mol) were aseptically added to the other.

Each bottle was inoculated with 2.0 ml of a 48-h culture grown on phosphate-buffered medium with 0.3% CH₃OH to an OD at 660 nm of 1.1. Liquid was removed for time zero CH₃OH and radioactivity measurements. Gas samples were then removed from each bottle for H₂ measurements. (An equivalent volume of H₂-CO₂ was injected and mixed before removing gas and liquid samples.) The ¹⁴CO₂ culture was pressurized to 202.6 kPa of H₂-CO₂. The inoculated cultures were incubated for 48 to 72 h. The total gas volumes and the concentrations of CH₄ and residual H₂ were measured.

After incubation with ¹⁴CH₃OH, CO₂ and CH₄ were separated essentially by the method of Kunz (3). Briefly, 1 ml of the radioactive culture gas was mixed with cold CO₂ and CH₄ carriers and passed through a liquid N₂ cold trap to retain the CO₂. The CH₄ was passed through a gas chromatograph equipped with a molecular sieve-charcoal column and thermal conductivity detector. The CO₂ was passed through a separate chromatograph containing a silic gel column (C. Kunz, personal communication). The radioactivity of each separated gas was determined by internal gasproportional spectrometry as described by Paperiello (7).

Five milliliters of gas was removed from each bottle and injected into serum bottles of known volume containing 4.0 ml of phenethylamine and an N₂ atmosphere. The amount of unabsorbed gas in the headspace, measured by displacement of the barrel of a hypodermic syringe, was used to calculate the amount of CO_2 absorbed. For the ¹⁴CO₂ experiment, the radioactivity of the unabsorbed gas was determined in a toluene-based scintillation fluid (11). The bottles were flushed with N₂ for 2.0 min, and the radioactivity absorbed into the phenethylamine was determined.

Incorporation of 14 C into cell carbon was measured by washing duplicate 6-ml portions of cell culture three times with 6 ml of distilled water. The washed cells were resuspended in 6 ml of water, and 5 ml of each was used for dry weight determinations.

The radioactivity of the resuspended cells, of CO_2 in phenethylamine, and of the liquid culture medium was determined in Aquasol (New England Nuclear Corp., Boston, Mass.) in a scintillation counter. To determine the radioactivity of the medium after incubation, the cells were first removed by centrifugation. Radioactivity of unknowns was corrected for quenching by comparing the automatic external standard ratios to those obtained with ¹⁴C-quenched standards.

Other analytical methods. H_2 and CH_4 were measured by gas chromatography as previously described (2). CH_3OH was determined with a gas chromatograph with a flame ionization detector fitted with a nickel column (6 ft by $\frac{1}{8}$ in. [ca. 182.88 by 0.318 cm]) packed with Chromosorb 101 (80/100 mesh; Supelco), under the following conditions: carrier gas, N_2 (30 ml/min); detector temperature, 155°C; column temperature, 117°C. Unknowns were quantified by comparing their retention times and peak heights with those of standards.

Chemicals. Radioactive NaHCO₃ and CH₃OH were obtained from New England Nuclear Corp. All gases were at least 99.999% pure. All other chemicals were of reagent grade quality or better.

RESULTS

The isolate grew and produced CH_4 from H_2 and CH_3OH , but no growth occurred when H_2 was replaced by N_2 or when CH_3OH was replaced by CO_2 (Table 1). The small amount of growth with H_2 - CO_2 in the absence of methanol was probably due to the presence of small amounts of methanol in the inoculum. (The ODs of the N_2 - CO_2 cultures were not significantly different from the ODs of the inoculum.) CH_4 was measured after 9 days of incubation; in cultures grown with H_2 - CO_2 , 30 and 3.6 μ mol/ml were found in the presence and absence of CH_3OH , respectively. No growth or CH_4 forma-

FIG. 2. Growth and CH₄ production with increasing amounts of CH₃OH. The gas phase was 202.6 kPa of H₂-CO₂. The highest OD is plotted and was attained in 2 or 3 days. All OD values were corrected for the highest value (0.20 at 48 h) of the zero methanol control. CH₄ was determined after 3 days.

tion occurred in the same medium with acetate, methylamine, dimethylamine, trimethylamine, formate, or ethanol with 101.3 kPa of H₂-CO₂ or N₂-CO₂ in the gas phase. No growth or CH₄ formation occurred with formate without or with CH₃OH with N₂-CO₂. The isolate did not grow in a complex medium which contained glucose, yeast extract, and Trypticase with 101.3 kPa of 100% CO₂.

Total growth and the amount of CH_4 formed increased as CH_3OH increased to a final concentration of approximately 0.4% with H_2 in excess (Fig. 2), or as H_2 increased to approximately 100 kPa with CH_3OH in excess (Fig. 3). Production of CH_4 continued with excess H_2 or CH_3OH after growth reached the stationary phase.

The stoichiometry of methanogenesis was determined by measuring the amounts of H₂ and CH₃OH used and the amount of CH₄ produced. Radioactive ¹⁴CH₃OH was used to determine the incorporation of the isotope into CH₄ and CO₂. The amounts of H₂ and CH₃OH used and CH₄ produced were close to the expected values for a reaction that produces 1 mol of CH₄ from 1 mol each of CH₃OH and H₂ (Table 2). The specific activity of the CH₄ was 711 dpm/µmol, and that of CH₃OH was 670 dpm/µmol; no radioactive CO₂ was produced. The fact that CO₂ was not labeled ruled out the possibility of the formation of CH_4 according to equation (1). When the organism was grown with ¹⁴CO₂ with a final specific activity of 1,700 dpm/µmol and

FIG. 3. Growth and CH₄ production with increasing amounts of H₂-CO₂. Methanol was 0.76%, and N₂-CO₂ was added where necessary to have all gas phases at 202.6 kPa. The highest OD is plotted and was attained at 6 to 7 days of an 8-day incubation period. CH₄ was determined after 8 days.

FIG. 4. Requirement for CO_2 for growth. H_2 was added to bring all gas phases to 101.3 kPa.

unlabeled CH₃OH, no radioactive CH₄ was formed. The amounts of H₂ and CH₃OH used and CH₄ formed were essentially the same for the ¹⁴CO₂ and ¹⁴CH₃OH experiments. There was significant incorporation of the carbon of CO₂ but not that of CH₃OH into cells. Based on the specific activity of the CO₂, the amount of radioactivity incorporated, and an assumption that 50% of the dry weight of cells is carbon, we estimated that 50% of cell carbon was derived from CO₂. Separate experiments showed that CO₂ was required for growth of the organism (Fig. 4). The initial pH with 20% CO₂ was ca. 0.5 U lower than with 5% or 0% CO₂ (pH 7.1). The decrease in OD of the 20% CO₂ culture appeared to be due to lysis of the cells.

DISCUSSION

The organism examined in this study apparently differs from previously studied CH₃OHusing methanogens in its inability to generate electrons for the reduction of CH₃OH by oxidizing CH₃OH to CO₂. It also differs from most other methanogens in its inability to reduce CO₂ to CH₄ with H₂. Other methanogens that use CH₃OH may reduce CH₃OH to CH₄ with H₂, in addition to producing CH₄ from CH₃OH alone.

The thermodynamics of the stepwise, twoelectron reductions of CO_2 to CH_4 indicates that reduction of an intermediate at the same oxidation state as CH_3OH provides almost all of the energy that can be derived from the reduction of CO_2 to CH_4 with H_2 (9). Because of its restricted CH₂OH used

CH₄ produced

H₂ used

	CH ₃ OF	H and H_2	
Compound	Total µmol		
	Found	Expected"	
		Equation (1)	Equation (2)

2.720

2.040

0

2.720

2,720

2,720

TABLE 2. Stoichiometry of production of CH₄ from

2,532 " Based on amount of CH₃OH used.

2.720

2,538

energy metabolism, the isolate should prove useful for studies of the production of energy by the reduction of a methyl group to CH_4 . The organism should also be useful for studies of biosynthesis of cell carbon from CO₂ and/or other precursors because the flow of carbon to CH₄ appears to be independent of the flow from CO₂ to cell carbon.

In the intestinal habitat, the isolate probably uses for growth the CH₃OH produced by other organisms that degrade pectin (8). H_2 is a normal product or intermediate of fermentation by the human large intestine microbial community (10). The isolate was obtained from an individual who normally harbors very high concentrations of Methanobrevibacter smithii as the predominant methanogen (5). Although bacteria closely resembling the isolate can be identified by fluorescence microscopy in the most fecal specimens from the same individual, they are far outnumbered by M. smithii and are outgrown by M. smithii on a medium we use to enumerate predominant methanogens in the human large intestine (5). Suitable selective enumeration and isolation techniques will have to be developed to evaluate the prevalence and significance of organisms identical or similar to the isolate in the human large intestine and other methanogenic ecosystems.

ACKNOWLEDGMENTS

We thank C. Kunz, R. Mahoney, and M. Wahlen for assistance in determining the radioactivity of CH₄ and CO₂, W A Samsonoff for the electron microscope studies and E. Currenti, P. Elkowitz, and E. Kusel for technical assistance

LITERATURE CITED

- 1. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and **R. S. Wolfe.** 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260-296.
- 2. Chen, M., and M. J. Wolin. 1977. Influence of methane production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas rumninantium. Appl. Environ. Microbiol. 34:756-759.
- 3. Kunz, C. O. 1975. Separation techniques for reactorproduced Noble gases, p. 209-217. In R. E. Stanley and A. Moghissi (ed.), Noble gases. U.S. Environmental Protection Agency, Washington, D.C.
- 4. Miller, T. L., and M. J. Wolin. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27:985-987.
- 5. Miller, T. L., and M. J. Wolin. 1982. Enumeration of Methanobrevibacter smithii in human feces. Arch. Microbiol 131:14-18
- 6. Miller, T. L., M. J. Wolin, E. Conway de Macario, and A. J. L. Macario. 1982. Isolation of Methanobrevibacter smithii from human feces. Appl. Environ. Microbiol. 43:227-232
- 7. Paperiello, C. J. 1975. Internal gas-proportional betaspectrometry for measurement of radioactive Noble gases in reactor effluents, p. 239-248. In R. E. Stanley and A. Moghissi (ed.), Noble gases. U.S. Environmental Protection Agency, Washington, D.C
- 8. Rode, L. M., B. R. S. Genthner, and M. P. Bryant. 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:20-22.
- 9. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemoautotrophic anaerobic bacteria. Bacteriol. Rev. 41:100-180.
- 10. Wolin, M. J. 1981. Fermentation in the rumen and human large intestine. Science 213:1463-1468.
- 11. Zehnder, A. J. B., B. Hauser, and T. D. Brock. 1979. Measuring radioactive methane with the liquid scintillation counter. Appl. Environ. Microbiol. 37:897-899.