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abstract

 

Spark mass, the volume integral of 

 

�

 

F/F, was investigated theoretically and with simulations. These
studies show that the amount of Ca

 

2

 

�

 

 bound to fluo-3 is proportional to mass times the total concentration of fluo-
3 ([fluo-3

 

T

 

]); the proportionality constant depends on resting Ca

 

2

 

�

 

 concentration ([Ca

 

2

 

�

 

]

 

R

 

). In the simulation of
a Ca

 

2

 

�

 

 spark in an intact frog fiber with [fluo-3

 

T

 

] 

 

�

 

 100 

 

�

 

M, fluo-3 captures approximately one-fourth of the Ca

 

2

 

�

 

released from the sarcoplasmic reticulum (SR). Since mass in cut fibers is several times that in intact fibers, both
with similar values of [fluo-3

 

T

 

] and [Ca

 

2

 

�

 

]

 

R

 

, it seems likely that SR Ca

 

2

 

�

 

 release is larger in cut fiber sparks or that
fluo-3 is able to capture a larger fraction of the released Ca

 

2

 

�

 

 in cut fibers, perhaps because of reduced intrinsic
Ca

 

2

 

�

 

 buffering. Computer simulations were used to identify these and other factors that may underlie the differ-
ences in mass and other properties of sparks in intact and cut fibers. Our spark model, which successfully simu-
lates calcium sparks in intact fibers, was modified to reflect the conditions of cut fiber measurements. The results
show that, if the protein Ca

 

2

 

�

 

-buffering power of myoplasm is the same as that in intact fibers, the Ca

 

2

 

�

 

 source flux
underlying a spark in cut fibers is 5–10 times that in intact fibers. Smaller source fluxes are required for less buffer.
In the extreme case in which Ca

 

2

 

�

 

 binding to troponin is zero, the source flux needs to be 3–5 times that in intact
fibers. An increased Ca

 

2

 

�

 

 source flux could arise from an increase in Ca

 

2

 

�

 

 flux through one ryanodine receptor
(RYR) or an increase in the number of active RYRs per spark, or both. These results indicate that the gating of
RYRs, or their apparent single channel Ca

 

2

 

�

 

 flux, is different in frog cut fibers—and, perhaps, in other disrupted
preparations—than in intact fibers.

 

key words:
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I N T R O D U C T I O N

 

Ca

 

2

 

�

 

 sparks are brief, localized increases in fluores-
cence that can be detected in confocal images of mus-
cle fibers that contain a Ca

 

2

 

�

 

 indicator such as fluo-3
(Cheng et al., 1993; Tsugorka et al., 1995; Klein et al.,
1996). These fluorescence signals are driven by local
increases in the concentration of myoplasmic free cal-
cium ([Ca

 

2

 

�

 

]) that result from the flux of Ca

 

2

 

�

 

 from
the SR into the myoplasm through one or more RYRs,
the Ca

 

2

 

�

 

 release channels of the SR.
In frog skeletal muscle, voltage-activated Ca

 

2

 

�

 

 sparks
differ substantially in intact and cut fibers. For exam-
ple, the average values of decay time constant, full du-
ration at half maximum (FDHM),* full width at half
maximum (FWHM), and spark mass are 1.5- to three-
fold larger in cut fibers than in intact fibers (Table VII
of Hollingworth et al., 2001; see also Table II below).
The largest difference is for mass.

The first part of this article describes some of the
properties of spark mass, which is defined as the vol-
ume integral of 

 

�

 

F/F. These studies show that the

amount of Ca

 

2

 

�

 

 bound to fluo-3 is proportional to mass
times the total concentration of fluo-3 ([fluo-3

 

T

 

]), with
a proportionality constant that depends on [Ca

 

2

 

�

 

]

 

R

 

. In
an intact fiber simulation with [fluo-3

 

T

 

] 

 

�

 

 100 

 

�

 

M and
[Ca

 

2

 

�

 

]

 

R

 

 

 

�

 

 50 nM (the values that apply to intact fibers;
Hollingworth et al., 2001), fluo-3 captures approxi-
mately one-fourth of the Ca

 

2

 

�

 

 released during a spark.
Since mass in cut fibers is several times that in intact fi-
bers, whereas [fluo-3

 

T

 

] and [Ca

 

2

 

�

 

]

 

R

 

 are similar, it seems
likely that SR Ca

 

2

 

�

 

 release is larger in cut fiber sparks or
that fluo-3 is able to capture a larger fraction of the re-
leased Ca

 

2

 

�

 

, perhaps because of reduced intrinsic Ca

 

2

 

�

 

buffering in cut fibers. Other factors, however, may
contribute to the differences in spark properties, in-
cluding the microscope point-spread function (PSF),
the ionic composition of the myoplasmic solution, and
the procedures used for spark analysis.

The second part of this article describes computer
modeling that helps identify the factors that underlie
the differences between intact and cut fiber sparks. The
spark model of Baylor et al. (2002), which successfully
simulates sparks in intact fibers, was modified to mimic
the conditions encountered in the cut fiber experi-
ments. The new simulations show that the source flux
required for sparks in cut fibers is 3–10 times that in in-
tact fibers; the exact factor depends on the concentra-
tions of [Ca

 

2

 

�

 

]

 

R

 

 and the myoplasmic Ca

 

2

 

�

 

 buffering
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*

 

Abbreviations used in this article:

 

 FDHM, full duration at half maxi-
mum; FWHM, full width at half maximum; PSF, point-spread function.
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Simulation of Ca

 

2

 

�

 

 Sparks in Cut Fibers

 

proteins such as troponin. Such an increase in Ca

 

2

 

�

 

source flux could arise from an increase in Ca

 

2

 

�

 

 flux
through one RYR or an increase in the number of ac-
tive RYRs per spark, or both. In either case, it seems
clear that the gating of RYRs, or their apparent single
channel Ca

 

2

 

�

 

 flux, is different in frog cut fibers—and,
perhaps, in other disrupted preparations—than in frog
intact fibers.

Some of the results have appeared in abstract form
(Baylor et al., 2003; Chandler et al., 2003).

 

M A T E R I A L S  A N D  M E T H O D S

 

Measurement of Sparks in Intact Fibers

 

Intact single fibers were dissected from leg muscles of 

 

R. pipiens

 

,
microinjected with the membrane-impermeant form of fluo-3,
and studied at 18 

 

�

 

 1

 

�

 

C with a laser-scanning confocal micro-
scope. Fluorescence x-t images were obtained with pixel separa-
tions of 0.20 

 

�

 

m in x and 2.048 ms in t. The average [fluo-3

 

T

 

] at
the optical site was 0.1 mM. This and other information are given
in Hollingworth et al. (2001).

 

Simulation of Sparks in Intact Fibers

 

Calculations were made with spark model 2 of Baylor et al.
(2002). In brief, the myoplasm is assumed to be isotropic, with its
constituents distributed homogeneously in the resting state. For
computational purposes, the myoplasmic volume is divided into
101 spherically symmetric compartments that are centered at the
source of Ca

 

2

 

�

 

 release and extend to 5 

 

�

 

m from the source. A
spark occurs when a brief flux of Ca

 

2

 

�

 

 enters the innermost com-
partment, a sphere of radius 25 nm. The model is used to calcu-
late, for different times and radial distances from the source, the
concentration of myoplasmic-free Ca

 

2

 

�

 

, the concentrations of
the Ca

 

2

 

�

 

-free and Ca

 

2

 

�

 

-bound forms of the major intrinsic myo-
plasmic Ca

 

2

 

�

 

 buffers (troponin, ATP, parvalbumin, and the SR
Ca

 

2

 

�

 

 pump), and the concentrations of the Ca

 

2

 

�

 

-free and Ca

 

2

 

�

 

-
bound forms of fluo-3.

The model considers four different forms of fluo-3: Fluo
(Ca

 

2

 

�

 

-free, protein-free fluo-3), PrFluo (Ca

 

2

 

�

 

-free, protein-bound
fluo-3), CaFluo (Ca

 

2

 

�

 

-bound, protein-free fluo-3), and CaPrFluo
(Ca

 

2

 

�

 

-bound, protein-bound fluo-3). The total concentration of
Ca

 

2

 

�

 

-bound fluo-3, denoted by [Cafluo-3], is given by

 

(1)

 

CaFluo and CaPrFluo are strongly fluorescent with the same rela-
tive intensity (Harkins et al., 1993), denoted by F

 

max

 

, whereas
Fluo and PrFluo are weakly fluorescent. To allow for the fluores-
cence of Ca

 

2

 

�

 

-free indicator, it is useful to introduce a derived
fluo-3 concentration variable, [FFluo], defined by

 

(2)

 

F

 

min

 

/F

 

max

 

 and F

 

�

 

min

 

/F

 

max

 

 represent, respectively, the fluorescence
intensities of Fluo and PrFluo divided by that of CaFluo or Ca-
PrFluo; their values are 0.005 and 0.01, respectively (Harkins et
al., 1993). According to Eq. 2, [FFluo] represents the concentra-
tion of CaFluo (or CaPrFluo) that has the same fluorescence as
the mixture of CaFluo, CaPrFluo, Fluo, and PrFluo. The value
of [FFluo]

 

R

 

 is proportional to [fluo-3

 

T

 

]. The proportionality

Cafluo-3[ ] CaFluo[ ] CaPrFluo[ ].+=

FFluo[ ] CaFluo[ ] CaPrFluo[ ] Fmin Fmax⁄( )
Fluo[ ] F ′min Fmax⁄( ) PrFluo[ ] .⋅+

⋅+ +=

 

constant is equal to 0.0422 for [Ca

 

2

 

�

 

]

 

R

 

 

 

�

 

 50 nM, 0.0608 for
[Ca

 

2

 

�

 

]

 

R

 

 � 80 nM, and 0.0728 for [Ca2�]R � 100 nM.
�F/F is calculated by convolving �[FFluo]/[FFluo]R with the

microscope PSF. In general, � denotes a change in a variable and
subscript R denotes its resting value. The values of the FWHM of
the PSF are 0.2 �m in x and y and 0.5 �m in z, the same as those
measured in the confocal microscope used in the intact fiber ex-
periments (Hollingworth et al., 2001). This model with a Ca2�

source flux of 2.5 pA for 4.6 ms provides a good description of
Ca2� sparks in intact fibers (Baylor et al., 2002).

Simulation of Sparks in Cut Fibers

The model described above for intact fibers was modified to sim-
ulate Ca2� sparks in cut fibers. Table I lists the differences be-
tween the intact and cut fiber simulation conditions (columns 2
and 3, respectively). The information for intact fibers was taken
from Hollingworth et al. (2001). The information for cut fibers
was taken from experiments in the Schneider laboratory. These
experiments were selected for comparison because sparks in the
Schneider laboratory and ours were analyzed with similar func-
tions in space and time (Klein et al., 1997; Lacampagne et al.,
1999; see below).

Simulation of Noisy Sparks

Noisy sparks were simulated with the aid of a random number
generator to mimic the known sources of noise and variability in
the measurements (Baylor et al., 2002). These include photon

T A B L E  I

Factors That May Contribute to Ca2� Spark Differences in Intact and
Cut Fibers

1 2 3

Factor Intact fibers Cut fibers

A. Fiber conditions

1. Temperature (�C) 18 22

2. Sarcomere length (�m) 3.0 3.6

3. Resting free [Ca2�] (�M) 0.05 0.08

4. Resting free [Mg2�] (�M) 1,000 650

5. Total [ATP] (�M) 8,000 5,000

6. Total [EGTA] (�M) 0 100

7. Total [troponin regulatory sites] (�M) 360 432

8. [Fluo-3T] (�M) 100 100

B. Microscope PSF

FWHM of microscope PSF: x, y, z (�m) 0.2, 0.2, 0.5 0.5, 0.5, 1.0

C. Procedures for spark analysis See materials and methods

For the cut fiber simulations, model 2 of Baylor et al. (2002) was modified
to incorporate the differences between columns 2 and 3. To adjust for
temperature, the diffusion constants and reaction rate constants in the
intact fiber model were scaled by the factors 1.11 and 1.32, respectively
(corresponding to Q10s of 1.3 and 2.0, respectively). To adjust for
sarcomere length, the concentration of the troponin regulatory sites in the
intact fiber model was scaled by the factor 1.2 (the ratio of the sarcomere
lengths); this scaling reflects the expected constancy of fiber volume with
changes in sarcomere length and the close proximity of the troponin
molecules to the SR Ca2� release sites. The association and dissociation
rate constants for Ca2�’s reaction with EGTA were 3.79 	 106 M
1 s
1 and
1.42 s
1, respectively (22�C, pH � 7.0; Pape et al., 1995). The value of
resting free [Mg2�] in cut fibers is based on Lacampagne et al. (1998). The
other information for cut fibers is based on Lacampagne et al. (1996,
1999) and a personal communication with Dr. M.F. Schneider.
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and instrumentation noise as well as variability that arises from
random displacements of the scan line relative to the spark
source and random offsets in the time of data sampling relative
to the time of spark onset.

Procedures for Spark Analysis in Intact Fibers

The analysis of an intact fiber spark, both experimental and sim-
ulated, followed procedures described in Hollingworth et al.
(2001). Briefly, a 3 	 3 smoothed x-t image was formed from the
original �F/F x-t image and an autodetection program was used
to tentatively identify a spark as a contiguous region with peak
�F/F � 0.3. The unsmoothed �F/F image was then used to form
a �F/F vs. t waveform as the average of the three time lines at
x0 
 0.2 �m, x0, and x0 � 0.2 �m; x0 denotes the spatial center of
the spark determined by the autodetection program. This wave-
form was least-squares fitted with Eq. 1 of Hollingworth et al.
(2001), which is based on the corrected version of Eq. 2 of
Lacampagne et al. (1999). This equation assumes that �F/F vs. t
starts abruptly, rises exponentially toward a maximum value, then
terminates abruptly and decays exponentially to a baseline offset.
The fit determines the 0–100% rise time, time of peak (denoted
t2), peak amplitude, decay time constant, and FDHM. Then, a
�F/F vs. x waveform was obtained from the unsmoothed �F/F
image as an average of two line scans, just before and just after t2.
This waveform was least-squares fitted with a Gaussian function
with baseline offset (Eq. 2 of Hollingworth et al., 2001; see also
Klein et al., 1997) to determine FWHM at time of peak �F/F.
Spark mass at time of peak �F/F was estimated with Eq. 8 of
Hollingworth et al. (2001):

(3)

in which Me denotes estimated mass. Eq. 3 was derived on the as-
sumption that �F/F can be represented as a product of three in-
dividual and identical gaussian functions in x, y, and z. Although
this condition does not strictly hold in spark experiments, Eq. 3
provides a useful estimate of mass, as shown below in Figs. 2 and
3 and associated text.

Sparks were excluded from the analysis if the fitted parameters
did not satisfy the broad acceptance criteria described in
Hollingworth et al. (2001). With the standard model for intact fi-
ber sparks, these criteria exclude �1% of the simulated sparks.

Procedures for Spark Analysis in Cut Fibers

The analysis of a simulated cut fiber spark followed procedures
described in Klein et al. (1997), in Lacampagne et al. (1999),
and in a personal communication with Dr. M.F. Schneider. It
started with the autodetection routine used for intact fibers. A
possible spark, with an initial estimate of x0, was identified in the
3 	 3 smoothed image. An initial �F/F vs. t waveform was
formed from the smoothed image as the average of the three
time lines at x0 
 0.2 �m, x0, and x0 � 0.2 �m. The time of peak
of this waveform was used as the initial estimate of t2. A �F/F vs. x
waveform was then formed from the 3 	 3 smoothed image as
the average of the three line scans at t2 
 2 ms, t2, and t2 � 2 ms
and was fitted with a gaussian function (Eq. 2 of Hollingworth et
al., 2001) to determine FWHM and the final estimate of x0. Fi-
nally, a �F/F vs. t waveform was obtained from the unsmoothed
x-t image as an average of seven time lines at x0, x0 � 0.2 �m,
x0 � 0.4 �m, and x0 � 0.6 �m. This waveform was fitted with Eq.
1 of Hollingworth et al. (2001) to determine 0–100% rise time,
peak amplitude, decay time constant, and FDHM. Analyzed
sparks were accepted if peak amplitude satisfied �F/F � 0.4
(Lacampagne et al., 1999) and the other morphological parame-

Me 1.206 ∆F F⁄ FWHM3,⋅ ⋅=

ters satisfied the broad acceptance criteria described in Holling-
worth et al. (2001).

Spark Mass and its Equivalence to the Volume Integral 
of �[FFluo]/[FFluo]R

�F/F is given by the convolution of �[FFluo]/[FFluo]R with the
microscope PSF,

(4)

and mass (M) is defined as the volume integral of �F/F, 

(5)

By changing the order of integration with respect to x�, y�, z� and
x, y, z, and using the fact that the volume integral of PSF equals 1,
M can be written

(6)

Eq. 6 shows that M is equal to the increase in the total normal-
ized amount of FFluo and that this equality does not depend on
the spatial resolution of the confocal microscope. The equality
holds for any PSF that is continuous in x, y, and z. Because the ab-
solute value of �[CaFluo] � �[CaPrFluo] is much greater than
the absolute value of 0.005 
 �[Fluo] � 0.01 
 �[PrFluo],
�[FFluo] is approximately equal to �[Cafluo-3], and 

(7)

Eq. 7 shows that the total amount of Ca2� captured by fluo-3 is
approximately equal to M(t) � [FFluo]R.

Statistics

For each set of noisy-spark simulations in Tables IV, V, and VII,
sufficient sparks were generated to give 3,176 sparks for inclusion
in the analysis. This number is the same as that in the measure-
ments of Hollingworth et al. (2001) and in the simulations of
Baylor et al. (2002). Values of the morphological parameters are
reported as mean � SEM. The statistical significance of a differ-
ence between means was evaluated with Student’s two-tailed t test
at P � 0.05.

R E S U L T S

The first part of this article describes simulations and
measurements of spark mass in intact muscle fibers of
frog. The most accurate estimates of mass are made
when the scan line intersects the source of Ca2� re-
lease. Experimentally, such “in focus” sparks, if elicited
by depolarization, have the following average morpho-
logical properties: 0–100% rise time, �3.9 ms; peak
�F/F, �1.9; decay time constant, �4.4 ms; FDHM,
�5.5 ms; FWHM (measured at the time of peak �F/F),
�1.0 �m (18�C, Table VII of Baylor et al., 2002; see also
Fig. 3, B and D, described below). These and other

∆F
F

------- x,y,z,t( ) ∆ FFluo[ ] x�, y�, z�, t( )
FFluo[ ]R

-----------------------------------------------------

PSF x x�,y y�,z z�–––( )dx�dy�dz�,

⋅
∞–

∞

∫
∞–

∞

∫
∞–

∞

∫=

M t( ) ∆F
F

------- x,y,z,t( )dx dy dz.
∞–

∞

∫
∞–

∞

∫
∞–

∞

∫=

M t( ) ∆ FFluo[ ] x,y,z,t( )
FFluo[ ]R

-------------------------------------------dx dy dz.
∞–

∞

∫
∞–

∞

∫
∞–

∞

∫=

M t( ) ∆ Cafluo-3[ ] x,y,z,t( )
FFluo[ ]R

------------------------------------------------dx dy dz.
∞–

∞

∫
∞–

∞

∫
∞–

∞

∫≈
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properties of measured sparks in intact fibers are well
simulated with spark model 2 of Baylor et al. (2002)
with a Ca2� source flux of 2.5 pA for 4.6 ms and [fluo-
3T] � 100 �M. Except where noted, these conditions
were used for the calculations.

Spark Mass Equals the Volume Integral of �[FFluo]/[FFluo]R

Fig. 1 A shows the time course of �F/F at the Ca2�

source for a standard noise-free simulated spark. The
peak amplitude is 2.14 and the time of peak is 4.6 ms,
the same as the flux duration. Fig. 1 B shows two nearly
identical curves. One is the time course of “true” mass,
M(t), calculated from its definition (Eq. 5). The other
is the time course of the volume integral of �[FFluo]/
[FFluo]R, which is equal to spark mass (Eq. 6); this
equality does not depend on the spatial distribution of
�[FFluo]/[FFluo]R or on the microscope PSF (see ma-
terials and methods). As expected from the theory,
the two curves in Fig. 1 B are indistinguishable. At the
time of peak �F/F (4.6 ms), the value of mass is 2.64
�m3. Although the Ca2� source flux ceases at 4.6 ms,
M(t) continues to increase; it reaches its peak value,
3.63 �m3, at 10.8 ms, 6.2 ms after the peak �F/F. The
lag between cessation of Ca2� release and the peak of
mass arises from kinetic delays in the reactions between
Ca2� and fluo-3 in the myoplasmic environment (Har-
kins et al., 1993; Baylor and Hollingworth, 1998; Hol-
lingworth et al., 2000). After 10.8 ms, mass decreases as
Ca2� dissociates from fluo-3 and is captured by parval-
bumin and the SR Ca2� pump.

The Volume Integral of �[Cafluo-3]/[FFluo]R � Spark Mass

The continuous curve in Fig. 1 C shows the volume in-
tegral of �[Cafluo-3]/[FFluo]R. This is proportional to
the amount of Ca2� that is captured by fluo-3, which
provides a lower limit of the amount of Ca2� released
during a spark. The peak value of the continuous curve
in Fig. 1 C (3.66 �m3) times the value of [FFluo]R (4.22
�M at [Ca2�]R � 50 nM; see materials and methods)
indicates that 9,312 Ca2� ions are captured by fluo-3
(3.66 �m3 	 4.22 �M � 1.546 	 10
20 moles). This
represents �26% of the 35,888 Ca2� ions that are re-
leased into the myoplasm by the 2.5 pA 	 4.6 ms Ca2�

flux. The capture of about one-fourth of the released
Ca2� by fluo-3 indicates that the buffering action of 100
�M fluo-3 is not negligible during a spark.

The dashed curve in Fig. 1 C shows M(t). According
to Eq. 7, which is illustrated by the similarity of the
dashed and continuous curves in Fig. 1 C, the volume
integral of �[Cafluo-3] is expected to be approximately
equal to M(t) times [FFluo]R. The peak value of M(t)
(3.63 �m3) times [FFluo]R (4.22 �M) gives 9,236 for
the number of Ca2� ions captured by fluo-3, which is
0.99 times the actual value.

Use of Eq. 3 to Estimate Spark Mass

Although spark mass depends on the spatial spread of
�F/F in three dimensions, its value can be estimated
with Eq. 3 from the spatial spread in the x direction
only. Fig. 2 shows noise-free calculations that illustrate
the estimation of spark mass (Me). Fig. 2, A and B,
shows the time courses of �F/F and FWHM, respec-
tively, at the source; these were obtained from fits of a
gaussian function to the waveform of �F/F vs. x at dif-
ferent times t. The curve in Fig. 2 A differs slightly from

Figure 1. Calculated waveforms of a noise-free spark (Ca2�

flux � 2.5 pA 	 4.6 ms beginning at time � 0). (A) Time course
of �F/F at the source (x � y � z � 0). (B) Spark mass calculated
from its definition (Eq. 5) and from an equivalent relation (Eq. 6).
(C) The continuous curve is the volume integral of �[Cafluo-3]/
[FFluo]R. The dashed curve is the mass curve from B.



T
he

 J
ou

rn
al

 o
f 

G
en

er
al

 P
hy

si
ol

og
y

315 Chandler et al.

that in Fig. 1 A, which is the actual temporal waveform
of �F/F at the source. This difference arises because
�F/F vs. x is not an exact gaussian function, either in
the simulations or in the measurements (Fig. 9, B and
E, of Baylor et al., 2002). In spite of this, the �F/F vs. t
waveforms in Figs. 1 A and 2 A have similar peak ampli-
tudes, the same time of peak (4.6 ms, which is the time
at which the Ca2� source flux terminates), and very
similar overall time courses.

The continuous curve in Fig. 2 C shows Me(t), which
was calculated with Eq. 3 from the curves in Fig. 2, A
and B. The dashed curve is M(t) from Fig. 1 B, scaled
by the factor 0.85 (the ratio of the peak amplitude of
Me(t) to that of M(t)). This factor is different from
unity because �F/F vs. x is not an exact gaussian func-
tion and because the microscope PSF, and conse-
quently �F/F, is not symmetrical in x, y, and z (Table I
B, column 2). As shown in Fig. 2 C, M(t) and Me(t)
have identical times of peak (10.8 ms) but somewhat
different overall time courses. This comparison shows
that Eq. 3 is expected to give reasonable approxima-
tions of peak M(t) and of the time of peak M(t) for an
in-focus spark. The approximation is less good, how-
ever, at the time of peak �F/F, where estimates of mass
are frequently made.

Time Course of Mass in Simulated Noisy Sparks and
in Sparks in Intact Fibers

Fig. 3 shows simulated data (asterisks) and measured
data (open squares); 0 ms denotes the estimated time
of peak �F/F. Each set of data was obtained from an av-
erage of 179 in-focus sparks, defined as the largest 10%
of sparks with peak amplitude �F/F � 0.7. Noise and
variability were included in the simulated data to mimic
the measurements (see materials and methods). Fig.
3 also shows the continuous curves from Fig. 2 time-
shifted by 
4.6 ms so that 0 ms corresponds to the time
of peak �F/F. Fig. 3, A and B, show the time course of
�F/F and Fig. 3, C and D, show FWHM. Both the simu-
lated and measured values of FWHM become noisy af-
ter 12 ms; this occurs because �F/F becomes small and
the noise in �F/F vs. x makes the gaussian fits less reli-
able. The simulated data in these panels are in reason-
able agreement with the measured data, and, within
the noise, both sets of data lie close to the curves, at
least out to �40 ms.

Fig. 3, E and F, show Me(t). In both datasets, the time
of peak mass is similar to that of the curve, 6.2 ms, con-
sistent with the idea that, within the noise in the data,
the kinetic delays in the reactions between Ca2� and
fluo-3 in myoplasm are adequately simulated with the
model. After 12 ms, the values of mass become less reli-
able because of the noise in FWHM.

The simulations and measurements in Figs. 1–3 indi-
cate that Eq. 3 provides reasonable estimates of the
peak mass and time of peak mass of an in-focus spark.

Dependence of Simulated Spark Mass on
the Amount of Ca2� Released

Noise-free simulations of sparks at the source of Ca2�

flux were also used to study the dependence of M and
Me on the total amount of SR Ca2� released during a
spark. Ca2� release was varied by changing either the
amplitude or the duration of the source flux. Fig. 4

Figure 2. Temporal waveforms used to estimate spark mass.
�F/F (A) and FWHM (B) at the source, obtained from fits of a
gaussian function (Eq. 2 of Hollingworth et al., 2001) to single line
scans of �F/F vs. x at times � 0.1 ms. (C) The continuous curve is
Me(t) calculated with Eq. 3 from the curves in A and B. The
dashed curve is M(t) (the curve in Fig. 1 B) scaled by the factor
0.850.
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316 Simulation of Ca2� Sparks in Cut Fibers

shows mass at the time of peak �F/F (A) and at the
time of peak true mass (B) plotted against the amount
of Ca2� released. For releases up to �30 fC, both true
mass (filled symbols) and estimated mass (open sym-
bols) vary approximately linearly with the amount of
Ca2� released. In both panels, the slope of the line fit-
ted to estimated mass (dashed line) is smaller than that
fitted to true mass (continuous line). The ratio of the
slopes (dashed divided by continuous) is 0.545 in A and
0.832 in B. These simulations show that, for the range
of Ca2� releases considered, both the true and esti-
mated mass of an in-focus spark are approximately pro-
portional to the amount of SR Ca2� released, with a
proportionality constant that is smaller at the time of
peak �F/F than at the time of peak mass. The propor-

tionality constant for peak true mass (slope of the con-
tinuous line in Fig. 4 B) corresponds to the capture of
24.9% of the Ca2� released from the SR by fluo-3
([fluo-3T] � 100 �M).

Simulations of Sparks in Cut Fibers

Table II gives the average values of spark morphologi-
cal parameters in intact fibers studied by us and in cut
fibers studied in the Schneider laboratory; both labora-
tories use essentially identical functions to analyze
sparks in space and time (Klein et al., 1997; Lacam-
pagne et al., 1999; see materials and methods). Since
the mean values of spark amplitude are similar in intact
and cut fibers (0.99 and 1.05, respectively), the under-
lying Ca2� source fluxes might also be expected to be

Figure 3. Comparison of simulated and mea-
sured spark data (asterisks and open squares, re-
spectively) used for the estimation of spark mass.
Each dataset was obtained from an averaged x-t
image formed from 179 in-focus sparks. Prior to
averaging, the sparks were aligned in time, based
on the estimated time of peak, and in space,
based on the estimated spatial center of the spark
(Hollingworth et al., 2001). The pixel separations
in x and t were 0.20 �m and 2 ms for the simu-
lated noisy images and 0.20 �m and 2.048 ms for
the measured images. (A and B) The symbols
show �F/F at the spark center, as estimated from
fits of a gaussian function to �F/F vs. x at differ-
ent times. For the fits, the spatial data were aver-
aged from 1, 3, or 9 lines in x (t � 20 ms, 20 � t �
40 ms, and t � 40 ms, respectively). (C and D)
The symbols show the values of FWHM estimated
from the fits in panels A and B. (E and F) The val-
ues of Me (symbols) were calculated with Eq. 3
from the corresponding values of �F/F (A and B)
and FWHM (C and D). The continuous curves
are identical to the continuous curves in the
corresponding panels of Fig. 2 time-shifted by

4.6 ms.



T
he

 J
ou

rn
al

 o
f 

G
en

er
al

 P
hy

si
ol

og
y

317 Chandler et al.

similar in the two preparations. This turns out not to be
the case, however, as is suggested by the larger value of
spark mass in cut fibers and the association of spark
mass with the amount of Ca2� captured by fluo-3 that is
described above. According to Eq. 7, at the time of
peak �F/F, the amount of Ca2� bound to fluo-3 during
a cut fiber spark would be expected to be 4–5 times that
in intact fibers (threefold increase in mass times
0.0608/0.0422, the ratio of the values of [FFluo]R for
the values of [Ca2�]R and [fluo-3T] given in Table I).
The simulations in the following sections elucidate the
dependence of mean spark amplitude on Ca2� source
strength and other parameters.

Effects of Fiber Conditions, Microscope PSF, and Analysis 
Procedures on Properties of Noise-free Sparks at the Ca2� Source

Fig. 5 A shows the temporal waveforms of five sparks
simulated with a Ca2� source flux of 2.5 pA for 4.6 ms
and with the scan line through the Ca2� source. Trace a
shows �F/F at x � 0 for the standard simulation condi-
tions used for intact fiber sparks (Table I, column 2).
Trace b shows �F/F from this same simulation but aver-
aged at three spatial locations (x � 
0.2, 0, and 0.2
�m), as is done in the analysis of sparks in intact fibers.
Its amplitude is smaller than that of a because the val-
ues of �F/F at x � �0.2 �m are smaller than that at
x � 0. Both a and b were calculated with the PSF used
for the experiments on intact fibers.

Trace c is similar to b except that the broader PSF
from the cut fiber experiments was used (Table I B, col-
umn 3). This decreased the peak value of �F/F from
1.808 in b to 1.040 in c. This shows that the difference
in spatial resolution of the confocal microscopes used
for the intact and cut fiber experiments is expected to

make an almost twofold difference in the peak value of
�F/F near the scan line. Trace d was calculated with
the same cut fiber PSF used for c but with the cut fiber
analysis procedures described in materials and meth-
ods. The difference between traces c and d is caused by
the different number of spatial locations used for aver-
aging the temporal waveforms: three in c (as used for
intact fiber sparks) and seven in d (as used for cut fiber
sparks).

Trace e was obtained in the same manner as trace d
except that cut fiber conditions were used for the simu-
lations (Table I A, column 3). The smaller amplitude of
trace e is due mainly to the increase in [Ca]R from 50 to
80 nM. This increases the resting concentration of
Ca2�-bound fluo-3 and hence resting fluorescence; as a
result, a smaller �F/F signal is produced for a given
Ca2� flux (e.g., Jiang et al., 1999; Baylor et al., 2002).

Figure 4. Spark mass (ordinate) vs. total SR Ca2� release (expressed in fC � pA 	 ms), from simulations such as that illustrated in Figs.
1 and 2. M (filled symbols) and Me (open symbols) were evaluated at the time of peak �F/F (A) and of peak M (B). Squares were obtained
with the standard Ca2� source flux (2.5 pA 	 4.6 ms); triangles were obtained with a flux amplitude of 2.5 pA and durations of 2, 3, 6, 8,
10, and 12 ms; circles were obtained with a flux duration of 4.6 ms and amplitudes of 2, 3, 4, 5, and 6 pA. The curves show least-squares fits
of lines that intersect the origin. The slopes of the lines are 0.1335 and 0.2450 (A) and 0.2515 and 0.3023 (B).

T A B L E  I I

Values of Morphological Parameters Reported for Voltage-activated 
Ca2� Sparks in Intact and Cut Fibers

1 2 3

Parameters Intact fibers Cut fibers

0–100% rise time (ms) 4.4 � 0.1 4.7 � 0.1

Peak amplitude (�F/F) 0.99 � 0.01 1.05 � 0.03

Decay time constant (ms) 4.9 � 0.1 8.5 � 0.4

FDHM (ms) 6.3 � 0.1 14.8 � 0.3

FWHM (�m) 1.05 � 0.01 1.51 � 0.10

Spark mass (�m3) 1.38 4.36

Mean � SEM values for intact fibers were measured at 18�C (Table VII
of Hollingworth et al., 2001; amplitude criterion for spark acceptance,
�F/F � 0.5). Cut fiber values were measured at 22�C (Lacampagne et al.,
1996, 1999; amplitude criterion, �F/F � 0.4–0.5). Mass was calculated
from the mean values of peak amplitude and FWHM with Eq. 3.
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The peak �F/F amplitudes in Fig. 5 A progressively
decrease from a to e. Trace b, with a peak value of
1.808, represents the temporal waveform of a noise-
free simulated intact fiber spark with the scan line
through the Ca2� source. Trace e, with a peak value of
0.522, is the comparable waveform for a cut fiber
spark. These simulations show that, with a Ca2� source
flux of 2.5 pA for 4.6 ms and with the line scan
through the Ca2� source, a spark measured in a cut fi-
ber is expected to have an amplitude that is �0.3 times
that in an intact fiber.

Fig. 5 B shows the spatial waveforms of �F/F that ac-
company the traces in A. All waveforms in B have been
scaled to a peak amplitude of unity to facilitate the
comparison of the spatial spread of the sparks. The
FWHMs of the waveforms progressively increase from

0.740 �m in a to 1.177 �m in d; waveforms in d and e
are indistinguishable.

Additional information about the simulations in Fig.
5 is given in Table III, columns 2–6. From the intact fi-
ber simulation of column 3 to the cut fiber simulation
of column 6, there is a 71% reduction in peak ampli-
tude, an 18% increase in FDHM, a 39% increase in
FWHM, and a 23% reduction in spark mass.

Simulation of Noisy Sparks in Cut Fibers
(Ca2� Source Flux � 2.5 pA 	 4.6 ms)

To further compare our spark simulations with the cut
fiber measurements, noisy sparks were simulated and
then were analyzed with the cut fiber procedures de-
scribed in materials and methods. Table IV, column
2, shows the mean values of the morphological parame-

Figure 5. Spark profiles in time (A) and space (B) from noise-free simulations at the Ca2� source. Traces a–e were used to obtain the
morphological parameters given in Table III, columns 2–6, respectively. See “Variables” in Table III for fiber conditions, PSF values, and
analysis procedures used in these simulations.

T A B L E  I I I

Variation of Ca2� Spark Properties with Different Fiber Conditions, Microscope PSF, and Procedures for Spark Analysis
(Ca2� Source Flux � 2.5 pA 	 4.6 ms)

1 2 3 4 5 6

Traces in Fig. 1 a b c d e

Variables

Fiber conditions intact intact intact intact cut

PSF FWHM: x, y, z (�m) 0.2, 0.2, 0.5  0.2, 0.2, 0.5  0.5, 0.5, 1.0 0.5, 0.5, 1.0  0.5, 0.5, 1.0

Analysis procedures  single line scan intact intact cut cut

Parameters

0–100% rise time (ms) 4.60 4.60 4.60 4.60 4.60

Peak amplitude (�F/F) 2.144 1.808 1.040 0.781 0.522

FDHM (ms) 5.150 5.359 6.353 7.151 6.238

FWHM (�m) 0.740 0.844 1.095 1.177 1.172

Spark mass (�m3) 1.05 1.31 1.65 1.54 1.01

Parameter values were obtained directly from noise-free x-t waveforms centered at the Ca2� source (Fig. 1) without the use of fitted functions. Fiber
conditions and PSFs (intact and cut) are specified in Table I, A and B. In the analysis procedure in column 2, a single time line at x � 0 was used for �F/F
vs. t and a single line scan at the peak was used for �F/F vs. x. The analysis procedures for intact and cut fibers in columns 3–6 are described in materials
and methods.
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ters obtained from 3,176 noisy sparks simulated with
the conditions used for trace e in Fig. 5 and Table III,
column 6, as described in Table I, column 3. In these
simulations, the average value of D (the distance be-
tween the scan line and the spark source in the y-z
plane) was 0.358 �m. The mean values of spark ampli-
tude and mass (0.493 and 1.649 �m3, respectively) are
much smaller than the measured values (1.05 and 4.36
�m3, respectively; Table II, column 3). In contrast, the
simulated value of FWHM (1.317 �m) is close to the
measured value (1.51 �m). These noisy simulations
confirm that, if the values of the variables in Table I,
column 3, apply to cut fibers, a Ca2� source flux of 2.5
pA is too small to account for the amplitude and some
of the other properties of sparks in cut fibers.

Simulations with Reduced Concentrations of Troponin
(Ca2� Source Flux � 2.5 pA 	 4.6 ms)

Although the divalent cation binding sites on parvalbu-
min appear to be present at an approximately normal
concentration in cut fibers (Irving et al., 1989), the Ca2�

regulatory sites on troponin may bind less Ca2� than the
sites in intact fibers (Melzer et al., 1986; Pape et al.,
1995). To explore this possibility, noisy sparks were sim-
ulated with reduced troponin concentrations. The asso-
ciated reduction in Ca2� buffering would be expected to
produce a larger spark amplitude for a given Ca2� flux.
Table IV, columns 3 and 4, show results for troponin
concentrations of 0.5 and 0 times the standard value, re-
spectively. These reductions produce only small in-
creases in the mean values of spark amplitude and mass.
Thus, even without Ca2� binding to troponin, large dif-
ferences remain between the amplitude and other

parameters of these simulated sparks and measured
sparks.

Simulations with Reduced [Ca2�]R 
(Ca2� Source Flux � 2.5 pA 	 4.6 ms)

Although the value of [Ca2�]R in cut fibers appears to
be larger than that in intact fibers (Hollingworth et al.,
2001; see also discussion), it was nonetheless of inter-
est to determine the effect of reducing [Ca2�]R from 80
to 50 nM, the standard value used for spark simulations
in intact fibers (Table I). This reduction is expected to
reduce resting F and therefore increase �F/F for a
given Ca2� flux. Table IV, columns 5–7, are similar to
columns 2–4 except that [Ca2�]R � 50 nM. Even with-
out troponin (column 7), the mean values of spark am-
plitude and mass (0.630 and 2.368 �m3, respectively)
are substantially smaller than those of the measure-
ments (1.05 and 4.36 �m3, respectively).

Our conclusion from the results in Table IV is that a
Ca2� flux of 2.5 pA is too small to account for the am-
plitude and some of the other properties of sparks in
cut fibers.

Simulation of Noisy Sparks in Cut Fibers with Mean
�F/F �1.05 (Ca2� Source Flux � 2.5 pA for 4.6 ms)

Table V shows results similar to those in Table IV except
that, for each simulation condition, the Ca2� flux ampli-
tude was increased in units of 1 pA until average �F/F
was �1.05, similar to that of the cut fiber measure-
ments. In these simulations, sparks that satisfy the crite-
rion �F/F � 0.4 can be detected farther from the
source so that the average values of D in Table V are sub-
stantially larger than those in Table IV. The values of the

T A B L E  I V

Properties of Simulated Noisy Ca2� Sparks in Cut Fibers at Three Concentrations of Troponin and Two Values of [Ca2�]R

(Ca2� Source Flux � 2.5 pA 	 4.6 ms)

1 2 3 4 5 6 7

Variables

[Troponin regulatory sites] (�M) 432 216 0 432 216 0

[Ca2�]R (nM) 80 80 80 50 50 50

Parameters 

Peak amplitude at the Ca2� source (�F/F) 0.522  0.591  0.681  0.741  0.832  0.948

Distance D (�m) 0.358 � 0.003 0.393 � 0.003 0.443 � 0.004 0.455 � 0.004 0.496 � 0.004 0.542 � 0.004

0–100% rise time (ms) 4.206 � 0.028 4.223 � 0.027 4.212 � 0.026 4.343 � 0.027 4.354 � 0.026 4.348 � 0.025

Peak amplitude (�F/F) 0.493 � 0.001 0.516 � 0.002 0.547 � 0.002 0.560 � 0.002 0.589 � 0.002 0.630 � 0.003

Decay time constant (ms) 5.173 � 0.042 5.203 � 0.041 5.086 � 0.038 5.851 � 0.042 5.670 � 0.039 5.461 � 0.036

FDHM (ms) 6.443 � 0.032 6.403 � 0.030 6.253 � 0.028 6.994 � 0.032 6.825 � 0.030 6.612 � 0.027

FWHM (�m) 1.317 � 0.006 1.343 � 0.006 1.383 � 0.006 1.345 � 0.005 1.378 � 0.006 1.419 � 0.005

Spark mass (�m3) 1.649 � 0.029 1.774 � 0.028 2.046 � 0.036 1.877 � 0.030 2.094 � 0.032 2.368 � 0.029

Mean � SEM values are for 3,176 noisy sparks. The PSF and analysis procedures for cut fibers were used (Table I, column 3). Column 2 was simulated with
the standard conditions for cut fibers; in columns 3–7, the concentration of the troponin regulatory sites and [Ca2�]R were varied as indicated. The
amplitude criterion for spark acceptance was �F/F � 0.4. Here and in Tables V and VII, spark mass was evaluated in each individual simulation.
Consequently, the mean value of mass listed in the bottom row is somewhat different from the value obtained with Eq. 3 from the mean values of �F/F
and FWHM.
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other parameters in Table V, columns 2–7, are broadly
consistent with the experimental results in Table II, col-
umn 3. Consequently, none of the six combinations of
[troponin] and [Ca2�]R can be definitely ruled out. As
expected, the largest Ca2� flux (23 pA, column 2) oc-
curs with the standard values of [troponin] and [Ca2�]R,
and the smallest flux (8 pA, column 7) occurs with
[troponin] � 0 and [Ca2�]R � 50 nM. Even the 8 pA
value is more than three times that required for the sim-
ulation of sparks in intact fibers, 2.5 pA.

Tables IV and V give the values of Ca2� source flux
and peak �F/F at the source for the six simulation con-
ditions, columns 2–7. In each case, the relative increase
in �F/F is smaller than the relative increase in the
source flux. This indicates that the relation between
�F/F at the source and source flux is convex (has a
slope that decreases with increasing flux), perhaps due
to factors such as the saturation of fluo-3 by Ca2� near
the source. The relation between mean �F/F and �F/F
at the source is also convex. This occurs, as mentioned
above, because, as source flux is increased, sparks that
satisfy a fixed detection criterion such as �F/F � 0.4
are detected farther from the source, as evidenced by
an increase in the value of D. These distant sparks, of
small amplitude, make a progressively larger contribu-
tion to the mean value of �F/F as the source flux is in-
creased. As a result, the relation between mean �F/F
and �F/F at the source is convex.

Simulations with Increased Myoplasmic Diffusion Constants 
and Increased Myoplasmic Water Volume

Table VI shows the apparent diffusion constants of six
indicator dyes studied in cut fibers in the Chandler lab-
oratory and in intact fibers in the Baylor laboratory. On
average, apparent diffusion constants in cut fibers are

�1.3 times those in intact fibers (Table VI, column 4).
A possible explanation, which is supported by the mea-
surements of Irving et al. (1987), is that the myoplas-
mic water volume is increased in cut fibers compared
with intact fibers. These authors measured intrinsic bi-
refringence (optical retardation per unit path length,
which primarily reflects the birefringence of myosin) in
both intact and cut fibers and found that cut fibers, on
average, have values that are �0.85 times those in in-
tact fibers. This suggests that the optical path length in
cut fibers is 1/0.85 times that in intact fibers, and that
myoplasmic water volume is increased according to the
factor 1.4 (�1/0.852). An increase in water volume
would be expected to reduce the viscosity of myoplasm
and, thus, to increase the actual diffusion constants of
all diffusible myoplasmic constituents (including the
indicator dyes). An increase in water volume would also
be expected to dilute the concentrations of poorly dif-
fusible myoplasmic constituents of high molecular
weight, such as soluble and structural proteins, to
which indicator molecules readily bind (e.g., Konishi et
al., 1988; Kurebayashi et al., 1993). This reduction in
concentration of binding sites would be expected to
further increase the apparent diffusion constants of the
indicators.

To investigate these possibilities, simulations similar
to those in Table V, columns 2–7, were performed with
two modifications: the diffusion constants in the model
were multiplied by 1.3 and the concentrations of bind-
ing sites on myoplasmic proteins were divided by 1.4;
these sites are the Ca2� regulatory sites on troponin,
the Ca2� transport sites on the SR Ca2� pump, the
Ca2�/Mg2� sites on parvalbumin, and the binding sites
for fluo-3 on (unspecified) protein molecules (Baylor
et al., 2002). Table VII, columns 2–7, give the results.

T A B L E  V

Properties of Simulated Noisy Ca2� Sparks in Cut Fibers at Three Concentrations of Troponin and Two Values of [Ca2�]R (Variable Ca2� Source Fluxes)

1 2 3 4 5 6 7

Variables

[Troponin regulatory sites] (�M) 432 216 0 432 216 0

[Ca2�]R (nM) 80 80 80 50 50 50

Ca2� source flux (pA) 23 16 12 13 10 8

Parameters 

Peak amplitude at the Ca2� source (�F/F) 3.125 2.751 2.612 2.962 2.739 2.658

Distance D (�m) 0.996 � 0.006 0.926 � 0.006 0.917 � 0.006 0.921 � 0.006 0.895 � 0.006 0.890 � 0.006

0–100% rise time (ms) 5.290 � 0.036 5.136 � 0.032 5.041 � 0.030 5.189 � 0.033 5.091 � 0.031 4.958 � 0.029

Peak amplitude (�F/F) 1.053 � 0.011 1.060 � 0.011 1.055 � 0.011 1.060 � 0.011 1.047 � 0.011 1.054 � 0.011

Decay time constant (ms) 10.443 � 0.055 9.014 � 0.049 8.050 � 0.044 9.309 � 0.050 8.263 � 0.045 7.504 � 0.042

FDHM (ms) 12.322 � 0.066 10.239 � 0.049 9.046 � 0.039 10.730 � 0.053 9.455 � 0.043 8.559 � 0.036

FWHM (�m) 1.718 � 0.005 1.691 � 0.005 1.701 � 0.005 1.645 � 0.005 1.637 � 0.005 1.645 � 0.005

Spark mass (�m3) 5.858 � 0.044 5.659 � 0.043 5.777 � 0.045 5.157 � 0.039 5.080 � 0.039 5.209 � 0.041

This table is similar to Table IV except that the Ca2� source flux (row 3 under Variables) is that required to give mean �F/F � 1.05, to match the value in
Table I, column 3.
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The Ca2� source fluxes in Table VII are all very similar
to the corresponding fluxes in Table V (ranges, 9–22
pA and 8–23 pA, respectively). One noticeable differ-
ence in the morphological parameters is that the values
of FWHM and spark mass in Table VII are 15–18% and
51–61% larger, respectively, than those in Table V and
those in Table II, column 3. Since the values in Table V
and Table II, column 3, are in good agreement, the as-
sumptions underlying the simulations of Table VII may
be less accurate than those of Table V.

Each of the two modifications used for Table VII was
also tested separately. With the concentrations of the
protein binding sites left unchanged but with the dif-
fusion constants of the myoplasmic constituents in-
creased by the factor 1.3, the Ca2� fluxes required for
these simulations ranged from 10 to 26 pA (not
shown). When the diffusions constants were left un-
changed and the concentrations of the protein binding
sites were divided by the factor 1.4, the Ca2� fluxes
ranged from 7 to 18 pA (not shown). In both types of
simulations, the increases in FWHM and spark mass
were somewhat less marked than those in Table VII.
For the first type of simulation, the increases in FWHM
and mass were, respectively, 8–10% and 25–31% larger
than the corresponding values in Table V; for the sec-
ond type, the increases were 5–7% and 14–24%, respec-
tively. These simulations, and those in Table VII, do not
change the conclusion that Ca2� sparks in cut fibers re-
quire a Ca2� source flux that is 3–10-fold larger than
that required in intact fibers.

D I S C U S S I O N

General Properties of Spark Mass

This article shows that spark mass, defined as the vol-
ume integral of �F/F, is equal to the volume integral of
�[FFluo]/[FFluo]R and that this equality does not
depend on the PSF of the confocal microscope or on
the spatial distribution of �[FFluo]. Furthermore, the
amount of Ca2� captured by fluo-3 is expected to be ap-
proximately equal to the product of mass and [FFluo]R.
Simulations with the intact fiber model described by
Baylor et al. (2002) show that fluo-3 captures about

T A B L E  V I

Apparent Diffusion Constants of Indicator Dyes in
Intact and Cut Fibers (16�C)

1 2 3 4

Apparent diffusion 
constant (10
6 cm2 s
1)

Indicator Intact fibers Cut fibers Intact fibers/cut fibers

Arsenazo III 0.12a 0.22e 1.83

Antipyrylazo III 0.21a 0.24f 1.14

Phenol Red 0.37b 0.41g 1.11

PDAA 0.98c 1.07h 1.09

TMX 0.97c 1.20i 1.24

Fura-2 0.36d 0.45j 1.25

Mean � SEM 1.28 � 0.11

The apparent diffusion constants (columns 2 and 3) have been referred to
16�C based on the temperature of the original measurements (16–17�C for
intact fibers; 13–18�C for cut fibers) and a Q10 of 1.3. Column 4 is the ratio
of column 2 to column 3. 
aBaylor et al. (1986); bBaylor and Hollingworth (1990); cKonishi and Bay-
lor (1991); dBaylor and Hollingworth (1988); eMaylie et al. (1987c); fMay-
lie et al. (1987b); gPape et al. (1995); hHirota et al. (1989); iMaylie et al.
(1987a); jPape et al. (1993).

T A B L E  V I I

Properties of Simulated Noisy Ca2� Sparks in Cut Fibers with an Increase in Diffusion Constants and an Increase in Myoplasmic Water Volume 

1 2 3 4 5 6 7

Variables

[Troponin regulatory sites] (�M) 309 154 0 309 154 0

[Ca2�]R (nM) 80 80 80 50 50 50

Ca2� source flux (pA) 22 18 14 13 11 9

Parameters 

Peak amplitude at the Ca2� source (�F/F) 2.909 2.793 2.619 2.866 2.770 2.631

Distance D (�m) 1.071 � 0.007 1.063 � 0.007 1.047 � 0.007 1.027 � 0.007 1.017 � 0.007 1.003 � 0.007

0–100% rise time (ms) 4.895 � 0.030 4.872 � 0.029 4.782 � 0.028 4.851 � 0.029 4.777 � 0.027 4.684 � 0.026

Peak amplitude (�F/F) 1.057 � 0.011 1.056 � 0.011 1.041 � 0.011 1.044 � 0.011 1.050 � 0.011 1.040 � 0.011

Decay time constant (ms) 8.627 � 0.050 7.934 � 0.046 7.173 � 0.042 7.883 � 0.046 7.258 � 0.042 6.619 � 0.039

FDHM (ms) 9.961 � 0.052 9.054 � 0.043 8.199 � 0.036 9.070 � 0.043 8.367 � 0.037 7.711 � 0.033

FWHM (�m) 1.976 � 0.007 1.989 � 0.007 1.990 � 0.007 1.910 � 0.007 1.907 � 0.007 1.916 � 0.007

Spark mass (�m3) 8.866 � 0.067 9.090 � 0.069 9.067 � 0.071 7.949 � 0.063 8.004 � 0.062 8.128 � 0.067

This table is similar to Table V except that all diffusion constants in the model were multiplied by 1.3 and the concentrations of protein binding sites were
divided by 1.4. As a result, the standard concentration of the troponin regulatory sites was 309 �M (�432/1.4 �M) (see first row under Variables). The
concentrations of the other protein binding sites were: Ca2�/Mg2� sites on parvalbumin, 1,071 �M; Ca2� binding sites on the SR Ca2� pump, 181 �M; sites
for fluo-3 binding on protein, 2,143 �M. [Mg2�]R and the total concentrations of ATP and EGTA were the same as in Table I, column 3; the concentration
of fluo-3 was at its standard value (100 �M).
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one-fourth of the Ca2� released during a spark ([fluo-
3T] � 100 �M). The time of maximal capture occurs
6.2 ms after that of peak �F/F, owing to kinetic delays
in the reactions between Ca2� and fluo-3 in the myo-
plasmic environment. Although spark mass depends
on the values of �F/F in x, y, and z, the simulations
show that, with the laser scan line positioned near the
source of Ca2� release, a reasonable estimate of spark
mass can be obtained with Eq. 3 from the values of
�F/F and FWHM obtained from the �F/F vs. x wave-
form. This method is believed to be more reliable
than those used previously to estimate mass (next sec-
tions).

Signal Mass in Nonmuscle Cells

The concept of signal mass was introduced by Sun et al.
(1998), who studied Ca2� signaling events (“blips” and
“puffs”) mediated by inositol-tris-phosphate in oocytes
injected with the fluorescent Ca2� indicator Oregon
green 488 Bapta-1. Signal mass (the volume integral of
�F/F) was estimated from �F/F vs. x with a method
that is different from that used in this article. During
blips (the smallest resolved events, �F/F � 0.25), sig-
nal mass increased at about the same time as �F/F
or shortly thereafter, and peak mass (�5 �m3) was
reached �15 ms after peak �F/F (Fig. 4 C of Sun et al.,
1998). During puffs (larger events, �F/F � 1–2), the
peak value of mass was an order of magnitude larger
(�80 �m3) and it occurred � 100 ms after the peak of
�F/F (Fig. 4 D of Sun et al., 1998). The delay from
peak �F/F to peak mass was attributed to a continued
but diminished flux of Ca2� into the cytoplasm.

Thus, the peak values of mass in oocytes are either
comparable to, or many times larger than, that esti-
mated for an averaged in-focus spark in frog intact mus-
cle fibers (5–100 �m3 compared with �3.8 �m3) and
the lag between peak �F/F and peak mass in oocytes is
at least several times larger than that in intact muscle fi-
bers (�15 ms and �100 ms compared with �6 ms).
Some of the lag in oocytes is likely due to kinetic delays
in the reactions between Ca2� and the indicator in the
cytoplasmic environment, similar to the situation with
sparks in frog intact muscle fibers.

Signal Mass in Cut Fibers

As far as we are aware, the only estimate of mass in cut
muscle fibers was reported by Gonzalez et al. (2000).
With Eq. 3, however, mass can be calculated from other
articles if the values of �F/F and FWHM are given. Ta-
ble VII in Hollingworth et al. (2001) tabulates such val-
ues at the time of peak �F/F: 3.7–5.2 �m3 for voltage-
activated sparks in cut fibers and 4.4–22.5 �m3 for
spontaneous sparks in permeabilized cut fibers (ampli-
tude threshold for spark acceptance, �F/F � 0.5 to
1.0). These values of mass are 2.5–15 times those ob-

tained for voltage-activated sparks in intact fibers at the
time of peak �F/F, 1.4–1.5 �m3.

In the paper by Gonzalez et al. (2000), frog fibers
were permeabilized by saponin and exposed to Impera-
toxin A, an agent that, in bilayer experiments, binds to
open RYRs and induces a long-lived substate that has
about one-third the normal conductance (Tripathy et
al., 1998). The toxin-related events usually had an ini-
tial �F/F that was similar to a spark followed by a small
maintained �F/F that lasted �1 s (Gonzalez et al.,
2000). The spark-like event in their Fig. 2, A–D, had a
peak �F/F � 3, a FWHM at time of peak �F/F � 1.9
�m, and a peak mass � 50 �m3. An average of nine
such events was simulated with a Ca2� source flux of
peak amplitude of �11 pA and half-duration of �9 ms
(Fig. 2 F of Gonzalez et al., 2000). Both the peak mass
of the single event, 50 �m3, and the amount of Ca2� re-
lease estimated for the averaged event, �99 fC, are an
order of magnitude larger than the values estimated
for in-focus sparks activated by voltage in frog intact fi-
bers, 3–4 �m3 (Fig. 3, E and F) and 11.5 fC, respectively.

Simulation of Sparks in Cut Fibers

The main conclusion of this article is that the simulation
of Ca2� sparks in cut fibers requires a Ca2� source flux
that is substantially larger than the 2.5 pA required to
simulate sparks in intact fibers. The required source flux
is also substantially larger than the 1.4 pA used in the
spark simulations by the Schneider laboratory (Jiang et
al., 1999). With the standard concentrations of troponin
and resting Ca2� in the cut fiber model, a Ca2� source
flux of 23 pA is required (Table V, column 2). Even un-
der the extreme conditions that [Ca2�]R � 50 nM and
the troponin regulatory sites bind no Ca2� at all, a
source flux of 8 pA is required (Table V, column 7),
which is three times that required in intact fibers. Be-
cause the values of the morphological parameters in
each row of Table V, columns 2–7, are close to one an-
other and to those in the cut fiber experiments (Table II,
column 3), all six model conditions in Table V produce a
reasonable simulation of sparks in cut fibers. Thus, these
simulations do not establish the likely value of [Ca2�]R or
the concentration of the troponin sites available for Ca2�

binding. Similar conclusions apply to the simulations in
Table VII, which include increases in myoplasmic diffu-
sion constants and myoplasmic water volume. These sim-
ulations, which are in less satisfactory agreement with
the measurements than those in Table V, also required
large Ca2� source fluxes (9–22 pA).

Comparisons with the Measurements and Simulations
by the Ríos Laboratory

Voltage-activated Ca2� sparks in cut fibers appear to be
different in the Ríos and Schneider laboratories (Table
VII of Hollingworth et al., 2001). For example, spark
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amplitude is substantially larger in the Ríos laboratory
(1.85 � 0.12; amplitude acceptance criterion, �F/F �
0.6; 18 � 1�C), even though the values of FWHM for
the microscope PSF in the Ríos laboratory (0.47 �m in
x and y and 1.44 �m in z; Ríos et al., 1999) are similar
to or larger than those in the Schneider laboratory (0.5
�m in x and y and 1.0 �m in z, respectively; Table I, col-
umn 3). Since FWHM is slightly smaller in the Ríos lab-
oratory (1.33 vs. 1.5 �m; Table VII of Hollingworth et
al., 2001), spark mass is only slightly larger (5.2 vs. 4.36
�m3). The larger spark amplitude and slightly larger
value of mass in the Ríos laboratory make it likely that
the underlying Ca2� source flux is at least as large as
the 8–23 pA required for the simulation of sparks from
the Schneider laboratory (row 3 of Tables V and VII).
This expectation is in agreement with spark simulations
by the Ríos laboratory, which required Ca2� source
fluxes of 8 to 27 pA, depending on conditions (Table
IV of Ríos et al., 1999).

Significance of a Larger Amplitude Ca2� Source Flux
in Cut Fibers

A larger Ca2� source flux in cut fibers could be caused
by an increase in RYR single channel Ca2� flux, an in-
crease in mean open probability, an increase in the
number of active RYRs per spark, or a combination of
these possibilities. There are several differences be-
tween cut and intact fibers that might explain such an
increase(s). First, as considered in the last section of
results, cut fibers appear to be more hydrated than
intact fibers and this swelling might alter RYR function,
perhaps by changing the physical interactions between
adjacent RYRs or between the RYRs and other proteins
at the triadic junction. Second, the relative amplitude
of fluo-3�s resting fluorescence at the z- and m-lines dif-
fers between intact fibers (Hollingworth et al., 2001)
and cut fibers (Tsugorka et al., 1995; Klein et al., 1996;
Lacampagne et al., 1996; Shirokova and Ríos, 1997).
The cut fiber pattern can be mimicked in intact fibers
by increasing the concentration of K� in the bathing
solution from 2.5 to 7.5–30 mM. Since an increase in
[Ca2�]R accompanies an elevation in [K�], it seems
likely that the pattern of fluo-3�s resting fluorescence is
a rough indicator of [Ca2�]R. By this criterion, [Ca2�]R

is larger in cut fibers than in intact fibers (Holling-
worth et al., 2001). Third, the duration of an action-
potential–stimulated Ca2� transient progressively in-
creases with time during a 2 h experiment in a cut, but
not an intact, fiber (Maylie et al., 1987b,c). This in-
crease, which occurs in the absence of changes in indi-
cator concentration, suggests that Ca2� uptake is pro-
gressively slowed during the 2-h period, perhaps be-
cause of a progressive loss of intrinsic myoplasmic Ca2�

buffers or of modulators that maintain the normal ac-
tivity of the SR Ca2� pump; a decrease in the concentra-

tion of parvalbumin does not appear to occur during
this period (Irving et al., 1989). In addition to these
three documented differences between cut and intact
fibers, small mobile molecules such as monovalent and
divalent ions, ATP, phosphocreatine, and peptides
would be expected to diffuse out of a fiber after cutting
so that the composition of myoplasm in cut fibers
would be expected to become progressively different
from that in intact fibers (even though additions are
usually made to the cut fiber end-pool solution to keep
the concentrations of some of these constituents near
the normal range). For example, [Mg2�]R and [Ca2�]R,
which strongly affect RYR function, are probably 0.5–
0.7 mM and 0.08–0.1 �M, respectively, in cut fibers and
�1 mM and �0.05 �M, respectively, in intact fibers
(Table I).

The differences between cut and intact fibers listed
above might account for some, perhaps all, of the in-
creased Ca2� source flux in cut fiber sparks. For exam-
ple, an increase in [Ca2�]R in cut fibers would be ex-
pected to increase the activity of the SR Ca2� pump,
which, in turn, should increase free [Ca2�] inside the
SR and thereby increase RYR single channel Ca2� flux.
The diffusive loss of small molecules from the myo-
plasm of cut fibers could, in theory, increase the Ca2�

flux through an RYR if channel blockers or modulators
that decrease the mean open probability were re-
moved. The smaller value of [Mg2�]R and the larger
value of [Ca2�]R (and the possible associated increase
in SR Ca2� content) in cut fibers could increase the
number of RYRs per spark by augmenting Ca2�-induced
Ca2� release, a process that has been described in cut
fibers (Jacquemond et al., 1991; Stern et al., 1997;
Gonzalez et al., 2000; see also Ríos and Pizarro, 1988).
Although the cause(s) of the increased Ca2� source
flux in sparks in cut fibers is poorly understood at this
time, the presence of this difference between RYR func-
tion in intact and cut fibers suggests that intact fibers
contain structural or regulatory factors that are altered
or missing in cut fibers—and, perhaps, in other dis-
rupted preparations.
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