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ABSTRACT The hydrophobic coupling between membrane-spanning proteins and the lipid bilayer core causes
the bilayer thickness to vary locally as proteins and other “defects” are embedded in the bilayer. These bilayer de-
formations incur an energetic cost that, in principle, could couple membrane proteins to each other, causing
them to associate in the plane of the membrane and thereby coupling them functionally. We demonstrate the ex-
istence of such bilayer-mediated coupling at the single-molecule level using single-barreled as well as double-bar-
reled gramicidin channels in which two gramicidin subunits are covalently linked by a watersoluble, flexible
linker. When a covalently attached pair of gramicidin subunits associates with a second attached pair to form a
double-barreled channel, the lifetime of both channels in the assembly increases from hundreds of milliseconds
to a hundred seconds—and the conductance of each channel in the side-by-side pair is almost 10% higher than
the conductance of the corresponding single-barreled channels. The double-barreled channels are stabilized
some 100,000-fold relative to their single-barreled counterparts. This stabilization arises from: first, the local in-
crease in monomer concentration around a single-barreled channel formed by two covalently linked gramicidins,
which increases the rate of double-barreled channel formation; and second, from the increased lifetime of the
double-barreled channels. The latter result suggests that the two barrels of the construct associate laterally. The
underlying cause for this lateral association most likely is the bilayer deformation energy associated with channel
formation. More generally, the results suggest that the mechanical properties of the host bilayer may cause the ki-
netics of membrane protein conformational transitions to depend on the conformational states of the neighbor-

ing proteins.
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INTRODUCTION

Ion channels and other integral membrane proteins of-
ten are distributed nonrandomly in biological mem-
branes (Lester, 1977; Almers and Stirling, 1984; Poo,
1985; Harris, 2001). This lateral organization can cou-
ple functionally different channel types (Roberts et al.,
1990; Issa and Hudspeth, 1994) and protein clustering
can alter protein function (Young and Poo, 1983; Iwasa
et al.,, 1986). The lateral heterogeneity in cell mem-
branes pertains not only to the protein but also the
lipid component (Simons and Ikonen, 1997; Mouritsen
and Andersen, 1998). Moreover, disruptions in the
membrane bilayer lipid composition alter the (re)dis-
tribution of protein components (Chang et al., 1995)
and clustering of proteins alters their distribution be-
tween different bilayer components (Tkachenko and
Simons, 2002), but it remains unclear whether the
changes in protein function that occur during a redis-
tribution of membrane proteins (Young and Poo,
1983) are the primary result of direct protein—protein
interactions or whether significant interactions also are
transmitted through the bilayer.
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Integral membrane protein folding depends on the as-
sociation of bilayerspanning a-helices, which is due to
more favorable helix-helix, as compared with helix—
lipid, interactions (e.g., Popot and Engelman, 1990;
Lemmon and Engelman, 1994; White and Wimley,
1999). The clustering of membrane proteins often is me-
diated by cytoskeletal proteins, such as the PDZ family of
proteins (Fanning and Anderson, 1999). Similarly, extra-
cellular ligand binding to growth factor receptors can in-
duce receptor dimerization, which precedes the auto-
phosphorylation that initiates the signal-transduction
cascade (Ullrich and Schlessinger, 1990). The lipid bi-
layer component also can promote membrane protein
clustering when there is a significant mismatch between
the proteins’ hydrophobic length and the thickness of
the bilayer hydrophobic core (Kusumi and Hyde, 1982;
Lewis and Engelman, 1983; Pearson et al., 1983; Cornea
and Thomas, 1994). Similar changes in bilayer thickness
also alter the function of imbedded proteins (Baldwin
and Hubbell, 1985; Brown, 1994; Starling et al., 1995;
Cornelius, 2001). In some cases, e.g., the sarcoplasmic
Ca?*-ATPase (Starling et al., 1995), the bilayer-depen-
dent changes in protein function are not dependent on
aggregation or clustering. In other cases, e.g., the nico-
tinic acetylcholine receptor (Young and Poo, 1983) and
the cyclic lipodepsipeptide syringomycin E (Kaulin et al.,
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1998), the changes in protein function result from the
clustering itself; and in some cases of heterologously ex-
pressed ion channels, e.g., CFTR (Larsen et al., 1996),
cooperative channel openings are suggestive of channel
clustering. In yet other cases, e.g., the ryanodine recep-
tor (Marx et al., 1998), the functional coupling (dimer-
ization) is favored by the presence of an accessory pro-
tein FKBP12 but can occur even in its absence. It is not
clear, however, whether clustering alters protein func-
tion because of protein—protein interactions or because
of bilayer-mediated interactions. In fact, even though
bilayer-mediated interactions between membrane pro-
teins have been proposed (e.g., Young and Poo, 1983;
Manivannan et al., 1992), there is little direct evidence
for such interactions. Moreover, within the confines of
the “standard” fluid-mosaic membrane model (Singer
and Nicolson, 1972), which often is assumed to equate
the bilayer with a thin sheet of liquid hydrocarbon, there
is no obvious physical basis such for bilayer-mediated
protein interactions.

Simply extending the fluid-mosaic model to incorpo-
rate the fact that lipid bilayers are elastic bodies with
well-defined material properties (Evans and Hoch-
muth, 1978; Mouritsen and Bloom, 1984; Huang, 1986;
Evans and Needham, 1987) provides a physical basis
for such interactions. Because lipid bilayers are elastic
bodies, a mismatch between a protein’s hydrophobic
length and the bilayer hydrophobic thickness will cause
a local bilayer deformation. This deformation not only
incurs an energetic cost, it also extends 2-3 nm into the
surrounding bilayer (Aranda-Espinoza et al., 1996;
Huang, 1986; Nielsen et al., 1998; Partenskii and Jor-
dan, 2002), which could lead to protein clustering
(Aranda-Espinoza et al., 1996; Harroun et al., 1999b).
Experimental evidence for such a hydrophobic mis-
match-driven clustering was, in fact, provided for gram-
icidin channels incorporated into bilayers of different
thickness (Harroun et al., 1999a), but the functional
significance of this clustering has not been established.

Gramicidin A (gA) from Bacillus brevis forms monova-
lent cation—selective channels in which each 15-amino-
acid B-helical subunit is inserted in one of the lipid bi-
layer leaflets (Koeppe and Andersen, 1996; Andersen
et al.,, 1999). Usually, the hydrophobic length of an as-
sembled dimeric gramicidin channel is less than the
host bilayer’s hydrophobic thickness (Elliott et al.,
1983), and the formation of a gA channel is expected
to compress and bend the monolayers toward each
other (Huang, 1986; Andersen et al., 1999; Nielsen and
Andersen, 2000). This is indeed the case, as X-ray dif-
fraction measurements show that the peak-to-peak dis-
tance in the electron density profile of dimyristoylphos-
phatidylcholine (DMPC)* bilayers decreases form 35.3
to 32.7 A upon the incorporation of gA at a 1:10 gA/
DMPC molar ratio (Harroun et al., 1999a). Moreover,
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the radial distribution function suggests that the bi-
layer-spanning gA channels tend to cluster. In dilute
systems, the average thinning would be less, but the lip-
ids near each embedded entity nevertheless could ex-
perience a similar relative deformation. This bilayer
deformation, with its associated deformation energy,
could provide the means for coupling two channels to-
gether. Moreover, given the structure of gramicidin
channels, which are fully imbedded within the bilayer
(Olah et al., 1991), any coupling between channels
would be bilayer-mediated.

The aim of the present experiments therefore was to
examine whether a local thinning of the lipid bilayer,
caused by the formation of a gramicidin channel, could
influence the properties (e.g., the channel formation
rate, single-channel conductance, or lifetime) of a
nearby channel? The typical single-channel experiment
cannot answer this question because the systems are ex-
tremely dilute, one subunit per 10° or 107 lipid mole-
cules (Durkin et al., 1990; Sawyer et al., 1990). To over-
come this limitation, we joined two gA monomers via a
flexible, hydrophilic extra-membrane peptide linker at
their carboxy terminals. One anticipates that the pair
of subunits of such a carboxy-linked dimer potentially
could join with equivalent subunits from another
linked dimer to facilitate side-by-side channel forma-
tion (Fig. 1).

Dimers were prepared by synthesizing two gA moi-
eties that are connected via flexible peptide chains to a
single lysine, using both the a- and e-amino groups as
attachment sites. In this article we show that double-
barreled channels can be formed when the linkers are
sufficiently long, and that these double-barreled chan-
nels are stabilized some two orders of magnitude rela-
tive to the single-barreled channels. In the accompany-
ing article by Rokitskaya et al. (2003), the problem is
addressed from the point of view of ligand-induced re-
ceptor dimerization—based on streptavidin-induced
dimerization of biotin-labeled gramicidins. The results
of these two studies are in general agreement, and sug-
gest that bilayer-mediated protein interactions can be
important for membrane protein function.

Some of these results have appeared in preliminary
form (Goforth et al., 2002).

MATERIALS AND METHODS

Gramicidin Analogues

To separate the possible consequences of coupling an extended
peptide segment to a gramicidin monomer, we synthesized ana-

* Abbreviations used in this paper: y-Aba, y-NHy-butyric acid; eda, ethyl-
ene diamine; DMPC, dimyristoylphosphatidylcholine; DPhPC, di-
phytanoylphosphatidylcholine; gA, gramicidin A; MALDI, matrix-
assisted laser desorption ionization; RP-HPLC, reversed phase high
pressure liquid chromatography.



Ficure 1. Schematic model
of side-by-side, double-bar-
reled gramicidin channels
that assemble from two pairs
of linked subunits in a lipid
bilayer. Each individual sub-
unit spans one leaflet of the
DPhPC bilayer and is joined
at its COOH-terminal to an
adjacent subunit, in the same
leaflet, by means of a hydro-
philic peptide linker, which
extends into the aqueous so-
lution. The two peptide
strands in the linker are
joined by a lysine, which is ex-
tended by three more car-
J boxy-terminal residues to fur-
At - ther increase the linker’s wa-
; ter solubility (and also were

necessary for efficient synthe-

sis). The flexible linkers are

shown to scale in an arbi-

trary extended conformation.

Channel formation requires

that two subunits in opposite

leaflets associate to form a hy-

drogen bond-stabilized cat-

ion-conducting channel. In a

double-barreled channel, the

two covalently linked subunits

in one leaflet form bilayer-

spanning channels with two covalently linked subunits in the opposite leaflet. The lipids distant from the channel barrels are represented
as DPhPC molecules with fully extended acyl chains, which will tend to exaggerate the hydrophobic mismatch between the channel and
the bilayer. To illustrate how the bilayer adapts to the bilayer-spanning channels, the lipids adjacent to or near a channel barrel are de-
picted with acyl chains that have been shortened by two carbons (second “shell”) or four carbons (first “shell”), which represents the bi-
layer thinning. Carbon and hydrogen atom colors reflect the particular molecular components: gramicidin subunits, green/orange; lip-
ids, gray; linkers, light blue. The colors for other atoms are: O, red; N, dark blue; P, magenta.

logues with single-ended tail sequences as well as linked gramici-
din analogues. Further, in the linked gramicidins, the linker
needs to be long enough to allow both channels to insert and
move freely in the bilayer, yet short enough to keep the gramici-
dins in fairly close physical proximity within the bilayer. To this
end, we designed flexible linker segments of two different
lengths, in which the carboxy termini of two identical peptide
segments are coupled to a common lysine and the segments’
amino termini are coupled to the carboxyl residue of Trp'® in the
gA sequence. The resulting linked gramicidins have linkers with
15 or 23 amino acids (including the bifunctional Lys), which
were synthesized to bridge the Trp! of one gA sequence to the
Trp'® of another (Table I). The control single-ended tail se-
quences have 7 or 13 residues coupled to Trp'® of gA.

In all cases, the Trp!® was coupled to a y-NHg-butyric acid to
minimize the possibility that the linker simply would serve to ex-
tend the B%%*helical gA structure. (Not only is the L-D chirality
broken, in y-NHy-butyric acid there are two CH, moieties in-
serted between the CO and the C-NH.) Further, to maximize
flexibility and length, and minimize the risk that the linkers have
well-defined secondary structures, the linkers incorporate both
B-Ala and y-NHg-butyric acid (y-Aba) residues, which interrupt
the secondary structure and further extend the backbone length
with extra CHy groups. To ensure sufficient water solubility, the
linkers were synthesized using amino acids with no more than
two methylene units inserted between the carboxyl and amino
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groups. The effective length of the 15-residue linker, with 55 at-
oms in the backbone, is therefore equivalent to that of an 18-resi-
due peptide; and the effective length of the 23-residue linker,
with 91 atoms in the backbone, is equivalent to that of a 30-resi-
due peptide. The lengths of the stretched-out linkers therefore
will be ~8 and 14 nm, respectively, which means that the (local)
molar ratio of gramicidin subunits to phospholipids will be ~1/
300 and 1/900—three-to-four orders of magnitude higher than
normally used in single-channel studies (Durkin et al., 1990).

The analogues with single-ended tails were synthesized and pu-
rified using standard solid-phase procedures (Greathouse et al.,
1999).

The linked analogues were synthesized by the addition of
Fmoc-protected amino acids to a low-loaded (0.25 mmole/g)
Sasrin®-Ala resin (Mergler et al., 1988). For these analogues, the
synthetic procedures were modified from those used for the ana-
logues with single-ended tails, so as to allow for 30-50 min depro-
tection times and 12 h coupling times using a 25-fold excess of
the incoming Fmoc amino acid. To minimize unwanted side re-
actions, each coupling was followed by extensive wash cycles and
extra solvation volumes. As a critical step in the synthesis, the bi-
functional Lys, denoted K* in Table I, was coupled to the resin af-
ter a COOH-terminal Gly-Pro-Ala sequence. This “spacer” was
necessary for efficient formation of both of the peptide chains
that grew out from the bifunctional Lys. This coupling sequence
serves no other purpose in terms of channel formation or chan-



TABLE 1

Sequences of the Gramicidins Used in this Study

gA

£V-G-A-L-AVVV-W-L-W-L-W-L-W-ea

gA with 7-residue eda tail
gA with 7-residue ea tail

gA with 13-residue ea tail
15-residue-linked tandem gA
23-residue-linked tandem gA

A) YAba-G-A-G-A-G-A-eda
A) -yAba-G-A-G-A-G-A-ea
A-G-A-G-A-yAba-G-A-N-G-A-ea

The underlined residues are D-amino acids. f, formyl; ea, ethanolamide; eda, ethylene diamine; yAba, y-aminobutyric acid; BAla, B-alanine. The

ethanolamide in gA is absent in the analogues with single-ended tails or linkers, as each W'? is attached to the first yAba of the tail or linker.

nel connections. The bifunctional di-Fmoc-lysine (K*), which
constitutes the actual link, was dually deprotected and deriva-
tized at both the a- and g-amino groups, such that both amino
groups could be used as starting points for the synthesis of an
identical linker-gA sequence. The resulting peptide products
were released from the Sasrin® resin using 1% trifluoroacetic
acid in dichloromethane for 3 min at 24°C and purified by re-
versed phase high pressure liquid chromatography (RP-HPLC)
on a Zorbax C-8 Column (Greathouse et al., 1999). The linked
analogues were eluted as a single broad peak using a gradient of
80-99% methanol (and 20-1% water) with 0.1% trifluoroacetic
acid (Fig. 2 A).

Usually, a broad RP-HPLC peak is indicative of synthesis fail-
ure, but similar broad RP-HPLC elution peaks have been ob-
served for other branched peptides, such as multiple antigenic
peptides. They seem to be a consequence of the structural pecu-
liarities of this type of analogue rather than an indication of poor
synthetic quality (Veprek and Jezek, 1999).

The quality of the synthetic products was verified by matrix-
assisted laser desorption ionization (MALDI) analysis (performed
by Mass Consortium). Fig. 2 B shows results for the 15-residue-linked
tandem gA. For the 23-residue-linked tandem gA, the spectrum de-
picts a series of Na* adduct peaks of a 5,580 molecular weight moiety,
indicating that the peptide has the correct molecular weight.

Circular Dichroism Spectroscopy

The secondary structure of the bilayer-imbedded analogues was
determined by circular dichroism spectroscopy at room tempera-
ture of the analogues incorporated into DMPC vesicles (Great-
house et al., 1999).

Electrophysiology

Planar bilayers were formed from n-decane solutions (2.5% wt/
vol) of diphytanoylphosphatidylcholine (DPhPC) across a hole
(~1.6-mm diameter) in a Teflon® partition that separates two
aqueous solutions of unbuffered salt solution, usually 1.0 M CsCl,
which was prepared fresh each day. Single-channel experiments
were done at 25 = 1°C using the bilayer punch technique with pi-
pet tip diameters ~30 pm (Andersen, 1983a) and a Dagan 3900
patch clamp amplifier (Dagan Instruments) or an AxoPatch 1C
patch clamp amplifier (Axon Instruments, Inc.). The gramici-
dins were added from ethanolic stock solutions to the electrolyte
solution on either side of the bilayer. For most experiments, the
gramicidin analogues were added to both sides of the bilayer. In
some cases, two analogues were added asymmetrically—one ana-
logue to one side and the other analogue to the other side. Sin-
gle-channel current transitions usually were detected using a
PC/AT-compatible computer using AxoBasic (Axon Instruments,
Inc.) and using the algorithm described by (Andersen, 1983a); in
some cases the current transitions were tabulated by hand. Sin-
gle-channel current transition amplitude histograms and lifetime
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histograms were constructed as described previously (Andersen,
1983a; Sawyer et al., 1989). The lifetime histograms were trans-
formed into survivor distributions, and the average channel life-
times (1) were determined by fitting a single exponential distri-
bution: N(¢) = N(0) - exp{-t/7}, where N({) denotes the number
of channels with a lifetime longer than time ¢, to each histogram
(Sawyer et al., 1989; Durkin et al., 1990).

RESULTS

General Characteristics of Gramicidins with Single-ended
Tails and Tandem Gramicidins

Fig. 3 shows superimposed CD spectra obtained with
standard gA, a gA analogue with a 7-residue single-

A
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F1GURE 2. Characterization of the tandem gramicidin analogues.
(A) RP-HPLC elution profile obtained with the 15-residue-linked
tandem gramicidin gA. (B) MALDI spectra for the same com-
pounds. The primary peak is an analogue-H* peak with a molecu-
lar weight of 5,210, equivalent to the predicted molecular weight
of 5,209. Despite the rather broad elution profile the compound is
of high purity as evident in the mass spectrum.
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FiGure 3. Circular dichroism spectra for the gramicidin ana-
logues used in this study: gA, gA with the 7-residue eda tail, tan-
dem gA with the 15-residue linker, and tandem gA with the 23-resi-
due linker. DMPC vesicles.

ended ethylene diamine (eda) tail, and the two tandem
analogues in which two side-by-side subunits are co-
valently linked by either the shorter 15-residue or the
longer 23-residue linker.

The CD spectra of gA and the analogue with the
seven-residue single-ended eda tail are characteristic of
the single-stranded, right-handed B%%-helical gA struc-
ture (the “channel” structure). The spectrum of the 15-
residue-linked tandem gA represents a superimposition
of single-stranded and double-stranded conformations.
The spectrum of the 23-residue-linked tandem gA is
similar to that for the 15-residue-linked analogue, al-
though the negative peak at 232 nm is less pro-
nounced, which is indicative of a smaller population of
double-stranded conformations.

Fig. 4 shows single-channel current traces obtained
with standard gA (Fig. 4 A), the gA analogue with a
7-residue single-ended eda tail (Fig. 4 B), as well as the
two tandem gramicidin analogues, with the shorter 15-
residue linker (Fig. 4 C) or the longer 23-residue linker
(Fig. 4, D and E). (The results obtained with other ana-
logues with single-ended tails were similar to those illus-
trated in Fig. 4 B; they are summarized in Table II.)

The analogue with single-ended tails, as well as the
15-residue-linked tandem gA analogue (Fig. 4, B and
C), form rather “standard” channels, with properties
that generally resemble those of the standard gramici-
din channels formed by the “wild-type” gA (Fig. 4 A):
the individual conductance steps are well resolved, with
occasional poorly resolved downward transitions (e.g.,
in Fig. 4 B). Of particular importance, the channels
formed by gA subunits linked by the shorter 15-residue-
linker are very similar to the channels formed by gA

481 GOFORTH ET AL.

g ]

. U, N | g
ELI |
b “‘ B VNV A AL

6 pA

10s

F1GURE 4.  Single-channel current traces obtained with the grami-
cidin analogues used in this study (the channel type in D is shown
at higher current and time resolution in Fig. 6). (A) gA. (B) gA
with the 7-residue tail. (C) Tandem gA with the 15-residue linker.
(D and E) Tandem gA with the 23-residue linker. 1.0 M CsCl, 200
mV, 200 Hz.

subunits with single-ended tails, which suggests that
this linker is too short to allow for the formation of
double-barreled channels.

Characteristics of Double-Barreled gA Channels

A quite different result is observed in the case of gA
subunits that are coupled by the longer 23-residue
linker (Fig. 4, D and E). In this case, the channels’ life-
times are much longer than was the case for any of the
other analogues, and at the resolution of the figure, the
current transition amplitudes in Fig. 4 D appear to be
almost twofold higher than was the case for the gA sub-
units with single-ended tail segments; but, there is evi-
dence for transitions to intermediate current levels
when the channels appear and disappear, as well as in
the middle of the trace. The current transition ampli-
tude and lifetime histograms for the channels formed
by these four gramicidins are shown in Fig. 5; the re-
sults for all analogues, as well as gA, are summarized in
Table II.

Standard gA (Figs. 4 A and 5 A), the analogue with a
7-residue single-ended eda tail (Figs. 4 B and 5 B), and
the 15-residue-linked tandem gA analogue (Figs. 4 C
and 5C) form channels that differ little—except that
the single-channel current transitions observed with gA
are almost twice those observed with the analogues; the
channel lifetimes differ twofold, but with no obvious
systematic pattern. The current through the channels
formed by the analogue with the 7-residue single-
ended eda tail is less than that through the other ana-
logues, which presumably is due to the net positive
charge at the end of the linker; but there is no evidence
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FIGURE 5. Current transition amplitude histograms (left) and
lifetime distributions (right) for channels formed by: A, gA; B, gA
with the 7-residue tail; C, 15-residue-linked tandem gA; and D, 23-
residue-linked tandem gA. The current transition histograms
were determined at 200 mV. The lifetime distributions for gA, gA
with the 7-residue tail, and the 15-residue-linked tandem were also
determined at 200 mV; the lifetime distributions for the 23-resi-
due-linked tandem gA is based on results obtained at 100 and 200
mV. 200 Hz.

for discrete transitions between two conductance levels,
as would be expected if the positive charge were local-
ized in a few defined places (Woolley et al., 1997). By
analogy, the linkers in the tandem gramicidins are
likely to be (more or less) freely mobile.

The 23-residue-linked tandem analogue (Figs. 4 D
and 5 D), however, forms channels that differ qualita-
tively from the channels formed by the other ana-
logues. The full current transitions are about twofold
higher than those observed for the channels formed by
the analogue with the single-ended tail and the 15-resi-
due-linked tandem analogue, there are transitions to
intermediate current levels, and the lifetimes are ~200-
fold longer. As can be seen in Fig. 4, the 23-residue-
linked tandem gA forms two, qualitatively rather differ-
ent, channel types. The predominant type is that shown
in Fig. 4 D. Infrequently (~5% of the observed events),
the channels exhibit the behavior shown in Fig. 4 E, in
which the transition pattern is distinctly different from
that in Fig. 4 D—as the intermediate conducting state,
which is barely visible in Fig. 4 D, now has a lifetime
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TABLE I1I

Conductances and Lifetimes for Channels Formed by
gA, gA Analogues with Single-ended Tails, and Tandem gA Channels

Conductance/pS Lifetime/ms
Analogue (mean * SD) (mean)
gA 50.4 = 1.0 720
gA with 7-residue eda tail 21.2 £ 1.2 670
gA with 7-residue ea tail 29.5 + 0.9 610
gA with 13-residue ea tail 29.2 0.8 300
15-residue-linked tandem gA 33.4+23 530
23-residue-linked tandem gA 63.5 = 1.7 110,000

1.0 M CsCl, 200 mV, except that the lifetime for the 23-residue-linked
tandem gA channels is based on results at 100 and 200 mV. The brief
flickers to the intermediate current levels were disregarded when
measuring the lifetime of the channels formed by the 23-residue-linked
tandem gA.

IThe current through the long-lived (double-barreled) channels.

that may be many seconds. Given the rarity of these
events, we did not investigate them in any detail, and
the quantitative analysis that follows is based only on
channel events of the type shown in Fig. 4 D.

The differences between the channels formed by the
23-residue-linked tandem analogue and the channels
formed by gA or the analogues with a single-ended tail
or the 15-residue linker become more pronounced
when the channels formed by the 23-residue-linked
tandem analogue are examined at higher time resolu-
tion (Fig. 6). The larger current transitions in Fig. 4 D
now are seen to be composite events, in which there is
an initial bursting channel activity that is followed by a
two-step increase of the current to a new level, which is
maintained for up to several minutes.

In ~25% of the appearances, the initial bursting
channel activity occurs in isolation, i.e., with no subse-
quent two-step transition to the higher current level
(an example of such a channel is shown at the bottom
of Fig. 6). The more common pattern, however, is a
transition from the bursting channel activity to a sec-
ond, higher current level (top two rows of traces in Fig.
6). The two rows show examples where the two-step
channel appearances occur in the presence or absence
of preceding bursting activity. (In the middle set of
traces, channel disappearance is followed by a bursting
event.) Once the higher current level is reached, the
current is remarkably stable, with only occasional tran-
sitions to a flickery state (see also Fig. 4 D). When the
current activity ceases, the transition to the baseline is
usually composite with a brief sojourn at an intermedi-
ate level, which may or may not exhibit bursting activity
similar to that observed before the two-step channel
formation. For either composite transition, each of the
individual current transition amplitudes is comparable
to those of the channels formed by analogues with sin-
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FIGURE 6. Bursting channel activity and formation and disap-
pearance of channels formed by the 23-residue-linked tandem gA.
The top two rows of traces show two different examples of double-
barreled channel appearance/disappearance patterns in which
the transition to the fully conducting level proceeds through an in-
termediate conductance level. In each row, the traces to the right
and left of the complete channel show the appearance/disappear-
ance transitions at higher time resolution. To better visualize the
various conductance states, the interrupted lines in each trace are
drawn through the baseline, when no channel is conducting. (Top
row) Channel formation is preceded by bursting channel activity
with no bursting activity when the channel disappears. (Middle
row) There is no bursting channel activity preceding channel for-
mation, but there is bursting activity after the channel disappear-
ance—as well as an isolated bursting event that follows closely after
the disappearance of the double-barreled channel. (Bottom three
panels) Isolated bursting channel activity. The histograms to the
right show that the burst reflects transition within a bilayerspan-
ning dimer; the two current level histograms at the right were re-
corded during the bursting channel activity (top histogram) and
just before (bottom histogram). 200 mV, 200 Hz.

gle-ended tails. Given how infrequently these long-lived
composite events appear/disappear (the experiments
were done at appearance rates that were <0.01 s™1, of-
ten much less), we conclude that these events repre-
sent the formation and disappearance of double-bar-
reled channels.

Closer inspection of the current traces in Fig. 6 shows
that the bursting channel activity represents transitions
within a bilayer-spanning pore because the lower of the
two current levels within the burst is above the baseline
current—where no channel is conducting. This is
quantified in detail for the case of bursting channels in
the current level histograms at the bottom of Fig. 6.
Similar results were also obtained for the channel ap-
pearances and disappearances; the results are summa-
rized in Table III. Due to difficulties in identifying a 0.2-
pPA transition from the baseline to (or from) the low-
conductance current level in the bursting events, it is
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FiGURE 7. Current transition amplitude and lifetime histograms
for the appearance and disappearance of the double-barreled
channels formed by the 23-residue-linked tandem gA. (Top) Cur-
rent transition amplitude histograms. (Left) Histogram for the ini-
tial transition from the baseline to the intermediary current level.
(Right) Histogram for the final transition from the double-bar-
reled to intermediary current level. (Bottom) Lifetime distribu-
tions. (Left) The interval distribution for the durations of bursting
transition when the double-barreled channel appears. (Right) The
interval distribution for the durations of bursting transition when
the double-barreled channel disappears. The results, as well as
those for the bursting and flickery channels are summarized in Ta-
ble III. 1.0 M CsCl, 200 mV, 200 Hz.

not clear if the channel appearances always are from
the baseline to the 6-pA intermediate current level, and
vice versa for the disappearances. To minimize ambigu-
ities, we identify the channel appearances and disap-
pearances to begin (or terminate) with the first (or
last) transition to (or from) the 6-pA current level.

The composite current transitions during channel
appearances/disappearances are not of equal height.
This is evident in the current traces in Figs. 4 D and 6,
and it is shown in detail in Fig. 7, which shows current
transition amplitude and lifetime histograms for the
channel appearances and disappearances. The results,
as well as those for the other transitions, are summa-
rized in Table III.

When the double-barreled channel appears, the sec-
ond transition is ~15% higher than the first; similarly,
when the double-barreled channel disappears, the first
transition (from the full to the intermediate level) is
~15% higher than the second (to the baseline). There
are occasional transitions from the double-barreled
channel to an intermediate, flickery event (e.g., Figs. 4
D and 6), which is indistinguishable from the events
that precede or follow the double-barreled channels
(Fig. 6 and Table III). As is the case for bursting events
that initiate or terminate a double-barreled event, the
low-conductance state within the burst is above the



TABLE III

Summary of Current Transitions and Lifetimes
for the Brief Transitions Observed with the 23-residue—linked Tandem gA

A. Current transitions

Bursts Appearances Flickers Disappearances
Transition (mean * SD) (mean * SD) (mean = SD) (mean * SD)
Ai/pA Ai/pA Ai/pA Ai/pA
Baseline to substate 0.24 = 0.7 0.23 = 0.06 0.27 + 0.05
Substate to intermediate 5.40 = 0.23 5.53 = 0.09 5.46 = 0.15 5.52 = 0.08
Baseline to intermediate 5.63 * 0.38 5.70 £ 0.17 5.76 £ 0.15
Intermediate to full 6.90 = 0.28 6.79 * 0.22 6.90 * 0.26
B. Lifetimes
Bursts Appearances Flickers Disappearances
(mean) (mean) (mean) (mean)
T/ms T/ms T/ms T/ms
690 250 260 250

A, 1.0 M GsCl, 200 mV. B, 1 M CsCl, results obtained at 100 and 200 mV. Estimates for T are based on single exponential fits to the lifetime distributions,

except for the bursting channels where a simple average was used.

baseline current, as can be seen by comparing the
transition amplitudes for the low-to-intermediate cur-
rent transition during appearances/disappearances
with those for the flickery transitions from the double-
barreled current level (Table III).

Given the two-state behavior of the bursting chan-
nels, as well as the appearance and disappearance
events of the double-barreled, one would expect the
lifetime distributions to deviate from single exponen-
tial distributions. Somewhat surprisingly, the lifetimes
of the appearance and disappearance steps are quite
well fit by single exponential distributions (Fig. 7), and
so is the lifetime distribution for the flickery events
(unpublished data). The bursting events, however, had
a lifetime distribution that was not well fit by either a
single- or a double-exponential distribution, and we es-
timate the average lifetime as a simple average of the
observed lifetimes. Another surprise is that the average
lifetime of the bursting channels is twofold longer than
those for the three types of brief channel events, which
are indistinguishable. We discuss the implications of
this finding in the pIscussioN. (Because of the very
long lifetimes of the double-barreled channels, the ex-
periments had to be done at very low channel appear-
ance rates, and the total number of observed channel
events was insufficient for a more detailed analysis of
the lifetime distributions.)

Though we did not examine the channels with the
appearance pattern in Fig. 4 E in any detail, we noted
that the intermediate current level invariably was
higher than was the case for the bursting events or the
intermediate current level during “normal” appear-
ances/disappearances—and that there were transitions
between this higher level and a current level similar to
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that usually observed (compare Fig. 4 E). The molecu-
lar basis for these transitions remains unclear.

Heterodimer Experiments

What is the basis for the different current transition
amplitudes in the double-barreled channels? The CD
spectra (Fig. 3) show that the tandem analogues form
both B%3-helical and non-B%3-helical structures; but, the
rather modest differences in single-channel current
and lifetime between the channels formed by gA and
the analogues with a single-ended tail suggest that the
structure of the bilayer-spanning channel is not altered
by attaching an extension at Trp!®. Nevertheless, could
there be an intrinsic asymmetry between the channel
subunit that is linked to the o NH group, as opposed to
the ¢ NH group? These questions were addressed in
heterodimer formation experiments, which constitute
a sensitive test for whether a given sequence modifica-
tion alters the channel structure (Durkin et al., 1990).
Basically, if a gramicidin analogue forms only one type
of channel, and if heterodimeric channels can form
between the analogue and a reference gramicidin of
known structure (e.g., gA), we may conclude that the
analogue can fold such as to adapt to the structure of
the reference subunit. (Ideally, one should examine
the relative distribution between the two homodimers
and the corresponding heterodimers, which in the
case of structural invariance is described by the bino-
mial distribution [Durkin et al., 1990; Durkin et al.,
1993]. In practice, the long lifetimes of the 23-resi-
due-linked tandem gA channels preclude this mea-
surement.)

Therefore, we did heterodimer experiments with gA
as the reference subunit opposite an analogue with a

Coupled Gramicidin Channels
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FiGUure 8. Heterodimer experiment with the 23-residue-linked
tandem gA, and gA. The two gramicidins were added to opposite
sides of a bilayer, and the gA-containing solution is the electrical
reference. Left, current traces; right, current transition amplitude
histograms. Top, results at +200 mV; bottom, results at —200 mV.
The smaller peak, marked by an asterisk, denotes homodimeric gA
channels due to an avoidable, if slow, “leak” of gA across the bi-
layer. The results are summarized in Table IV. 200 Hz.

7-residue single-ended eda tail, as well as the 15-residue—
linked or 23-residue-linked tandem analogues. In each
case, we observed heterodimeric channels—formed be-
tween the reference gA and the analogue. The experi-
ments were done using asymmetric addition of the two
analogues, with the reference gA being present at only
one side of the bilayer and the analogue on the other
side, such that there is only a single orientation of the
heterodimeric channels. Fig. 8 shows the current traces
and current transition amplitude histograms obtained
with gA and the 23-residue-linked tandem analogue at
+200 mV; the results for the other experiments are
summarized in Table IV.

Comparing the histograms in Fig. 8 with those in Fig.
5, it is apparent that a new channel type, the het-
erodimer, forms when the two different gramicidins are
added together. Importantly, only a single predomi-
nant channel type is seen at each polarity. Therefore,
we conclude that the intrinsic permeability properties
of the channels formed by the two subunits in the 23-
residue-linked tandem gA are indistinguishable, which
means that the different current transition amplitudes
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TABLE IV
Conductances of Heterodimeric Channels Formed between gA and the Two
Tandem Gramicidin Analogues as well as the Analogue with a 7-residue
Single-ended Tail

Test analogue —200 mV 200 mV
g/pS g/pS
gA with 7-residue eda tail 417+ 1.3 26.3 = 1.2
15-residue tandem gA 437+ 3.5 38.8 2.6
23-residue tandem gA 414 x 1.5 37.2 £ 0.9

1.0 M CsCl, 200 mV. Potentials are relative to the gA-containing solution.

for the first and second transition in Figs. 4 and 6 arise
because of interactions between the two barrels.

Moreover, the current transition amplitudes at the
two polarities differ: for all the heterodimers, the tran-
sitions are larger at negative potentials, when the net
ion movement is from the gA subunit to the analogue
subunit with a single-ended tail or a linker (Fig. 8 and
Table III). The linker residues thus appear to constrain
ion entry into the pore. Examination of the —200 mV
current trace in Fig, 8 shows that the channels again oc-
cur in bursts, in which the current switches between a
high-conductance state (i = 8 pA) and a low-conduc-
tance state (¢ = 0.2 pA). We did not pursue this fur-
ther,! but concluded that the two barrels of the tandem
gramicidins have intrinsic permeability properties that
are indistinguishable.

We also did asymmetric heterodimer experiments
with the 15- and the 23-residue lined tandem gramici-
din analogues, where we (again) added the two ana-
logues to opposite of the bilayers. In this case, there was
no asymmetry between the currents at =200 mV, both
of which were ~6.2 pA, again indicating that the linked
subunits have indistinguishable permeability character-
1stics.

Basis for the Unequal Current Transitions

What could be the mechanistic basis for the different
current transition amplitudes from the baseline to the
intermediate current level (corresponding to just one
conducting channel), as compared with the transition
from the intermediate to the composite current level
(corresponding to two conducting channels)? The dif-
ference is unlikely to result from structural differences
between the two channels, as we observe only a single
population of current transition amplitudes for the het-
erodimers formed between gA and the 23-residue-

IThe similar low-conductance current levels in the bursting and ap-
pearance/disappearance events observed with symmetrical channels
formed by the 23-residue-linked tandem gA (Fig. 6 and Table III)
may indicate that the transitions between the intermediate- and the
low-conductance states arise, at least in part, from some conforma-
tional changes that influence ion dissociation from the channel.



linked analogue (Fig. 7). It also is unlikely that it always
would be the same variant of two different channel
types that formed the first channel in the double-bar-
reled construct.

Accepting that the unequal current steps do not re-
sult from chemically dissimilar “barrels,” we need to
consider two possible explanations for the observation.
First, if the linker partially occluded the first barrel of a
pair, this steric hindrance could be removed (in part)
when the second channel opened. Second, and mecha-
nistically more interesting, the energetic barrier for ion
movement through each of the pores could be lower
for a pair of channels, as compared with an isolated
channel. It is well established that the energy barrier
for ion movement through a channel is a function of
the dielectric constant of the surrounding bilayer (Par-
segian, 1969; Levitt, 1978; Jordan, 1986), and a bilayer-
spanning channel constitutes a more polar environ-
ment than the bilayer hydrophobic core. So, if the two
barrels were sufficiently close together the electrostatic
barrier for moving an ion through each pore would be
reduced because some of the acyl chains surrounding
each channel have been replaced by the other bilayer-
spanning barrel.

To distinguish between these two possibilities, we did
experiments using 0.1 M CsCl, where aqueous diffusion
limitations would be more pronounced (compare
Andersen, 1983a), and 1.0 M NaCl, in which the cur-
rents (in gA channels) are similar to that in 0.1 M CsCl,
but where the barrier for ion movement through the
pore would be relatively more important than the en-
trance barrier. The basic pattern of composite channel
appearances/disappearances is seen also under each of
these ionic conditions. The results on current transi-
tion amplitudes are summarized in Table V, which also
summarizes the results obtained in 1.0 M CsCl.

Relative to gA, the Cs* permeability is reduced more
than for Na* permeability, which suggests that the
linker indeed constrains diffusional ion access to the
pore entrance. The main result, however, is that the rel-
ative difference between the two current transition am-
plitudes is less in 0.1 M CsCl, where diffusion limita-
tions will be more pronounced. Thus, these results are
consistent with a lower barrier for ion movement
through each barrel of the side-by-side pair, suggesting
that the two barrels indeed are in close apposition.

DISCUSSION

When two gramicidins are covalently linked at their
carboxy termini, with a sufficiently long linker, the re-
sulting analogues form double-barreled channels, with
coordinated formation (and dissociation) of the two
barrels. Once both barrels form, the resulting channels
have lifetimes that are more than two orders of magni-
tude longer than the lifetime of single-barreled grami-
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TABLE V
Permeability Properties of Channels Formed by the 23-residue Tandem gA

Salt gA channels 23-residue-linked tandem gA channels
i/pA Ai;/pA Aip/pA Aiy/Ai,
(mean *+ SD (mean = SD)  (mean = SD)  (mean * SEM)
100 mV
0.1MCGCsCl 157 *0.05 1.03*0.05 1.16*0.08 1.12=*0.01
1L.OMGCsCl  492*030 357*+0.16 421*0.15 1.17*0.01
1.OMNaCl 131*0.06 112+0.04 1.30*0.08 1.17*0.02
200 mV
0.1MGCsCl  240+0.24 143*0.09 154*+0.11 1.06=0.01
1.OMGCsCl  10.04 =020 5.69*+027 683*0.25 1.21=*0.01
1.0MNaCl  3.02 £0.15 211 £0.11  242%0.08 1.14 £0.01

The results for Az and Ai, are based on composite appearance and
disappearance transitions, as well as flickery and intermediate events. The
results for Ai/Ai are based on the ratios of the current transitions in
individual composite appearance and disappearance events.

cidin channels having similar sequences (in their
bilayer-spanning domains). The long lifetimes and
“stable” single-channel currents show that two bilayer-
spanning barrels indeed can be coupled at the func-
tional level. Given that the gramicidin channels are im-
bedded fully in the bilayer, the coupling most likely is
due to bilayer-mediated interactions.

We first discuss the evidence that the long-lived
events indeed are double-barreled channels. Next, we
discuss the significance of the different amplitudes of
the current transition from the baseline to the interme-
diate current level, as compared with the transition
from the intermediate to the high-conductance level,
and conclude that the two barrels are in very close,
side-by-side contact. Then, we address the mechanistic
basis for the stability of the double-barreled channels,
and conclude that the stability results because the elas-
tic force imposed by the bilayer deformation acts on
both barrels, such that the force/barrel is less than for
the standard, single-barreled gA channel. Finally, we
discuss some implications of these results.

Evidence for Double-barreled Channels

In principle, the composite channel events could form
either between two 23-residue-linked analogues (one
on each side of the bilayer) or between three such
analogues (one on one side and two on the other
side of the bilayer). Two lines of evidence indicate
that the composite channels predominantly are dou-
ble-barreled channels—formed between two 23-resi-
due-linked analogues. First, we observe no such com-
posite events with the 15-residue-linked analogues—at
least not under conditions that allow for single-channel
experiments. Second, the experiments were done un-
der conditions where the bursting and composite chan-
nel events occur at a rate <1072 s~ (compare Figs. 4, D



and E, and 7), whereas the transition from the first to
the second current level occurs at a rate >1 s7! (Fig. 7
and Table III). Thus, only a small fraction of the com-
posite events will form as daisy chains between three of
the linked analogues. We conclude that the composite
events indeed are double-barreled channels. Rokitskaya
etal. (2003) similarly conclude that gA channels that are
coupled using a biotin-streptavidin—induced cross-link-
ing also are double-barreled channels.

Origin of the Unequal Current Transitions

Given the single population of current transition am-
plitudes in the heterodimer experiments with gA and
both the 15- and 23-residue-linked analogues (Fig. 8
and Table III), the pattern of current transitions in the
composite events becomes striking. Not only are the
two current transition amplitudes distinct; but, the first
transition is (almost) invariably the smaller of the two.
This pattern differs qualitatively from the one that usu-
ally is expected to occur, namely that channel cluster-
ing decreases the current amplitude due to local deple-
tion of permeant ions (e.g., Neumcke and Stampfli,
1983). (The present situation is similar to that observed
for alamethicin, which forms multistate channels where
the conductance of every next step is higher than
that of the preceding step [Gordon and Haydon,
1972; Eisenberg et al., 1973], but with little change
in pore radius—as deduced from polymer partitioning
[Bezrukov and Vodyanoy, 1993].) The different current
transition amplitudes in the composite events somehow
must reflect local interactions between the two barrels
in the double-barreled channels, which could occur for
two reasons. First, the dynamics of the linker close to
the pore entrance could be constrained in the double-
barreled channels so as to reduce the restrictions on
ion access to the pore. Second, electrostatic interac-
tions between the two pores could reduce the electro-
static barrier for ion movement through the pore.
Though the linker most likely reduces the rate con-
stant for (diffusional) ion access to the pore, the results
in Table V exclude the possibility that the difference
between the two current transition amplitudes results
from relative changes in access. Importantly, compared
with 1.0 M GCsCl or NaCl, the difference between the
two current transition amplitudes is decreased in 0.1 M
CsCl, where diffusion-controlled ion access is more im-
portant (Andersen, 1983b)—and more so at 200 mV
where ion access will be most important. We also note
that Rokitskaya et al. (2003), using a completely differ-
ent linker strategy, observe a similar difference between
the first and second transition amplitude as we do,
which would tend to exclude a specific action of the
linker. Moreover, even in the case of channels formed
by the analogue with the 7-residue single-ended eda tail
(Fig. 4 A, Table II), there is no evidence for fast transi-
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tions between two current levels, similar to those ob-
served by Woolley et al. (1997) using a shorter linker.
That is, the positive charge at the end of the linker
seems to move rather freely.

In the next section we conclude that the linker seems
to be sufficiently flexible to impose little restriction on
the formation of the second barrel, which also would
tend to exclude local effects on ion access. We there-
fore conclude that the pattern of current transition am-
plitudes results from changes in the barrier for ion
movement through the pore itself. It is difficult to en-
visage how this coupling could arise unless the two bar-
rels were in quite close apposition. If the two barrels,
for example, were separated by only one phospholipid
molecule, the effective dielectric constant of their sur-
roundings would be increased over that of the bilayer
core, which will lower the energy barrier for ion move-
ment through the pore (Parsegian, 1969; Levitt, 1978;
Jordan, 1986). In addition to this effect, the different
current transitions also could result from changes in
the average orientation of one or more of the tryp-
tophan residues at the channel entrance, which again
would alter the barrier for ion movement through the
pore (Becker et al., 1991; Andersen et al., 1998).

Formation and Stability of Double-barreled Channels

Standard gA channels usually form in a single step—
although composite transitions also are observed (Busath
and Szabo, 1981; Sigworth and Shenkel, 1988; Mobash-
ery et al., 1997), where the intermediate current levels
usually are of brief duration. The pattern of channel ap-
pearances observed with the 23-residue-linked tandem
analogue is quite different from that usually observed
with gA, as the first pore does not form in a single,
“clean” step to a well-defined current level, but rather
presents itself as a series of rapid transitions between
two current levels. This bursting channel behavior usu-
ally lasts <1 s, and it ceases when the second pore forms
(Fig. 5). Similar behavior was observed by Rokitskaya et
al. (2003), who used a biotin/streptavidin strategy to
form double-barreled channels, although in their case
the bursting behavior could last many seconds. Some-
what surprisingly, we did not observe double-barreled
heterodimeric channels between the 15- and the 23-res-
idue-linked tandem gAs. This most likely reflects that
subunit folding is compromised when the linker is too
short, as the 15-residue-linked tandem gA has a much
more negative ellipticity at 230 nM, which is indicative
of a larger fraction of non-B%3-helical subunits, than the
other analogues (Fig. 3). It also could indicate that a
critical linker length is necessary in order for double-
barreled channels to form, e.g., because the two mono-
meric subunits in a single-barreled channel formed by
the 15-residue-linked tandem gA are held at positions
that do not allow for dimerization.



The question remains, why does the 23-residue-
linked tandem analogue form bursting channels?
Mobashery et al. (1997) showed that the kinetics of gA
channel formation changes qualitatively, with the ap-
pearance of bursting events, when the difference be-
tween bilayer thickness and channel length exceeds
some critical value. These bursting events occur at
gramicidin concentrations that are ~100-fold higher
than the ones normally used (in DPhPC bilayers). The
presence of monomers in relatively close proximity
may alter the kinetics of dimerization; we do not under-
stand why.

Though their kinetics are complex, the average life-
time of the (single-barreled) bursting channels formed
between two 23-residue-linked tandem analogues is
twofold larger than the lifetimes for the double-bar-
reled appearance/disappearance transitions. This was
unexpected because the initial formation of a single-
bilayer-spanning channel between two 23-residue-linked
tandem gAs will terminate either because the conduct-
ing dimer dissociates (with rate constant k_;) or be-
cause the second bilayer-spanning channel forms (with
rate constant k,,). (In the discussion that follows we
will not consider the two-state nature of the single-bar-
reled, bursting channels.) The same two rate constants
would describe the kinetics of channel appearances,
flickers from the double-barreled state, and disappear-
ances. One thus would expect that the lifetimes of
the bursting channels, the appearance transitions, the
flickery transitions, and the disappearance transitions
should have identical lifetimes (1, = (k_; + ki9)71).
The results in Table III show that to be the case for the
latter three types of transitions, but not for the bursting
channels. The parsimonious explanation for this “dis-
crepancy” is that some tandem gramicidins may have
one subunit that is not folded as a B53helix, as the CD
spectra (Fig. 3) show that a significant fraction of not
only the 15- but also the 23-residue-linked tandem gAs
fold into non-B%%*helical structures. If, for example,
only 50% of the gA subunit in the 23-residue-linked
tandem gA were B%3-helices, it would account for the
observed differences between the lifetimes for the dif-
ferent types of transitions. (It also could account for
the kinetic complexity of the lifetime distribution for
the bursting channels.) The relative partitioning be-
tween subunit dissociation and double-barreled chan-
nel formation is ky9/k 4, or ~3, which means that
kio = T/ (L4 ke /hyg) =357

k.o is the pseudo-first order rate constant for the for-
mation of the second barrel in the double-barreled
channel. To a first approximation, for a flexible linker,
kio = kyi-[gAl], where k., is the rate constant for gA
dimerization, and [gA] is the (local) concentration of
gA monomers around the first barrel. Taking the ex-
tended length of the linker, ~14 nm, as a measure
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of how far the single, uncoupled subunit can move,
[gA] = 107® molecules/nm?. In DPhPC/n-decane bi-
layers k., = 10* nm?/(s-molecule) (Rokitskaya et al.,
1996), so assuming no interactions between the sub-
units, ko is expected to be ~10 s~!. This estimate is in
good agreement with the experimental estimate of 3
s~1 (Table III); we conclude that the linker is unlikely
to impose significant stress on the subunit interactions.
For single-barreled gramicidin channels, the channel
formation/disappearances are described by Scheme I
(cf. Bamberg and Lauger, 1973; Veatch et al., 1975),
2M2D, SCHEME I
where M and D denote the mole-fractions of noncon-
ducting monomers and conducting dimers in the b1—
layer. The standard free energy of dimerization, AGt
is given by

ot

D1 exp -AG kY = (1)
[M]?
exp{—(A Gy + AGae)/ kT,

where ky is Boltzmann s constant T the temperature in
Kelvin, and AG. oror and AGdef the intrinsic and bilayer-
dependent contr1but10ns to AGtot (compare Andersen
etal., 1999). A Gprot is determined by, among other fac-
tors, the hydrogen bonds that stabilize the bilayer-span-
ning dimers. A Gy is determined by the channel-bilayer
interactions, in particular the bilayer deformation associ-
ated with forming the channels, as the average thickness
(dy) of the unperturbed bilayer (~4.3 nm in the case of
DPhPC/ n-decane bilayers based on a bilayer specific ca-
pacitance of 4.3 nF/mm?; cf. Redwood et al., 1971) is
larger than the channel’s hydrophobic length ( ~2.3
nm; Elliott et al., 1983). The channel-bilayer interac-
tions are well described using an elastic bilayer model
(Nielsen et al., 1998; Lundbak and Andersen, 1999):

AGqer = Hy- (dy— )7, (2)

where Hy is a phenomenological spring constant, which
is ~8 kJ/ (mole-nm?) for monoglyceride/n-decane bilayers
(Lundbzek and Andersen, 1999) and ~20 kJ/ (mole-nm?)
for DPhPC/ n-decane bilayers (unpublished data). Thus,
AGy; will be a s1gn1ﬁcant ~80 kJ/mole, destabilizing
contribution to AGtot
For double-barreled gramicidin channels, the
channel formation/disappearances are described by
Scheme 11,
2M-M2M-D-M&D-D,

SCHEME II

where M-M denotes the linked monomeric subunits,
M-D-M the single-barreled channel with two linked sub-



units, and D-D the linked double-barreled channel. In
this case, the standard free energies of dimerization for
the single-barreled (M-D-M) and double-barreled (D-D)
channels, AG?(’,: and AG?;,? , are given by,
[M-D-M] _
[M-M]*
exp{—(AG),!

prot

exp{-AGe, /kyT} = (3)
+AGa)/ ky T},

and
[D-D]
[M-M]*
exp{—(AG)}

prot

= exp{-AG: /k,T} = (4)
0, 2
+AGYD)/ kyT},

To a first approximation the formation of a sin-
gle-barreled channel should not be significantly af-
fected by the presence of the other subunit in the
tandem gramicidin, in which case AG?;: = AG([JO[ ,
AGpoi= MGy, and AGge = AGy,.

To evaluate the relative stabilization of the double-
barreled channels we note that gA channels obey Pois-
sonian statistics (Hladky and Haydon, 1972; Andersen,
1978), such that the probability of observing one and
two conducting channels (W(1) and W(2), respec-
tively) is given by N - exp{—\} and (A\%/2) - exp{—\},
where X is the average number of conducting channels:
N = f- 7, where fis the channel appearance rate and 7 is
the channel lifetime. That is, if there were no interac-
tions among the bilayer-spanning channels, the relative
distribution between two-channel and one-channel
events, W(2)/W(1), would be given by N/2. The stabili-
zation of the double-barreled channels thus can be de-
scribed as the ratio between the observed and expected
distribution between double-barreled [D-D] and single-
barreled [M-D-M] channels. The observed distribution
is [D-D]/[M-D-M] and, according to Poisson statistics,
the expected distribution is [M-D-M]/2. The relative
stabilization thus becomes

[D-D]
[MDM] 0
[MDM] [D-D] _AAG
9. = exp(2AC 5
2 RETYEVIER ( kT ) ?

such that AAG® = 0 when the distribution between sin-
gle- and double-barreled channels is described by the
Poisson distribution. AAG® then can be expressed as

AAG’ = kyT-n2 = AGLI-2-AGh, = (6)
A 0,2 0,1 0,2 0,1
( Gprot -2 AGprot) + (AGdef_ 2. AGdef)'

In Egs. 3-6, the AG,,,, contributions to AG,, reflect
both the hydrogen bond organization at the subunit in-
terfaces, which should be invariant, and the increased
monomer concentration around the single-barreled
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M-D-M channels (Jencks, 1981; Creighton, 1993), which
means that AGE,}%,[ 2 AGf,}lm- If the linker is flexible,
such that it does not impede monomer association:
AGg’ri[ <2- AG;}L; if the linker impedes monomer as-
sociation: AGg’mt >2- AGE}LI , and the local concentra-
tion could, in principle, be zero if the linkers forced
the monomers apart to preclude the formation of the
second barrel. Similarly, the AG, contributions will
not be additive because AG, varies as a function of
channel radius (circumference) (Nielsen et al., 1998)
such that AGy2 < AGY.).

To evaluate AAG, we note that the experiments were
done at a channel appearance rate of 0.01 s™! (or less),
that the average lifetime of the single-barreled events is
~0.25 s, that ~75% of the single-barreled channels
convert into double-barreled channels, and that the
lifetime of the double-barreled channels is ~100 s.
That is 2 - [D-D]/[M-D-M]2 = 2 - 0.75 - 0.01 - 100/
(0.01 - 0.25)2 = 2 - 10°, or = AAG® = 30 kJ/mole. For
comparison, we note that the making or breaking of
one hydrogen bond corresponds to 10-15 kJ/mole
(Schulz and Schirmer, 1979; Fersht, 1987).

Some of the stabilization results from the increased
local monomer concentration that is associated with
formation of the first barrel (e.g., Jencks, 1981), and
some results from bilayer-mediated interactions be-
tween the two barrels in the double-barreled channels.
The increased local concentration will be reflected pri-
marily in the relative appearance rate of the double-
barreled channels, which is ~400-fold higher than
expected; the bilayer-mediated interactions will be re-
flected primarily in the relative lifetimes of the double-
and single-barreled channels, which is 2 - (~400)-fold
higher than expected for a simple Poisson process.
That is, one can reasonably attribute about half of the
increased stabilization, or ~15 k]J/mole, to bilayer-
mediated interactions.

Based on Hy =~ 20 kXJ/(mole - nm?) and (d, — }) = 2
nm, AG?lef for a single-barreled channel in DPhPC/
n-decane bilayers is ~80 kJ/mole. The bilayer-medi-
ated contribution to the energetic stabilization of the
double-barreled channels thus may be ~10% of the
bilayer deformation energy associated with having two
independent (noninteracting) bilayerspanning chan-
nels. This result is at the same time comforting, be-
cause the relative stabilization is rather modest, and
surprising, because even this relatively modest stabiliza-
tion has so dramatic effects on channel function. As
noted previously (Durkin et al., 1992), the energetic
window for useful perturbations of membrane protein
function may be remarkably narrow.

The above analysis leads to the following scheme for
the formation of double-barreled channels (Fig. 9).

The linked gramicidins diffuse around in each bi-
layer leaflet; at some point one subunit from each of



FIGURE 9. Schematic repre-
sentation of the formation of
double-barreled  gramicidin
channels in a bilayer with a
thickness that is larger than
the channel length. (Left)
top view. (Right) side view.
(A) Two independent tan-
dem gramicidins, one on
each side of a bilayer, in
which the subunits are sepa-
rated by a flexible linker. (B)
The initial event is the forma-
tion of a single bilayer-span-
ning pore with the mono-
meric subunits at opposite
sides of the conducting
dimer. The dimerization
causes a local thinning of the
bilayer around the bilayer- oot
spanning dimer. (C) For the

second barrel to form, the

subunits diffuse in each

monolayer (and the linker

bends), causing the noncon-

ducting monomers to ap-

proach each other and dimer- <" - ‘_')

ize, which causes a further bi- D S ¢
layer deformation around
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dimer. (D) To minimize the overall bilayer deformation energy, the two bilayer-spanning dimers (conducting pores) will tend to associate
closely. The figure is drawn with the two barrels separated by a distance corresponding to one phospholipid molecule, but we have no di-

rect information about the distance separating the two barrels.

two linked gramicidins, in opposite leaflets, form a sin-
gle bilayerspanning channel (barrel). Then the two
“free” subunits diffuse around in the vicinity of this
channel, and they form a second barrel, which initially
will be relatively independent of the first barrel. But the
local bilayer deformation about each barrel will create
a driving force to move the two barrels together, to
form a “side-by-side” double-barreled channel in which
the two barrels may be separated by one phospholipid
molecule. This double-barreled channel will be stabi-
lized because the overall bilayer perturbation will be
less than twice that imposed by a single bilayerspan-
ning barrel, such that the balance between stabilizing
and destabilizing forces will shift toward greater stabili-
zation. (We do not believe the two barrels are in direct
contact, as there is no evidence for lateral association of
gA channels in oriented di-lauroyl-phosphatidylcholine
bilayers at gA/lipid molar ratios of 1/10 [Harroun et
al., 1999a]. Furthermore, gA channels undergo rapid
rotational diffusion in solid-state NMR experiments in
oriented DMPC bilayers at gA/lipid molar ratios of 1,/10
[Lee etal., 1993].)

Why are these interactions seen only in the linked
gramicidins? gA single-channel experiments usually are
done at gA/lipid ratios ~10~7 (compare Durkin et al.,
1990; Sawyer et al., 1990), corresponding to a subunit
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density of ~10~! pm~2 where there is no evidence for
interactions between two bilayer-spanning dimers (Cifu
et al., 1992). In contrast, the local gA/lipid ratio
around a bilayerspanning channel formed by one of
the two subunits in two linked gramicidins would be
2-4 X 1073, more than four orders of magnitude larger
than the average subunit density, which would tend to
increase the likelihood of subunit interactions. At suffi-
ciently high monomer densities similar interactions
should occur if the linked gramicidin were present on
only one side of the bilayer and gA on the other, but
the unavoidable “leak” of gA across the bilayer (see the
histograms in Fig. 8) complicates the detection of these
interactions at the single-molecular level. Using macro-
scopic current relaxations after phtalocyanine-induced
photoinactivation, however, Rokitskaya et al. (2003)
found that the relaxation time constant indeed in-
creases as the gA concentration increased—consistent
with what would be expected at higher gA surface den-
sities.

Together, the results of Rokitskaya et al. (2003) and
those of this study provide strong support for the no-
tion that bilayerspanning inclusions can couple, both
structurally and functionally, through the bilayer. The
basis for this interaction is likely the bilayer’s elastic
properties, and the associated bilayer deformation en-



ergy, which could be important for the organization
(clustering) of membrane proteins.

Implications for Integral Membrane Proteins

The functions of many membrane proteins depend on
the bilayer lipid composition, but usually with only
modest chemical specificity in the protein-lipid inter-
actions (Devaux and Seigneuret, 1985; Bienventie and
Saint-Marie, 1994; Dowhan, 1997; Marsh and Horvath,
1998). Because of the strength of the hydrophobic in-
teractions between the protein’s transmembrane do-
main and the bilayer core, any mismatch between the
protein’s hydrophobic length and the thickness of the
bilayer core will incur an energetic cost that not only
may serve to modulate protein function (Brown, 1994;
Lundbzk et al., 1996), but also could redistribute/ clus-
ter proteins within the bilayer (Pearson et al., 1983;
Mouritsen and Bloom, 1984; Gil et al., 1998). This clus-
tering serves to increase the local protein density,
which can alter the protein’s thermodynamic activity
(Ryan et al., 1988) and build up a local stress in the bi-
layer (Bezrukov, 2000), and thereby modify protein
function by altering the energetics, and thus the kinet-
ics, of the cycle of conformational changes associated
with protein function.

In any case, the present results demonstrate that ad-
jacent integral membrane proteins can be coupled
functionally by the lipid bilayer. The most likely basis
for this functional coupling is that the hydrophobic
channel-bilayer coupling causes protein conforma-
tional changes to perturb the surrounding bilayer,
which in turn will later the energetics of conforma-
tional changes in neighboring proteins. This shift in
the balance between the “intrinsic” energetics of the
proteins’ conformational changes and the proteins’ in-
teractions with their environment, in casu the host bi-
layer, can alter protein function. To what extent the bi-
layer-mediated coupling among integral membrane
proteins is important for protein function remains to
be determined. But ~30% of the cell surface area is oc-
cupied by the bilayer-spanning segments of integral
membrane proteins, so the local protein density is
high, which will facilitate bilayer-mediated protein
interactions. In fact, growth factor receptor activa-
tion and tyrosine autophosphorylation involve recep-
tor aggregation in the cell membrane (Ullrich and
Schlessinger, 1990; Alberts et al., 2002), and caspase-8-
dependent apoptosis, which is mediated by death re-
ceptors (Saikumar et al., 1999), is activated by amphi-
pathic compounds (Borner et al., 1994; Strupp et al.,,
2000) that are known to alter bilayer elastic properties
(Sawyer et al., 1989). As shown by Rokitskaya et al.
(2003), ligand binding can cause gA channels to dimer-
ize, which together with the present results suggest that
the hydrophobic coupling between the bilayer and the
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imbedded proteins may be an important mechanism
for regulating the organization and dynamics of mem-
brane proteins.
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