Skip to main content
. 2004 Mar;123(3):231–247. doi: 10.1085/jgp.200308946

TABLE I.

Parameters ± SEM from Functions Fitted to Data in Fig. 11
0 ≤ t ≤ 20 min 20 ≤ t ≤ 40 min Corrected for dye loss
0 ≤ t ≤ 20 min
k (min−1) 0.007 ±
0.001
0.932 ±
0.410
0.348 ±
0.177
0.482 ±
0.316
1.07 ±
0.294
0.376 ±
0.730
0.421 ±
0.087
0.018 ±
0.002
c (au) 72.5 ±
2.79
64.1 ±
5.93
73.8 ±
4.07
75.4 ±
1.72
45.7 ±
6.23
c (% t-sysVol) 1.035 ±
0.038
β (au) 12.36 ±
11.81
3.9 ±
4.62
−4.71 ±
3.89
β (% t-sysVol) 0.748 ±
0.051
δ −0.04 ±
0.127
0.05 ±
0.064
−0.001 ±
0.096
r 0.856 0.867 0.968 0.916 0.899 0.245 0.558 0.078 0.548 0.998 0.998
Symbols defined in Fig. 11. Continuous lines in Fig. 11, A and B, were of type: y = 100exp(−kt) for •; y = (100 – c)*exp(−kt) + c*exp(−0.007t) for timepoints 0–20 min in ▵, ▾, □, and ▪; y = 63*exp(−0.007 min−1*(t – 20)) + β*exp(δ*(t – 20))*(1 – exp((−3 min−1)*(t – 20))) for timepoints 20–40 min in ▵, □, and ▪; y = (55.9 – c)*exp(−k*(t – 20) + c*exp(−0.007 min−1*(t – 20)) for timepoints 20–40 min in ▾. Continuous lines in Fig. 11 C (corrected for dye loss) were of type y = βexp(−kt) + c in ▾; and y = 0.748*(1 – exp(−0.421t) – exp(−kt)) + 1.035 in □.