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Abstract

From the evolutionary and ecological points of view, it is essential to distinguish between the genetic and environmental
components of the variability of life-history traits and of their trade-offs. Among the factors affecting this variability, the
resource uptake rate deserves particular attention, because it depends on both the environment and the genetic
background of the individuals. In order to unravel the bases of the life-history strategies in yeast, we grew a collection of
twelve strains of Saccharomyces cerevisiae from different industrial and geographical origins in three culture media differing
for their glucose content. Using a population dynamics model to fit the change of population size over time, we estimated
the intrinsic growth rate (r), the carrying capacity (K), the mean cell size and the glucose consumption rate per cell. The life-
history traits, as well as the glucose consumption rate, displayed large genetic and plastic variability and genetic-by-
environment interactions. Within each medium, growth rate and carrying capacity were not correlated, but a marked trade-
off between these traits was observed over the media, with high K and low r in the glucose rich medium and low K and high
r in the other media. The cell size was tightly negatively correlated to carrying capacity in all conditions. The resource
consumption rate appeared to be a clear-cut determinant of both the carrying capacity and the cell size in all media, since it
accounted for 37% to 84% of the variation of those traits. In a given medium, the strains that consume glucose at high rate
have large cell size and low carrying capacity, while the strains that consume glucose at low rate have small cell size but
high carrying capacity. These two contrasted behaviors may be metaphorically defined as ‘‘ant’’ and ‘‘grasshopper’’
strategies of resource utilization. Interestingly, a strain may be ‘‘ant’’ in one medium and ‘‘grasshopper’’ in another. These
life-history strategies are discussed with regards to yeast physiology, and in an evolutionary perspective.
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Introduction

Adaptation of species to environment is characterized by an

increase of fitness, classically defined as the expected number of

offspring of an individual [1]. In living organisms, three life-history

traits play an essential role in fitness: the reproduction rate, the

carrying capacity and the body size [2]. At the population level,

the reproduction rate, estimated by the intrinsic growth rate (r),

quantifies how much a population can grow between successive

time periods. The carrying capacity (K), maximum size of the

population that can be supported upon the available resources,

reflects the expansion ability of a species [3,4]. Finally, at the

individual level, the body size is related to lifespan, home range

size and other life-history traits [5,6].

Variation of life-history traits has been reported in a wide range

of plant and animal species [2,7]. More importantly, negative

correlations between life-history traits, in particular between r and

K, as well as between body size and K, have been found both in

natural populations [6,8–11] and in artificial selection populations

[12,13]. This suggests that selection does not optimize these fitness

traits separately. The available resources are shared between

maintenance, size growth and reproduction. This ‘‘Partition of

Resources Model’’, in which resource allocation to one trait means

deprivation to another, has been proposed as the main explanation

for trade-offs between life-history traits [7,14]. For instance

limitations in common internal metabolites may result in

competition between reproduction and maintenance pathways

[15]. Thermodynamic constraints also lead to trade-offs, as it is the

case between yield and rate of ATP-producing pathway [16,17].

In a given environment, differences in life-history strategies

between populations or species have necessarily a genetic basis [7],

whereas changes in environmental parameters may affect life-

history traits of a given population/species [18]. Finally genotype-

by-environment interactions can also account for variability in life-

history strategies [18]. Actually in natural populations the origin of

the variation in trade-offs cannot easily be determined, because no

control of the factors that might affect life-history traits exists. This

is the ‘‘missing variable’’ problem [7]: in non-controlled conditions

one cannot be sure that all relevant variables are included in the

analysis. For instance, a study on the Campanula genus in Greece

has revealed a shift between the r- and K-strategies among species

growing at different elevations [11], but whether this shift depends

on the species or the environment is unknown. By contrast

selection experiments can give information on possible genetic
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bases of the trade-offs, though whether the trade-offs change with

environment has not been studied much. In Drosophila melanogaster a

genetic trade-off between r and K has been detected [12,19–21],

but experiments in Escherichia coli gave contrasted results. While

Luckinbill et al. failed to show any [22,23], Novak et al., using

populations of E. coli from the long-term evolution experiment,

detected a trade-off between growth rate and yield within 3 over 4

tested evolved populations [24].

Surprisingly few studies have been carried out to estimate

correlations between life-history traits in two or more environ-

ments, which still represents the direct experimental method to

untangle the genetic and environmental components of the trade-

off variation, and possible genetic-by-environment interactions. In

addition, usually little attention is paid to the biochemical features

of the life-history traits and trade-offs. Understanding the causes of

the variability and correlations of life-history traits requires the

analysis of the rate of resource uptake, which depends both on the

amount of resources in the environment and on the activity of

enzymes involved in the uptake. Increasing resource uptake rate

might be efficient for fast growth and reproduction in a rich

environment, but can lead to fast resource exhaustion in poor

environments and hence in increased mortality before reproduc-

tion and/or expansion. Thus the resource consumption rate

appears as a key parameter to account for variation in life-history

traits, and more specifically genetic-by-environment aspects.

Although there is a huge literature on plant and animal life-history

strategies, there are few reports on these questions in microorganisms

[24–27]. Microorganisms are convenient models for evolutionary

ecology because they have usually a short generation time, a large

population size, are mostly unicellular with no developmental

differentiation and are easy to manipulate in the laboratory.

The yeast Saccharomyces cerevisiae, a common biological model in

genetics and physiology, has only recently been chosen as a model

in evolutionary genetics [28,29], and to our knowledge has never

been used to study life-history theories. In this work, we have

analyzed the plastic and genetic components of life-history traits in

S. cerevisiae and have analyzed the influence of resource uptake rate

on the trade-offs between those traits. In a collection of twelve S.

cerevisiae strains coming from various industrial and geographical

origins and grown in three culture media differing in glucose

concentrations, we analyzed the variability of growth rate,

carrying capacity and cell size. For each strain in each medium,

we also measured the glucose consumption rate per cell, in order

to assess the possible role of this parameter in the traits’ variation.

We showed that both plastic and genetic factors strongly affect the

yeast’s life-history strategies. Changes in the glucose content of the

medium results in a shift of the balance between carrying capacity

and growth rate, and between growth rate and cell size, while in a

given medium the strains may differ to a large extent for carrying

capacity, cell size and glucose consumption rate, making it possible

to define what we called the ‘‘ant’’ and ‘‘grasshopper’’ life-history

strategies, inspired by the behaviour of these animals in the well

known fable popularized by Aesop.

Results
Genetic and plastic components of traits’ variation

Three life-history traits, the growth rate (r), the carrying capacity

(K) and the cell size (S), along with glucose consumption rate per cell

(JT50), were measured in twelve S. cerevisiae strains coming from

three industrial origins (bakery, brewery and vinery; see table 1)

and grown in three culture media (0.25%, 1% and 15% glucose).

An analysis of variance was performed for every trait (Table 2).

Medium effect. For all traits, the medium effect was highly

significant (Table 2 and Figure 1), and accounted for the most

important part of total variation (from ,34% for JT50 up to ,80%

for S). The mean growth rate significantly decreased when the

resources of the medium increased (Figure 1A). By contrast, the

mean carrying capacity increased when the resources increased

(Figure 1B): it was about three fold higher in the glucose rich

medium (15%) than in the other media. Mean cell size also

increased with resources (Figure 1C). More surprisingly, mean

glucose consumption rate reached its maximum value in the 1%

glucose medium (Figure 1D).

Table 1. Collection of strains of Saccharomyces cerevisiae

Accession number* Geographical origin Industrial origin

154 Russia Vinery

157 Spain Vinery

328 England Vinery

479 Italy Vinery

402 Japan Brewery

221 Czech Republic Brewery

227 The Netherlands Brewery

804 Germany Brewery

215 New Zealand Bakery

319 France Bakery

324 Vietnam Bakery

646 United States Bakery

*Strains were obtained from the CIRM-Levures (Centre International de
Ressources Microbiennes, Thiverval-Grignon, France). They are identified by
their accession number in this collection.

doi:10.1371/journal.pone.0001579.t001

Table 2. Mean trait value and ANOVAs’ results for carrying
capacity (logK), glucose consumption rate (2logJT50), growth
rate (r), and cell size (2logS).

df logK 2logJT50 r df 2logS (a)

Mean trait value 17.8 19.89 0.0097 17.84

Total sum of squares 37.18 43.8 2.23 1023 34 11.12

Percent sum of
squares (b)

Origin 2 7.78** 9.16** 3.34* 6.38**

Medium 2 75.49** 33.80** 73.90** 79.91**

Strain(origin) 9 2.64 1.55 3.83 /

Block(medium) 7 0.83** 11.44** 2.42** /

Medium*origin 4 2.58 24.39** 2.01 5.91**

Medium*strain(origin) 18 8.26** 14.34** 6.51** /

Residual 73 2.42 5.32 7.99 7.80

Total 115

For cell size the ANOVA model is different from the one used for the other traits
(see Material and Methods).
df : degree of freedom. (a) As there was only one experimental repetition for cell
size, the residual variation also contains differences between strains. (b) Type I
sums of squares are expressed as a percentage of the total sum of squares.
Significance was assessed under a mixed model with Strain(origin) and
Medium*strain(origin) as random effects.
*Significant at 5%.
**Significant at 1%.
doi:10.1371/journal.pone.0001579.t002

Life-History Traits in Yeast
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Industrial origin effect. The industrial origin effect was

significant for all traits, and explained from 3.34% (for r) to 9.16%

(for JT50) of the total variation (Table 2). The ranking order of the

industrial origins changed according to the trait. Bakery and

vinery strains had similar growth rates (p = 0.4259), higher than

the brewery one (p,0.0001) (Figure 1A). Bakery and brewery

strains showed similar carrying capacity (p = 0.1161), smaller than

vinery ones (p,0.0001) (Figure 1B). Bakery strains had higher cell

size than brewery (p = 0.0608) and vinery ones (p,0.0001)

(Figure 1C). They had also a higher glucose consumption rate

(p,0.0001) than brewery and vinery strains (Figure 1D).

Medium-by-origin interactions. No significant medium-

by-origin interaction effect was detected for the growth rate and

the carrying capacity. By contrast, significant interaction effects

were found for glucose consumption rate (24.39% of the total sum

of square) and for cell size (5.91%) (Table 2). For both traits,

differences between industrial origins depended on the glucose

concentration in the medium. Mean values increased when going

from 0.25% to 1% glucose, but reaction norms crossed between

1% and 15%. Brewery strains did not increase in size and

decreased their glucose consumption rate in 15% glucose, while

for bakery and vinery strains cell size increased and glucose

consumption rate remained constant (Figure 1C and 1D).

Strain effects and medium-by-strain interactions. The

strain effects within origins were never significant, but the medium-

by-strain interactions were significant for all traits tested, with a

percentage of total variation explained as high as 14.34% (for JT50)

(Table 2). This means that for a given industrial origin, the ranking

order of the strains is clearly medium-dependent. In addition the

percent of variation explained by the sum of the medium-by-

genotype interactions (‘medium-by-strain(origin)’ plus ‘medium-by-

origin’) was consistently higher than the one explained by the main

genetic effects (‘origin’ plus ‘strain(origin)’) (Table 2). For the glucose

consumption rate, it even exceeded the main effect of the medium.

Correlations between life-history traits
Correlations between traits were studied using the average trait

value of each strain in each medium as variable. They were analyzed

both globally taking all the data together (total phenotypic

correlations) and within each medium (genetic correlations within

media).

Total phenotypic correlations. Pairwise rank phenotypic

correlations between the three life-history traits were all significant

(Figure 2). A clear trade-off between growth rate and carrying

capacity was observed (rs = 20.644, p,0.0001) (Figure 2A). There

were two separated groups: one corresponded to the strains grown

in the glucose rich medium (15%), with low r and high K values,

and the other to the strains grown in the more restrictive media

(0.25% and 1% glucose), with small K and high and variable r

values. In addition, a trade-off between growth rate and cell size

was found (rs = 20.731, p,0.0001). As glucose increases in the

medium, the growth rate decreases and cell size increases

(Figure 2B). Finally there was a positive correlation between cell

size and carrying capacity (rs = 0.507, p = 0.002) (Figure 2C). All

Figure 1. Variation of intrinsic growth rate r (A), carrying capacity K (B), cell size (C) and glucose consumption rate JT50 (D) in three
culture media differing for glucose content. Each point represents the mean value of the trait for each industrial origin in each culture medium
with the standard error associated. Vinery strains are represented by circles, brewery ones by crosses and bakery ones by triangles.
doi:10.1371/journal.pone.0001579.g001
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these correlations were mainly related to the strong effect of media

on the variation of the life-history traits (Figure 2).

Genetic correlations within media. Within media, no

correlation was found between carrying capacity and growth

rate, or between growth rate and cell size (Figure 2A and 2B). On

the other hand, whereas cell size and carrying capacity are globally

positively correlated over all media, they displayed a trade-off

within each medium, as shown by the significant negative

correlations (r= 20.65, r= 20.96 and r= 20.87, p,0.01, for

0.25%, 1% and 15% glucose respectively) (Figure 2C).

Relationship between glucose consumption rate per cell
and life-history traits

Surprisingly, the glucose consumption rate per cell did not show

any correlation with growth rate, neither within media, nor

globally (Figure 3A). By contrast, within each medium, significant

negative correlations were found between glucose consumption

rate and carrying capacity, and positive ones between glucose

consumption rate and cell size (Figure 3B and 3C). In the 0.25%,

1% and 15% glucose media, the glucose consumption rate

accounted for 37%, 70% and 54% of the carrying capacity

variation, respectively, and for 50%, 74% and 84% of cell size

variation, respectively (p,0.05).

The negative correlation between carrying capacity and cell size

for a given amount of resource and their opposite responses to

variations of glucose consumption rate are consistent with the trade-

off between those traits. Glucose may be allocated either to an

increase of population size or to cell size. To further analyze the

resource allocation we studied the biomass at the end of the culture,

defined as the product of carrying capacity by cell size. The glucose

consumption rate was not related to biomass in 0.25% and 1%

glucose, indicating that glucose is equivalently allocated either to cell

size or to carrying capacity in these media (Figure 4). A positive

correlation was observed in 15% glucose (r= 0.74, p,0.01)

indicating that, when resources are abundant, the increase of cell

size is not fully compensated by the decrease of population size.

Altogether these results revealed that yeast strains range

between two typical strategies for resource utilization. On the

one hand some strains have a low glucose consumption rate per

cell, a small cell size and a high carrying capacity. On the other

hand other strains have a high glucose consumption rate, a large

cell size but a low carrying capacity. In reference to the famous

Aesop’s (620–560 BC) fable, we propose to call these two

genetically contrasted behaviors ‘‘ant’’ and ‘‘grasshopper’’ life-history

strategies, respectively.

The high medium-by-genotype interactions observed for the

glucose consumption rate indicates that a given strain can behave

as a ‘‘grasshopper’’ in one medium and as an ‘‘ant’’ in another. This is

for example clearly the case for three brewery strains and one

bakery strain which are ‘‘ants’’ in 15% glucose and ‘‘grasshopper’’ in

Figure 2. Trade-offs between carrying capacity K (A), growth rate r (B), cell size (C) across culture media. Each point corresponds to the
mean value of a strain in a culture condition. Blue, black and red colors correspond respectively to 0.25%, 1% and 15% glucose. Vinery strains are
represented by circles, brewery ones by crosses and bakery ones by triangles.
doi:10.1371/journal.pone.0001579.g002

Figure 3. Correlations between glucose consumption rate and growth rate per cell (A), carrying capacity (B) and cell size (C). Each
point corresponds to the mean value of a strain in a culture condition. Blue, black and red colors correspond respectively to 0.25%, 1% and 15%
glucose. Vinery strains are represented by circles, brewery ones by crosses and bakery ones by triangles.
doi:10.1371/journal.pone.0001579.g003
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1% glucose (Figure 3B). More globally, the vinery strains have the

highest mean relative carrying capacity and behave as ‘‘ants’’ in all

glucose conditions, but the brewery strains tend to be ‘‘grasshoppers’’

in low glucose conditions (0.25% and 1%) and ‘‘ants’’ in 15%

glucose, while the bakery strains display an intermediary behavior

(Figure 5). It is important to note that despite these medium-by-

genotype interactions, there is always a negative correlation

between carrying capacity and glucose consumption rate.

Discussion
Plasticity of the life-history traits

The life-history traits, carrying capacity, intrinsic growth rate and

cell size were strongly affected by the glucose content in the culture

medium, with obvious trade-offs between carrying capacity and

growth rate, and between growth rate and cell size. When resources

were abundant (15% glucose), all yeast strains were growing slowly

(small r), but reached a large population size (K) and had bigger cells.

On the contrary when glucose was limited in the medium, the strains

had higher growth rate, and displayed smaller carrying capacity and

cell size. A possible biochemical mechanism for those trade-offs can

be proposed. In rich medium, the large amount of extracellular

glucose causes a hyperosmotic stress to the cells, which activates the

Ras-cAMP pathway [30]. This activation is transducted by the

cAMP, the accumulation of which leads to two responses: (i) it

stimulates cAMP-dependent protein kinase, which is involved in

posttranslational regulation of glycolytic enzymes, and in turn

activates glycerol accumulation that counteracts the effect of

hyperosmotic stress [31]; (ii) cAMP represses the cyclins CLN1

and CLN2 that are implicated in cell cycle initiation [32,33]. In

addition glucose is known to repress the CLN1 promoter [34]. As a

consequence of the delay in cell cycle and of the accumulation of

glycerol, cell size increases and intrinsic growth rate decreases when

external glucose concentration increases.

Selection could have lead to plasticity for life-history traits, as an

adaptive response to unstable or stressing environments that yeasts

may encounter in natural or industrial conditions [35]. If plasticity

were adaptive, a second step of adaptation to new environments

would be the conversion of non-heritable environmentally induced

variation into heritable variation [36], by the process often

referred to as Baldwin Effect, or genetic assimilation [37,38].

Experimental evolution would allow to test this scenario, by

growing strains in different glucose conditions over many

generations and checking if the evolved populations have a

reduced plasticity.

Genetic variability of the life-history traits
The carrying capacity, the growth rate and the cell size 2 as

well as the glucose consumption rate 2, proved to be genetically

variable among the twelve yeast strains. In particular the industrial

origins were clearly distinct to each other, whatever the trait

considered. This could be explained by human selection. In the

15% glucose medium, where a high amount of ethanol is

produced, vinery and brewery strains reach a higher carrying

capacity than bakery ones, indicating a possible adaptation to high

levels of ethanol. The higher cell size of bakery strains could also

be explained by selection. In bread dough, yeasts may counteract

the effect of high osmotic pressure by active uptake of osmolytes,

which results in larger cell size [39,40]. Differences in glucose

consumption rate are more difficult to explain in terms of human

selection. Historical records indicate that development of brewing

industry was accompanied by exchanges between brewers and

bakers since the 19th century. Phylogenies based on neutral

genomic regions tend to cluster the bakery and brewery strains,

away from the vinery ones [41–43], and microsatellite analysis

revealed that bakery and brewery strains share more alleles than

they do with vinery strains [44]. In 0.25% and 1% glucose media,

the bakery and brewery strains have well close glucose

consumption rates, but not in 15% glucose where the glucose

consumption rate of the brewery strains drop steeply. Again,

selection experiments could help in analyzing and understanding

the effect of human selection on this trait.

Genetic correlations between life-history traits
The only significant correlation within media was observed

between carrying capacity and cell size, with a marked trade-off. In a

given medium, the large-cell strains had low carrying capacity and

vice versa, which resulted in low genetic variability of the biomass,

defined as the product of the cell size by the carrying capacity.

Growth rate was correlated neither to carrying capacity, nor to

cell size. Of course this does not mean that these traits are

physiologically independent. It has been shown that during yeast

growth, cell cycle (i.e. r) and cell growth are coordinated [45], and

the molecular mechanisms of this coordination are well described

Figure 4. Relationship between biomass and glucose con-
sumption rate. Biomass is defined as the product of carrying capacity
by cell size. Each point corresponds to the mean value of a strain in a
culture condition. Blue, black and red colors correspond respectively to
0.25%, 1% and 15% glucose. Vinery strains are represented by circles,
brewery ones by crosses and bakery ones by triangles.
doi:10.1371/journal.pone.0001579.g004

Figure 5. Variation of the relative carrying capacity in the three
culture media. In each medium, the relative carrying capacity of each
strain was calculated as the ratio of its carrying capacity to the highest
strain’s carrying capacity in this medium. Each point represents the
mean value of the relative carrying capacity for each industrial origin in
each culture medium with the standard error associated. Vinery strains
are represented by circles, brewery ones by crosses and bakery ones by
triangles.
doi:10.1371/journal.pone.0001579.g005
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[46]. Our result suggests that cell size and intrinsic growth rate

can, at least in part, evolve independently of one another.

The relationships between the glucose consumption rate and the

life-history traits within media gave partly unexpected results since

we did not detect any correlation between intrinsic growth rate

and glucose consumption rate. In Escherichia coli a hyperbolic

ascending relationship was found between the activities of b-

galactose permease and b-galactosidase and growth rate for

different strains grown on lactose [47]. Our result suggests that

human selection has uncoupled the growth rate and the rate at

which resources are consumed in S. cerevisiae, probably because

strains with a high metabolism rate and a quite low division rate

have a better yield of fermentation in industry.

By contrast, we found a high positive correlation between cell

size and glucose consumption rate. It has been shown that glucose

consumption rate is correlated to the number of glucose

transporters on the cell surface [48]. Thus the higher glucose

consumption in large cells could simply result from the larger

number of transporters. Note that if the number of transporters

were strictly proportional to the cell surface, the relationship

should not be linear, but should follow the relationship

S!
ffiffiffi
J
p� �3

. However we do not have enough data to decide

between this non-linear and the linear relationship.

We found also highly significant negative linear correlations

between carrying capacity and glucose consumption rate, which was

expected given the trade-off between carrying capacity and cell size.

Altogether, these results show that two opposite genetically-based

life-history strategies can be defined within the yeast species. In a

given culture medium, some strains (the ‘‘grasshoppers’’) consume

glucose faster, reach a bigger cell size at the expense of the carrying

capacity, whereas other strains (the ‘‘ants’’) consume slowly glucose,

reach a smaller cell size, but have a higher carrying capacity. It is also

enlightening to consider the biomass of the strains at the end of the

culture. The ‘‘grasshoppers’’, with glucose consumption rates up to 4

times higher than the ‘‘ants’’, display similar or only slightly higher

biomass values. This result shows the accuracy of the balance

between carrying capacity and cell size, which is in a large extent

accounted for by the glucose consumption rate.

Tragedy of the commons
The existence of different life-history strategies could be related

to metabolic constraints. If individuals have access to a common

resource, they can either exploit it rapidly (increase the energy

produced per unit of time) or efficiently (increase the amount of

energy produced per unit of resource consumed). Evolutionary

models argue that this trade-off leads to a social conflict in which

individual reproductive rate is maximized by consuming resource

quickly and population fitness is increased by consuming resource

at a higher efficiency.

Experimental data showing a trade-off between yield and resource

consumption rate were found among yeast species evaluated in

different conditions [49] or for a single strain in different conditions

[50] (reviewed in [27]). We also found a plastic trade-off (rs = 20.74,

p,0.0001) between glucose consumption rate and yield (calculated

as the ratio of biomass to initial glucose concentration) when we

considered the data from the two limited glucose media (0.25% and

1%), in the range of resources similar to the one used in previous

studies [49,50]. But we did not detect any trade-off when adding the

rich glucose medium, which suggests that the trade-off between yield

and rate depends highly on the environment tested (Figure 6).

No genetic correlations between glucose consumption rate and

yield were detected in any medium. Instead of the rate/yield

relationship, the genetic trade-off between K and cell size appears

to be more relevant for studying social conflicts: the ‘‘ants’’ which

consume resource slowly would save resources for the good of the

whole population (cooperators) while the ‘‘grasshoppers’’ which

consume the resources fast, would keep the resource selfishly inside

the cell. Additional experiments are needed to explore the possible

social conflict between ‘‘ants’’ and ‘‘grasshoppers’’.

The genetic and plastic basis of carrying capacity
Carrying capacity is classically defined as the maximum

population size that a given environment can support given finite

resources [51]. In ecology, when it is expressed in mathematical

models, K is often defined as a fixed parameter, because differences

among individuals within a species are assumed to be negligible.

We showed that this parameter depends not only on the food

supply of the environment but also on the genotype of the strains,

and that resources consumption rate is a key determinant of the

carrying capacity via the trade-off with cell size. The genetic

variability of the carrying capacity, as well as its relationship with

resources consumption rate, should therefore be taken into

account in population dynamics modeling.

Further prospects
From this study, genes involved in resource uptake rate appear

as good candidates for studying the genetic basis and the evolution

of life-history traits. Identifying them and understanding the

underlying physiological mechanisms would bring new insights in

evolutionary ecology, and would open possible ways for genetic

improvement of industrial strains.

Materials and Methods
Biological material

Twelve industrial strains of S. cerevisiae coming from the CIRM-

Levures (Centre International de Ressources Microbiennes, Thiver-

val-Grignon, France) were chosen: four brewery strains, four vinery

strains and four bakery strains, which came from different countries

(Table 1). For each strain, a reference stock is conserved at 280uC in

Figure 6. Relationship between yield and glucose consumption
rate. Yield is defined as the ratio of the biomass (product of carrying
capacity by cell size) to the initial glucose amount in the medium. Each
point corresponds to the mean value of a strain in a culture condition.
Blue, black and red colors correspond respectively to 0.25%, 1% and
15% glucose. Vinery strains are represented by circles, brewery ones by
crosses and bakery ones by triangles.
doi:10.1371/journal.pone.0001579.g006
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our lab. For each growth condition and each replication a single new

colony was isolated from the reference stock.

Culture conditions
Growth kinetics were realized in fermentation conditions

(anaerobic), in liquid medium containing 1% yeast extract (DIFCO)

and 0.25%, 1% or 15% glucose. We chose contrasted culture media

to reflect a wide range of possible environmental conditions, starting

with 0.25% glucose because from this concentration the maximal

expression of glycolytic genes is achieved [52]. The cultures were

incubated at 30uC under 200 rpm agitation. In these conditions,

yeasts are exclusively dividing by mitosis. After an overnight culture,

1 to 5.106 cells were put into 50 mL fresh medium (30uC, 200 rpm).

Every hour, 300 mL of each culture was taken, 200 mL to estimate

population size and 100 mL to quantify glucose consumption. Each

growth kinetics was repeated independently from two to four times to

account for experimental variation. Each replication was started with

a new colony from the reference stock. As it was not possible to

manipulate all strains*medium combinations at the same time, we

used a split-splot experimental design. One replication consisted in

the twelve strains in one culture medium.

Estimating cell number and cell size
In S. cerevisiae, one way to follow the evolution of population size

is to measure the Optical Densities (OD) at 600 nm, which

depends on the cell number and cell size:

OD600~k|Cell Size|Number of cells

where k in an extinction coefficient. The relation between OD600

and the number of cells was first determined by counting the cells

with a Burker’s cell. Actually this counting includes both living and

dead cells, which do not have the same optical properties. So to

follow the change of the number of living cells in the culture over

time, samples of each culture were taken during the kinetics and

diluted, using the previous counting, to obtain about 100 cells in

100 mL. They were then plated on Petri dishes and incubated at

30uC, and the Colony Forming Units (CFU), i.e. the number of

living cells forming colonies, were counted. For each of the twelve

strains and for each culture medium, the mean cell size (up to the

proportionality constant k) was estimated as the slope of the

regression line of OD600 on the number of living cells. This was

done for the first replication using the model:

ODij~Si|CFUijzeij

where Si is the cell size for the strain-medium combination i (i = 1,

…, 36), j is the time point index, and eij is the residual. We

considered the estimate of Si as characteristic of the strain-medium

combination i, and further used it in the other replications to

estimate the cell numbers as:

Nijk~
1

Si

ODijk

where k is the index of the replication, i and j having the same

definition as above.

Estimating population dynamics parameters
The changes over time of the estimated living cell number were

analyzed using two population dynamic models, the Logistic model:

Nt~
KN0ert

KzN0 ert{1ð Þ , ð1Þ

and the Gompertz model:

Nt~K
N0

K

� �e{rt

, ð2Þ

where Nt is the population size at time t, K is the carrying capacity

(equivalent to the maximum population size), N0 is the initial

population size and r is the intrinsic growth rate (equivalent to the

maximum rate of increase of the population, in min21). These two

models differ by the way they incorporate competition between

individuals. Fitting the growth kinetics with these models allowed

estimating K and r. The estimates from the Logistic model were used

because this model best fitted the experimental data, as attested by

the lowest residual sums of squares (data not shown). For each

replication and each strain-medium combination, about 15 time

points were used to estimate r and K.

In each medium, the relative carrying capacity of each strain

was calculated as the ratio of its carrying capacity to the highest

strain’s carrying capacity in this medium. The maximum relative

carrying capacity is thus 1.

Glucose consumption rate
Glucose consumption rate was estimated by following the

evolution of glucose concentration in the medium through time.

These measures were made using an enzymatic kit (rBiopharm)

composed of the two enzymes hexokinase and glucose-6-

phosphate dehydrogenase, which catalyze the following reactions:

D-GlucosezATP?Glucose 6-PhosphatezADP

Glucose 6-PhosphatezNADPz?D-Gluconate

6-PhosphatezNADPHzHz

The NADPH formed by this reaction, measured by spectro-

photometry at 365 nm, is stoechiometrically equal to the glucose

consumed over time.

These extracellular glucose concentrations were adjusted to the

Hill equation:

Yt~

a

tn

1

tn
z

1

Tn
50

,

where Yt is the glucose concentration in the medium (g.L21) at

time t, a is the initial glucose concentration, n is the Hill coefficient,

and T50 the time after which the glucose concentration in the

medium is half the initial one. Adjustment of the data to the Hill

equation gives estimates of a, T50 and n.

The glucose consumption rate per cell is given by:

Jt~

d Yt½ �
dt
Nt

,

where
d Yt½ �

dt
is the rate of glucose consumption and Nt the

population size at time t. The glucose consumption rate, reported

to one liter of medium, is expressed in g.min21.cell21.

As differences of glucose consumption rates between strains

were the same over time (tested by regression analysis, data not

shown), we chose to consider only the glucose consumption rate at

the time after which 50% percent of the initial glucose amount has

been consumed. This value is noted JT50.
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Statistical analysis
Variation of each variable among media and strains was

analyzed with a mixed model of analysis of variance:

Zijkl~mzmediumkzoriizBlock(medium)lkzStrain(ori)ij

zmedium�oriikzmedium�Strain(ori)ijkzeijkl ð3Þ

where Z is the variable (r, K or JT50), medium is the medium effect

(k = 1, 2, 3), ori is the industrial origin effect (i = 1, 2, 3),

Block(medium) is the random block effect (experimental repetition)

within culture medium (l = 1, 2, 3, 4), Strain(ori) is the random

strain effect within industrial origin (j = 1, 2, 3, 4), medium*ori (fixed)

and medium*Strain(ori) (random) are interaction effects and e is the

residual error.

For cell size S, as we had only one block we used the following

model of analysis of variance:

Sijk~mzmediumizorijzmedium�oriijzeijk

where medium is the medium effect (i = 1, 2, 3), ori is the industrial

origin effect (j = 1, 2, 3) and medium*ori is the interaction effect.

For each trait, normality of residual distribution was assessed by

a Kolmogorov-Smirnov test, and homogeneity of residual

distributions was studied. For S, K, and JT50, a logarithmic

transformation proved to be necessary to have the residues

distributed normally and homogeneously.

Comparisons of means between industrial origin
The average performances of strains of origins i and i’ in

medium k were compared using the least square estimation of Yik

obtained by averaging the phenotypic value over strains from the

same origin and replications. Least square mean and variance

estimates were obtained from PROC GLM SAS Procedure.

Significance of differences between means was assessed using

Tukey HSD method.

Correlations between traits
The analysis of correlations between traits was carried out on

the trait values averaged over replicates of each strain grown in

each media. We focused on the variability between strains,

neglecting their industrial origin and considering the strain effect

as a random effect.
Total phenotypic correlations (over all media). The

Multivariate ANalysis Of VAriance general model (MANOVA)

is of the kind:

Y ikl , Zikl~mzmediumkzBlock(medium)klzStrainiz

medium�Strainikzeikl :

However, as several effects were confounded (notably Block

(medium), medium, Strain and Strain*medium effects), we decided not to

estimate all variances and covariances components. Instead,

pairwise total phenotypic correlations were studied using Spear-

man’s rank correlations (rs).
Genetic correlations (within each medium). A separate

analysis was conducted in each medium to estimate genetic

correlations. Within each medium the two sources of variation

were Strain and Block effects and the MANOVA model should be:

Y il , Zil~mzStrainizBlocklzeil :

Instead of computing classically the genetic correlations, we

chose to compute correlations between traits from strain mean

values, because this method has been shown to provide more

powerful estimates than the former [53]. However, when

replications were available (r, JT50, K), we checked that the genetic

correlations obtained from a MANOVA (SAS PROC GLM) were

of the same sign and of the same order of magnitude as phenotypic

correlations.
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