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Pulse vaccination, the repeated application of vaccine over a defined age range, is gaining prominence as an effective strategy for
the elimination of infectious diseases. An SIR epidemic model with pulse vaccination and distributed time delay is proposed in
this paper. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact infection-free periodic
solution of the impulsive epidemic system and prove that the infection-free periodic solution is globally attractive if the vaccination
rate is larger enough. Moreover, we show that the disease is uniformly persistent if the vaccination rate is less than some critical
value. The permanence of the model is investigated analytically. Our results indicate that a large pulse vaccination rate is sufficient
for the eradication of the disease.
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1. INTRODUCTION

Mathematical models are very useful and frequently used
nowadays. For example, in [1], the authors used a novel in
vitro pharmacodynamic infection model of tuberculosis by
exposing M. tuberculosis to moxifloxacin with a pharma-
cokinetic half life of decline similar to that encountered in
humans. Then the data obtained from this model were math-
ematically modeled. D’Agata et al. [2] introduced a mathe-
matical model to quantify the contribution of antibiotic ex-
posure and of other modifiable factors to the dissemination
of vancomycin-resistant enterococci (VRE) in the hospital
setting and provided a framework to assist in targeting nec-
essary interventions aimed at limiting the spread of VRE. An
extension of that model that incorporates an environmen-
tal reservoir for VRE was developed in [3]. Different mod-
els, using fuzzy mathematics, applicable in medicine are re-
viewed in [4]. Gao et al. [5] developed a model and a pulse
vaccination strategy, the repeated application of vaccine over
a defined age range. It revealed as an effective strategy for the
elimination of infectious diseases.

In the classical epidemiological model [6–13], a popula-
tion of total size N is divided into S susceptible numbers, I in-
fective numbers, and R recovered numbers. The relation be-
tween these three categories leads to the classical SIR model:

Ṡ(t) = −βS(t)I(t),

İ(t) = −βS(t)I(t)− γI(t),

Ṙ(t) = γI(t),

(1)

where β(> 0) is the infection parameter or the transmission
rate contact, γ(> 0) is the removal parameter giving the rate
at which infectives become immune, and 1/γ is the mean in-
fectious period. The initial population are S(0), I(0) positive,
and R(0) = 0. Obviously, S(0) + I(0) +R(0) = N . It is known
that S(t) + I(t) + R(t) = N is constant. Dividing S, I , and R
by N we may assume that N = 1 without loss of generality.
If death or isolation may occur, R(t) represents all removals
from the population (including immunes, deaths, and iso-
lates). An important parameter is the relative removal rate

c = γ

β
. (2)
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A major outbreak occurs only if the initial number of sus-
ceptibles S(0) > c. This is known as the threshold theorem, c
being such a threshold.

Ma et al. [14] formulate an SIR model with time delay
effected by assuming that the force of infection at time t is
given by

βe−μωS(t − ω)I(t − ω), (3)

where μ > 0 is natural death rate and ω > 0 is a fixed time
during which the infectious agents develop in the vector and
it is only after that time that the infected vector can infect a
susceptible human. That is, ω is the infectious period of the
disease.

Beretta et al. [15] point out that it is more natural to as-
sume that ω is a distributed parameter than a fixed time. It
is, of course, bounded above by some positive finite time “h,”
that is, h is the maximum infectious period. Hence, the force
of infection (3) has to be substituted by

β
∫ h

0
f (s)S(t − s)I(t − s)e−μsds, (4)

where f (s), that is the fraction of vector population in which
the time taken to become infectious is “s”, is assumed to be a
nonnegative function on [0, h]. Mathematically, f : [0, h] →
R +0 square integrable on [0, h] and satisfies

∫ h
0
f (s)ds = 1,

∫ h
0
s f (s)ds < +∞, (5)

where we assume that the parameter ω∗ = ∫ h0 s f (s)ds > 0 is
the average incubation time in the vector to become infec-
tious.

When natural birth, natural death, and the force of infec-
tion (4) are considered, we are yielded to an SIR model with
distributed time delay:

Ṡ(t) = μ− β
∫ h

0
f (s)S(t − s)I(t − s)e−μsds− μS(t),

İ(t) = β
∫ h

0
f (s)S(t − s)I(t − s)e−μsds− μI(t)− γI(t),

Ṙ(t) = γI(t)− μR(t).
(6)

Here, f (s) satisfies (5). It is assumed that the natural birth
rate is equal to the natural death rate and all newborns are
susceptible. μ(> 0) denote the natural birth rate and death
rate, 1/μ is the mean life expectancy. The total population
size N(t) = S(t) + I(t) + R(t) satisfies Ṅ(t) = μ(1 − N(t))
and N(t)→1 as t→∞. Hence, model (6) can be regarded as
a model with a total constant population. Consequently, we
assume that N(t) = 1 for all t ≥ 0. Obviously, R0 = β/(μ+ γ)
is the reproduction number of the system (6) without time
delay. That is, if R0 > 1, then on average, each infected indi-
vidual infects more than one other member of the popula-
tion and a self-sustaining group of infectious individuals will
propagate.

For the sake of simplicity, we put in dimensionless form
the model equations (6) by redefining a new nondimensional
time t = (μ + γ)t. This leads to the dimensionable equations

Ṡ(t) = μ− R0

∫ h
0
f (s)S(t − s)I(t − s)e−μsds− μS(t),

İ(t) = R0

∫ h
0
f (s)S(t − s)I(t − s)e−μsds− I(t),

Ṙ(t) = γI(t)− μR(t),

(7)

where

μ = μ

μ + γ
, R0 = β

μ + γ
, h = (μ + γ)h, γ = γ

μ + γ
(8)

are the dimensionless parameters. For convenience, we re-
move the bars in the following discussion. Thus, the model
(7) yields

Ṡ(t) = μ− R0

∫ h
0
f (s)S(t − s)I(t − s)e−μsds− μS(t),

İ(t) = R0

∫ h
0
f (s)S(t − s)I(t − s)e−μsds− I(t),

Ṙ(t) = γI(t)− μR(t).

(9)

Infectious diseases have tremendous influence on human
life. Every year millions of human beings suffer or die of var-
ious infectious diseases. Controlling infectious diseases has
been an increasingly complex issue in recent years. A strat-
egy to control infectious diseases is vaccination. One can in-
vestigate under what conditions a given agent can invade a
(partially) vaccinated population, that is, how large a frac-
tion of the population we have to keep vaccinated in order
to prevent the agent from establishing. However, in practi-
cal situations one usually has to start a vaccination campaign
when the agent has become endemic. In such a case, will
the vaccination effort be sufficient to eliminate? What is the
adequate strategy? Constant vaccination is the conventional
strategy. Recently, a new strategy denominated pulse vac-
cination strategy (PVS) has been revealed adequate against
poliomyelitis and measles. The effectiveness of constant and
pulse vaccination policies are compared theoretically and nu-
merically in [16].

A usual recommendation for measles immunization is to
apply a first vaccination dose to all infants of 15 months of
age and a second dose at six years. However, it was hypothe-
sized [17] that measles epidemics can be more efficiently con-
trolled when the natural temporal process of the epidemics is
antagonized by another temporal process, that is, by a vacci-
nation effort that is pulsed in time rather than uniform and
continuous. We call this policy pulse vaccination and it was
shown theoretically that if children aged one to seven years
are immunized once every five years, that may suffice for pre-
venting the epidemics [18].

The strategy of pulse vaccination (PVS) consists of peri-
odical repetitions of impulsive vaccinations in a population,
on all the age cohorts [5, 19–21]. At each vaccination time, a
constant fraction of the susceptible population is vaccinated.
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Some theoretical considerations, practical advantages, and
examples of the PVS are presented in [5, 21–23]. For exam-
ple, some successes against poliomyelitis and measles have
been attributed to repeated PVS [24]. As indicated in [25],
models have clearly shown the advantages of a mass cam-
paign approach in rapidly achieving high measles population
immunity and interrupting measles virus circulation.

Further, we consider PVS in model (9) and assume that
τ (>0) denotes the period of pulsing and θ (0 < θ < 1) is
the proportion of those vaccinated successfully. Incorporat-
ing pulse vaccination, we propose an SIR model with pulse
vaccination and distributed time delay:

Ṡ(t) = μ− R0

∫ h
0
f (s)S(t − s)I(t − s)e−μsds− μS(t),

İ(t) = R0

∫ h
0
f (s)S(t − s)I(t − s)e−μsds− I(t),

Ṙ(t) = γI(t)− μR(t),

t �=kτ,

S
(
t+
) = (1− θ)S(t),

I
(
t+
) = I(t),

R
(
t+
) = R(t) + θS(t),

t = kτ.

(10)

Note that the variable R do not appear in the first and
second equations of system (10). This allows us to attack (10)
by studying the subsystem

Ṡ(t)=μ−R0

∫ h
0
f (s)S(t−s)I(t−s)e−μsds−μS(t),

İ(t)=R0

∫ h
0
f (s)S(t − s)I(t − s)e−μsds− I(t),

t �=kτ,

S
(
t+
) = (1− θ)S(t),

I
(
t+
) = I(t),

t = kτ.

(11)

The initial conditions for (11) are(
φ1(ζ),φ2(ζ)

) ∈ C+ = C
(
[−h, 0],R2

+

)
, φi(0) > 0, i = 1, 2.

(12)
From biological considerations, we discuss system (11) in

the closed set

Ω = {(S, I) ∈ R2
+ | 0 ≤ S, I ≤ 1

}
. (13)

It can be verified that Ω is positively invariant with respect to
(11), that is, any solution starting in Ω remains in Ω in the
future.

Most of the research literature on epidemiologic mod-
els are established by ODE, delayed ODE, or impulsive ODE
[26–28]. However, impulsive equations with distributed time
delay have seldom been studied by authors. The main pur-
pose of this paper is to analyze the impulsive model with dis-
tributed time delay (11) and establish sufficient condition so
that the disease dies out. The second purpose of this paper
is to investigate the role of distributed time delay in disease
transmission and show that, under appropriate conditions,
the disease is uniformly persistent, that is, there is a positive
constant q (independent of the choice of the solution) such
that I(t) ≥ q for sufficiently large t.

2. DEFINITIONS AND PRELIMINARIES

In the following, we introduce some definitions and state two
results which will be useful in subsequent sections.

Definition 1. The solution (S(t), I(t)) of system (11) is said
to be globally attractive if every solution of system (11) tends
to (S(t), I(t)) as t→∞.

Definition 2. System (11) is said to be uniformly persistent if
there is an η > 0 (independent of the initial conditions) such
that every solution (S(t), I(t)) with initial conditions (12) of
system (11) satisfies

lim inf
t→∞ S(t) ≥ η, lim inf

t→∞ I(t) ≥ η. (14)

Definition 3. System (11) is said to be permanent if there ex-
ists a compact region Ω0 ∈ intΩ such that every solution of
system (11) with initial conditions (12) will eventually enter
and remain in region Ω0.

We now present a technical result.

Lemma 1. Consider the following impulsive system:

u̇(t) = a− bu(t), t �=kτ,

u
(
t+
) = (1− θ)u(t), t = kτ,

(15)

where a > 0, b > 0, and 0 < θ < 1. Then there exists a unique
positive periodic solution of system (15):

ũe(t) = a

b
+
(
u∗ − a

b

)
e−b(t−kτ), kτ < t ≤ (k + 1)τ,

(16)

which is globally asymptotically stable, where u∗ = (a/b)((1−
θ)(1− e−bτ)/(1− (1− θ)e−bτ)).

Proof. Integrate and solve the first equation of system (15)
between pulses

u(t) = a

b
+
(
u(kτ)− a

b

)
e−b(t−kτ), kτ < t ≤ (k + 1)τ,

(17)

where u(kτ) is the initial value at time kτ. Using the second
equation of system (15), we deduce the stroboscopic map
such that

u
(
(k + 1)τ

) = (1− θ)
[
a

b
+
(
u(kτ)− a

b

)
e−bτ

]
� f

(
u(kτ)

)
,

(18)

where f (u) = (1 − θ)[a/b + (u − a/b)e−bτ]. It is easy to
know that system (18) has unique positive equilibrium u∗ =
(a/b)((1 − θ)(1 − e−bτ)/(1 − (1 − θ)e−bτ)). Since f (u) is a
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straight line with slope less than 1, we obtain that u∗ is glob-
ally asymptotically stable. It implies that the corresponding
periodic solution of system (15)

ũe(t) = a

b
+
(
u∗ − a

b

)
e−b(t−kτ), kτ < t ≤ (k + 1)τ,

(19)

is globally asymptotically stable. The proof of Lemma 1 is
complete.

Lemma 2 (Beretta and Takeuchi [29]). Consider the following
equation:

ẏ(t) = −a1y(t) + a2

∫ h
0
f (s)y(t − s)ds, (20)

where a1, a2,h > 0, and f (s) satisfies (5). Then the trivial so-
lution y = 0 of system (20) is globally asymptotically stable if
and only if a2 < a1.

3. MAIN RESULTS

In this section, we first demonstrate the existence of the
infection-free periodic solution, in which infectious individ-
uals are entirely absent from the population permanently,
that is, I(t) = 0 for all t ≥ 0. Under this condition, the growth
of susceptible individuals must satisfy

Ṡ(t) = μ− μS(t), t �=kτ,

S
(
t+
) = (1− θ)S(t), t = kτ,

(21)

We show below that the susceptible population S oscillates
with period τ, in synchronization with the periodic pulse
vaccination.

According to Lemma 1, we know that periodic solution
of system (21)

S̃e(t) = 1− θ

1− (1− θ)e−μτ
e−μ(t−kτ), kτ < t ≤ (k + 1)τ,

(22)

is globally asymptotically stable.

Theorem 1. The infection-free periodic solution (S̃e(t), 0) of
system (11) is globally attractive provided that R∗ < 1, where

R∗ � R0
1− e−μτ

1− (1− θ)e−μτ
. (23)

The proof will be given in the appendix.
Denote

θ∗ = (R0 − 1
)(
eμτ − 1

)
, τ∗ = 1

μ
ln
(

1 +
θ

R0 − 1

)
.

(24)

According to Theorem 1, we can easily obtain the follow-
ing results.

Corollary 1. If R0 ≤ 1, then the infection-free periodic solu-
tion (S̃e(t), 0) is globally attractive.

Corollary 2. If R0 > 1, then the infection-free periodic solution
(S̃e(t), 0) is globally attractive provided that θ > θ∗ or τ < τ∗.

Theorem 1 determines the global attractivity of (11) in
Ω for the case R∗ < 1. Its epidemiological implication is that
the infectious population vanishes, so the disease will die out.

From Corollaries 1 and 2 we know, in order to success-
fully prevent disease, the vaccination proportion should be
large enough. This would lead to more difficulties and costs
to implement vaccination for many people.

In the following, we say the disease is endemic if the in-
fectious population persists above a certain positive level for
sufficiently large time.

Theorem 2. Suppose that R∗ � (1 − θ)e−μhR∗ > 1. Then
there exists a positive constant q such that each positive solution
(S(t), I(t)) of system (11) satisfies

I(t) ≥ q, for t large enough. (25)

The proof will be given in the appendix.
Denote

θ∗ =
(
R0e−μh − 1

)(
eμτ − 1

)
R0e−μh

(
eμτ − 1

)
+ 1

,

τ∗ = 1
μ

ln
(

1 +
θ

R0e−μh(1− θ)− 1

)
,

h∗ = 1
μ

ln
(
R0(1− θ)

(
1− e−μτ)

1− (1− θ)e−μτ

)
.

(26)

From Theorem 2, we also easily obtain the following re-
sults.

Corollary 3. If R0e−μh > 1, the disease will be endemic pro-
vided that θ < θ∗.

Corollary 4. If R0e−μh(1 − θ) > 1, then the disease will be
endemic provided that τ > τ∗.

Corollary 5. If R0(1 − θ)(1 − e−μτ) > 1 − (1 − θ)e−μτ , then
the disease will be endemic provided that h < h∗.

Theorem 3. Suppose R∗ > 1. Then system (11) is permanent
provided that μ > R0.

The proof will be given in the appendix.
In the following, we will study the influence of pulse vac-

cination rate (with θ), period of pulsing (with τ), and so on,
on the system (11) by numerical analysis. From Table 1, we
can observe that a large pulse vaccination rate or a short pe-
riod of pulsing is sufficient condition for the global attractiv-
ity of infection-free periodic solution (S̃e(t), 0). From the last
line of Table 1, we can also observe that when pulse vaccina-
tion rate is very large, although h = 0, the epidemic disease
cannot be permanent yet. This implies that pulse vaccination
brings determinant effect on the dynamics behaviors of the
model.

4. DISCUSSION

We have analyzed the SIR epidemic model with pulse vacci-
nation and distributed time delay. Two thresholds have been
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Table 1: The effect of parameters θ, τ, R0, μ and h on the global attractivity of the infection-free periodic solution and the permanence of
epidemic disease.

θ τ R0 μ h R∗ R∗ Attractivity Permanence

0.6 1 3 0.2 0.5 0.8086 0.2927 Yes No

0.1 1 3 0.2 0.5 2.067 1.6829 No Yes

0.6 4 3 0.2 0.5 2.0140 0.7289 Indeterminacy Indeterminacy

0.6 20 3 0.2 0.5 2.9667 1.0738 No Yes

0.1 1 3 0.2 4 2.067 0.8357 Indeterminacy Indeterminacy

0.6 1 3 0.2 0 0.8086 0.3235 Yes No

established, one for global stability of the infectious-free so-
lution and one for persistence of the endemic solution.

From Corollaries 2 and 3, we obtain that if R0e−μh > 1,
the disease dies out when θ > θ∗ whereas the disease persists
when θ < θ∗. There is a gap between θ∗ and θ∗. The rea-
son for this gap is that the thresholds are given in concrete
terms in this paper. Does a sharp threshold condition exist?
We think the sharp threshold condition exists, but can pre-
sumably only be given in abstract terms. Consider the linear
DDE

İ(t) = R0

∫ h
0
f (s)S̃e(t − s)I(t − s)e−μsds− I(t), (27)

where S̃e(t) is the τ-periodic disease free state under the vac-
cination effort θ. The solutions of this linear equation are as-
sociated with a compact positive operator on C([−h, 0]). Let
r be the spectral radius of this operator. The disease dies out
if r < 1 and persists if r > 1. In terms of the vaccination effort

θ this means that, if R0 > 1, there is a θ̂ ∈ (0, 1) such that the
disease dies out if θ > θ̂ and the disease persists if θ < θ̂. θ̂
is the unique vaccination proportion θ for which (27) has a
τ-periodic positive solution. θ∗ < θ∗ given in the paper are

lower and upper estimates of θ̂. The spectral radius of this
operator r and its threshold condition will be considered in
our future research.

Moreover, according to Theorems 1 and 2, we can choose
the vaccination period (with τ) and increase the proportion
(with θ) of those vaccinated successfully such that R∗ < 1
in order to prevent the epidemic disease from generating en-
demic.

From Figures 1 and 2, we can observe the following.
(i) R∗ and R∗ are inversely proportional to θ value and

directly proportional to τ value and R0 value, which implies
that pulse vaccination measures the inhibition effect from the
behavioral change of the susceptible when they transfer to the
infectious class (I).

(ii) R∗ is a directly proportional to μ value, which im-
plies that the natural birth or death rate measures the inhibi-
tion effect from the behavioral change of the susceptible class
(with S) when it moves into the infectious class (I).

(iii) R∗ is inversely proportional to h value, which implies
that the maximum infectious period of the disease measures
the inhibition effect from the behavioral change of the sus-
ceptible class (with S) when it moves into the infectious class
(I).

(iv) There is a value μ∗ such that R∗ is directly propor-
tional to μ when μ < μ∗ and is inversely proportional to μ
when μ > μ∗. Therefore the larger death rate is sufficient
for the global attractivity of infectionCfree periodic solution
(S̃e(t), 0). It is easy to verify. In fact, we can calculate the
derivative of R∗ with respect to μ

dR∗
dμ

= (1− θ)e−μhR0[
1− (1− θ)e−μτ

]2 g(μ), (28)

where g(μ) = θτe−μτ−h(1−e−μτ)(1−(1−θ)e−μτ).Obviously,
g′(μ) < 0 and g(0) > 0, limμ→+∞g(μ) < 0. Hence, there exists
a μ∗ such that dR∗/dμ > 0 for μ ∈ (0,μ∗), whereas dR∗ /dμ <
0 for μ ∈ (μ∗, +∞).

Epidemic models with time delays have received much
attention since delays can often cause some complicated dy-
namical behaviors. Delays in many models can destabilize
an equilibrium and thus lead to periodic solutions by Hopf
bifurcation [30–32]. It is well known that periodic forcing
can drive SIR and SEIR models into a behavior which looks
chaotic [33, 34].

The impulsive model with distributed time delay (11)
will be analyzed, in particular paying attention to the follow-
ing points:

(i) the global asymptotic stability for SIR model with
pulse vaccination and distributed time delay;

(ii) the behavior of the model when an insufficient level
of people undergo the vaccination: bifurcation and chaotic
solutions;

(iii) whether periodic or pulse vaccination does a better
job than constant vaccination at the same average value.

APPENDIX

Proof of Theorem 1. Since R∗ < 1, we can choose ε0 > 0 suffi-
ciently small such that

R0

(
1− e−μτ

1− (1− θ)e−μτ
+ ε0

)
< 1. (A.1)

It follows from the first equation of system (11) that
Ṡ(t) ≤ μ−μS(t). Thus we consider the comparison impulsive
differential system,

ẋ(t) = μ− μx(t), t �=kτ,

x
(
t+
) = (1− θ)x(t), t = kτ.

(A.2)
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Figure 1: The relationship between the parameters and R∗: (a) “θ − R∗,” (b) “τ − R∗,” (c) “μ− R∗,” (d) “R0 − R∗.”

In view of (21), we obtain that the periodic solution of
system (A.2), that is, x̃e(t) is globally asymptotically stable,
and have x̃e(t) = S̃e(t).

Let (S(t), I(t)) be the solution of system (11) with initial
values (12) and S(0+) = S0 > 0, and let x(t) be the solution
of system (A.2) with initial value x(0+) = S0. By the com-
parison theorem for impulsive differential equation [35, 36],
there exists an integer k1 > 0 such that

S(t) < x(t) < S̃e(t) + ε0 ≤ 1− e−μτ
1− (1− θ)e−μτ

+ ε0 � δ,

kτ < t ≤ (k + 1)τ, k > k1.
(A.3)

Further, from the second equation of system (11), we know
that (A.3) implies

İ(t) ≤ R0δ
∫ h

0
f (s)I(t − s)ds− I(t), t > kτ + h, k > k1.

(A.4)

Consider the following comparison system:

ẏ(t) = R0δ
∫ h

0
f (s)y(t − s)ds− y(t), t > kτ + h, k > k1.

(A.5)

From (A.1), we have R0δ < 1. According to Lemma 2, we
have limt→∞y(t) = 0.

Let (S(t), I(t)) be the solution of system (11) with initial
values (12) and I(ζ) = ϕ(ζ) > 0 (ζ ∈ [−h, 0]), and let y(t) be
the solution of system (A.5) with initial value y(ζ) = ϕ(ζ) >
0 (ζ ∈ [−h, 0]). By the comparison theorem in differential
equation, we have limt→∞I(t) ≤ limt→∞y(t) = 0. Incorporat-
ing into the positivity of I(t), we know that limt→∞I(t) = 0.
Therefore, for any ε1 > 0 (sufficiently small), there exists an
integer k2 > k1 (where k2τ > k1τ + h) such that I(t) < ε1 for
all t > k2τ.

From the first equation of system (11), we have

Ṡ(t) ≥ μ− R0ε1 − μS(t), for t > k2τ + h. (A.6)

Consider comparison impulsive system for t > k2τ + h and
k > k2,

ż(t) = μ− R0ε1 − μz(t), t �=kτ,

z
(
t+
) = (1− θ)z(t), t = kτ.

(A.7)
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Figure 2: The relationship between the parameters and R∗: (a) “θ − R∗,” (b) “τ − R∗,” (c) “μ− R∗,” (d) “R0 − R∗,” (e) “h− R∗.”

By Lemma 1, we have the unique periodic solution of system
(A.7),

z̃e(t) = μ− R0ε1

μ
+
(
z∗ − μ− R0ε1

μ

)
e−μ(t−kτ),

kτ < t ≤ (k + 1)τ,
(A.8)

which is globally asymptotically stable, where z∗ = ((μ −
R0ε1)/μ)((1− θ)(1− e−μτ)/(1− (1− θ)e−μτ)).

Further, in view of the comparison theorem in impulsive
differential equation, there exists an integer k3 > k2 such that
k3τ > k2τ + h and

S(t) > z̃e(t)− ε1, kτ < t ≤ (k + 1)τ, k > k3.

(A.9)

Because ε0 and ε1 are arbitrary small, it follows from
(A.3) and (A.9) that limt→∞S(t) = S̃e(t). Therefore, the
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infection-free solution (S̃e(t), 0) of system (11) is globally at-
tractive. The proof of Theorem 1 is complete.

Proof of Theorem 2. Note that the second equation of (11)
can be rewritten as

İ(t) = R0

∫ h
0
f (s)S(t)I(t)e−μsds− I(t)

−R0

∫ h
0
f (s)e−μs

[
S(t)I(t)− S(t − s)I(t − s)]ds

= I(t)
(
R0S(t)

∫ h
0
f (s)e−μsds− 1

)

− R0
d

dt

∫ h
0
f (s)e−μs

∫ t
t−s
S(u)I(u)duds.

(A.10)

Let us consider any positive solution (S(t), I(t)) of system
(11). According to this solution, we define

V(t) = I(t) + R0

∫ h
0
f (s)e−μs

∫ t
t−s
S(u)I(u)duds. (A.11)

According to (A.10), we calculate the derivative of V along
the solutions of (11),

V (̇t) = I(t)
(
R0S(t)

∫ h
0
f (s)e−μsds− 1

)

≥ I(t)
(
R0e

−μhS(t)− 1
)
.

(A.12)

Denote

I∗� μ

R0

[
1− eμh

(1− θ)R∗

]
= μ

R0

[
1− eμh

R0

1− (1− θ)e−μτ

(1− θ)
(
1− e−μτ)

]
.

(A.13)

It is easy to see that I∗ > 0 if R∗ > 1. Since R∗ > 1, we easily
see that there exists sufficiently small ε > 0 such that

R0e
−μh
(
μ− R0I∗

μ

(1− θ)
(
1− e−μτ)

1− (1− θ)e−μτ
− ε
)
> 1. (A.14)

We claim that for any t0 > 0, it is impossible that I(t) < I∗

for all t ≥ t0. Suppose that the claim is not valid. Then there
is a t0 > 0 such that I(t) < I∗ for all t ≥ t0. It follows from the
first equation of (11) that Ṡ(t) > (μ − R0I∗) − μS(t), for t ≥
t0 + h. Consider the following comparison impulsive system
for t ≥ t0 + h:

v̇(t) = (μ− R0I
∗)− μv(t), t �=kτ,

v(t+) = (1− θ)v(t), t = kτ.
(A.15)

By Lemma 1, we obtain that the unique positive periodic so-
lution of (A.15)

ṽe(t) = μ− R0I∗

μ
+
(
v∗ − μ− R0I∗

μ

)
e−μ(t−kτ),

kτ < t ≤ (k + 1)τ,
(A.16)

is globally asymptotically stable, where v∗ = ((μ − R0I∗)/
μ)((1− θ)(1− e−μτ)/(1− (1− θ)e−μτ)).

In view of comparison theorem for impulsive differen-
tial equation, there exists t1 (> t0 + h) such that the following
inequality holds for t ≥ t1:

S(t) > ṽe(t)− ε > v∗ − ε � σ. (A.17)

From (A.14), we have R0e−μhσ > 1. By (A.12) and (A.17),
we have

V˙ (t) > I(t)
(
R0e

−μhσ − 1
)
, for t ≥ t1. (A.18)

Set Il = mint∈[t1, t1+h]I(t). We will show that I(t) ≥ Il for
all t ≥ t1. Suppose the contrary. Then there is a T0 ≥ 0 such
that I(t) ≥ Il for t1 ≤ t ≤ t1 + h + T0, I(t1 + h + T0) = Il, and
İ(t1 + h + T0) ≤ 0. However, the second equation of system
(11) and (A.17) imply that

İ
(
t1 + h + T0

) ≥
(
R0

∫ h
0
f (s)e−μsS

(
t1 + h + T0 − s

)
ds− 1

)
Il

>
(
R0e

−μhσ − 1
)
Il > 0.

(A.19)

This is a contradiction. Thus, I(t) ≥ Il for all t ≥ t1. As a
consequence, (A.18) leads to V (̇t) > (R0e−μhσ − 1)I1 for t ≥
t1, which implies that as t→∞, V(t)→∞. This contradicts
V(t) ≤ 1 + R0h. Hence, the claim is proved.

Hence, we have to consider two cases. First, I(t) ≥ I∗

for t large enough. Second, I(t) oscillates about I∗ for t large
enough. Define

q = min
{
I∗

2
, I∗e−h

}
. (A.20)

We show that I(t) ≥ q for t large enough. The conclusion is
evident in the first case. For the second case, let t∗ > 0 and
ξ > 0 satisfy

I
(
t∗
) = I

(
t∗ + ξ

) = I∗,

I(t) < I∗, for t∗ < t < t∗ + ξ,
(A.21)

where t∗ is sufficiently large such that

S(t) > σ , for t∗ < t < t∗ + ξ. (A.22)

I(t) is uniformly continuous since the positive solutions
of (11) are ultimately bounded and I(t) is not affected by im-
pulses. Hence, there is a T (0 < T < h, and T is independent
of the choice of t∗) such that I(t) > I∗/2 for t∗ ≤ t ≤ t∗ + T.
If ξ ≤ T , there is nothing to prove. Let us consider the case
where T < ξ ≤ h. Since İ(t) > −I(t) and I(t∗) = I∗, it is
obvious that I(t) ≥ q for t∗ < t < t∗ + ξ. If ξ > h, by the sec-
ond equation of (11), we obtain I(t) ≥ q for t ∈ [t∗, t∗ + h].
Then, proceeding exactly as in the proof for the above, we see
that I(t) ≥ q for t ∈ [t∗+h, t∗+ξ]. Since this kind of interval
[t∗, t∗ + ξ] is chosen in an arbitrary way (we only need t∗ to
be large), we conclude that I(t) ≥ q for t large enough in the
second case. In view of our above discussions, the choice of q
is independent of the positive solution, and we have proved
that any positive solution of (11) satisfies I(t) ≥ q for t large
enough. The proof of Theorem 2 is complete.
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Proof of Theorem 3. Denote (S(t), I(t)) as any solution of sys-
tem (11). From the first equation of system (11), we have

Ṡ(t) ≥ μ− R0 − μS(t). (A.23)

By the similar arguments as those in the proof of
Theorem 1, we have that

lim
t→∞ S(t) ≥ p, (A.24)

where p = ((μ−R0)/μ)((1−θ)(1−e−μτ)/(1−(1−θ)e−μτ))−
ε > 0, ε > 0 is sufficiently small.

We letΩ0 = {(S, I)|p ≤ S ≤ 1, q ≤ I ≤ 1}. By Theorem 2
and above discussions, we know that the set Ω0 is a global
attractor in Ω, and of course, every solution of system (11)
with initial conditions (12) will eventually enter and remain
in regionΩ0. Therefore, system (11) is permanent. The proof
of Theorem 3 is complete.
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