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Natural variation in gene expression (expression traits or e-traits) is increasingly used for the discovery of genes controlling

traits. An important question is whether a particular e-trait is correlated with a phenotypic trait. Here, we examined the

correlations between phenotypic traits and e-traits among 10 Arabidopsis thaliana accessions. We studied defense against

Pseudomonas syringae pv tomato DC3000 (Pst), with a focus on resistance gene–mediated resistance triggered by the

type III effector protein AvrRpt2. As phenotypic traits, we measured growth of the bacteria and extent of the hypersensitive

response (HR) as measured by electrolyte leakage. Genetic variation among accessions affected growth of Pst both with

(Pst avrRpt2) and without (Pst) the AvrRpt2 effector. Variation in HR was not correlated with variation in bacterial growth. We

also collected gene expression profiles 6 h after mock and Pst avrRpt2 inoculation using a custom microarray. Clusters of

genes whose expression levels are correlated with bacterial growth or electrolyte leakage were identified. Thus, we demon-

strated that variation in gene expression profiles of Arabidopsis accessions collected at one time point under one experi-

mental condition has the power to explain variation in phenotypic responses to pathogen attack.

INTRODUCTION

Genetic variation among wild-type populations of plants is an

important source of information about biological traits. The

information potential of these natural accessions has long been

recognized and is increasingly exploited to uncover genetic loci

controlling biological traits, for example, using quantitative trait

loci (QTL) analysis (Perchepied et al., 2006). Similarly, gene

expression can be used to dissect complex traits in combination

with natural variation, for example, by expression QTL (eQTL)

analyses in which the expression level of a gene is considered as

a trait (expression trait or e-trait) (Schadt et al., 2003; Keurentjes

et al., 2007). Gene expression profiling technology is usually

used for study of e-traits and eQTLs because it allows simulta-

neous detection and scoring of numerous e-traits and, conse-

quently, numerous eQTLs. For use of e-traits and eQTLs to be

successful for discovery of genetic loci controlling biological

traits, it is essential to understand (1) how genotypic variation is

correlated with variation in gene expression profiles and (2) how

variation in gene expression profiles is correlated with pheno-

typic variation. Recently, the correlation between genotypic

variation and variation in gene expression profiles was studied

in detail in seven Arabidopsis thaliana accessions (Kliebenstein

et al., 2006). Here, we investigate the correlation between varia-

tion in gene expression profiles and phenotypic variation among

10 Arabidopsis accessions.

We investigated natural variation in the context of the plant

response to pathogen attack. During early stages of infection,

plants recognize molecules that are common among large

groups of microbes, called microbe-associated molecular pat-

terns (MAMPs), as signals of pathogen attack and turn on de-

fense responses (Jones and Dangl, 2006). This MAMP-triggered

defense is the cause of basal resistance, which is considered to

be the first layer of inducible plant resistance. However, success-

ful pathogens have acquired effectors that interfere with MAMP-

triggered defense and overcome basal resistance. For example,

the Pseudomonas syringae effectors AvrRpt2 and AvrRpm1 are

known to perturb MAMP-triggered defense by modifying the

Arabidopsis protein RIN4 (Kim et al., 2005). The next layer of plant

defense is initiated by specific recognition by plant resistance (R)

proteins of particular pathogen effectors or biochemical changes

caused by effectors (Jones and Dangl, 2006). This recognition

leads to rapid induction of defense responses and the hypersen-

sitive response (HR). R gene–mediated resistance is typically very

effective. Many defense responses are induced by both basal

and R gene–mediated resistance, while others are specific to one

or the other (Tao et al., 2003).

We focused on resistance mediated by the Arabidopsis R gene

RPS2 against infection by the bacterial pathogen P. syringae pv

tomato DC3000 (Pst) carrying the type III effector gene avrRpt2

(Pst avrRpt2). The interaction between the products of the
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avrRpt2 gene and the RPS2 resistance gene is one of the best-

studied examples of R gene–mediated resistance (Axtell and

Staskawicz, 2003; Mackey et al., 2003). It is clear that many

genes are involved in the responses downstream of RPS2 (Tao

et al., 2003). Thus, as long as the genotypes studied contain

functional RPS2, this interaction can be considered a complex

trait. Additionally, RPS2-mediated resistance is accompanied by

dramatic changes in expression levels of many genes. This latter

characteristic facilitates the identification of many potential can-

didate genes influencing the trait and therefore makes this an

ideal system for studying natural variation in complex traits using

gene expression profiling.

We analyzed gene expression profiles of plants infected with

Pst avrRpt2 and sampled at a single time point. We found varia-

tion in these expression profiles among accessions. We also

observed variation in phenotypes, such as growth of Pst avrRpt2,

growth of Pst, and extent of the HR. Remarkably, for each of

these phenotypes, we could identify subsets of gene expression

profiles that were well correlated with phenotype. This finding

indicates that the loci that control e-traits could also control bio-

logical traits and justifies the eQTL approach for discovery of

QTLs that control important traits.

RESULTS

Phenotypic Characterization 1: Arabidopsis Accessions

Show Variation in Resistance against Pst and Pst avrRpt2

We analyzed variation in growth, defined as the number of colony-

forming units (cfu) of bacteria present in 1 cm2 of Arabidopsis

leaf tissue of Pst avrRpt2 in 10 different Arabidopsis accessions.

The accessions were chosen based on different geographic

and climatic origins (see Supplemental Figure 1 online) and well

represent known genetic variation among Arabidopsis acces-

sions (Nordborg et al., 2005; Kliebenstein et al., 2006). As a

control, we also assessed the growth of Pst avrRpt2 in the rps2

mutant. This mutant carries the null rps2-101C allele in the

Columbia (Col-0) background (Mindrinos et al., 1994). Among

the 45 possible pairwise comparisons among accessions, 39

showed significant differences in growth of Pst avrRpt2 (q < 0.05;

Table 1). The rps2 mutant supported the highest growth of Pst

avrRpt2 (Figure 1). Thus, there is considerable quantitative varia-

tion in growth of Pst avrRpt2 among these 10 accessions (Figure

1, Table 1). Broad-sense heritability indicates what proportion of

the phenotypic variation (in this case, variation in the bacterial

growth) can be explained by the genotypic variation (in this case,

the accession difference). The remaining portion of the pheno-

typic variation could be caused by some other source of variation,

such as uncontrolled environmental difference among repli-

cated experiments. The broad-sense heritability of the resistance

against Pst avrRpt2 1 and 2 d after inoculation was 58 and 70%,

respectively (see Supplemental Table 1 online). Thus, a large part

of the observed variation in growth of Pst avrRpt2 could be ex-

plained by genetic differences among Arabidopsis accessions.

To determine whether the variation in growth of Pst avrRpt2 is

due to variation in AvrRpt2-induced responses, such as R gene–

mediated resistance and virulence effects of AvrRpt2, we also

analyzed growth of Pst without avrRpt2. Again, a large part of the

observed variation in growth of Pst could be attributed to genetic

differences among Arabidopsis accessions, as the broad-sense

heritabilities were 50 and 43% 1 and 2 d after inoculation, re-

spectively (see Supplemental Table 1 online). However, due to

larger variation within the accessions, the broad-sense herita-

bility was lower than that of resistance against Pst avrRpt2.

To determine which accessions show AvrRpt2-induced resis-

tance, we compared the growth of these two bacterial strains

in each accession. Two days after inoculation, all accessions

except Van-0 showed more growth of Pst than Pst avrRpt2 (q <

0.05), demonstrating that in these accessions AvrRpt2 triggers R

gene–mediated resistance. By contrast, Pst avrRpt2 grew better

than Pst in the rps2 mutant, demonstrating the contribution of

AvrRpt2 to virulence in Col-0 plants that do not recognize

AvrRpt2 (Kim et al., 2005). Van-0 supported growth of both

strains to similar levels, indicating that in this accession AvrRpt2

does not trigger R gene–mediated resistance (Figure 1).

To investigate the differences in resistance to Pst avrRpt2

among accessions, we used pairwise comparisons to test for

differences in growth of Pst, differences in growth of Pst avrRpt2,

and differences in Dcfu, the log ratio of growth between Pst and

Pst avrRpt2 (Figure 1, Table 1). We envision several classes of

mechanisms that together explain resistance to Pst and Pst

avrRpt2. Class I includes basal resistance mechanisms that be-

come redundant when AvrRpt2-induced resistance is triggered.

Differences in these mechanisms among accessions should

affect Pst growth but not the growth of Pst avrRpt2. If Class I

mechanisms are the only difference between two accessions,

both Pst growth and Dcfu would be different, but growth of Pst

avrRpt2 would not. Class II includes basal resistance mecha-

nisms that do not become redundant when AvrRpt2-induced

resistance is triggered. Differences in these mechanisms should

affect the growth of Pst and Pst avrRpt2 equally. If Class II

mechanisms are the only difference between accessions, growth

of both Pst and Pst avrRpt2 would be different, but Dcfu would

not. Class III includes AvrRpt2-specific mechanisms. Differences

in these mechanisms should affect the growth of Pst avrRpt2 but

not the growth of Pst. If Class III mechanisms are the only dif-

ference between accessions, both growth of Pst avrRpt2 and

Dcfu would be different, but growth of Pst would not. If all three

measurements (growth of Pst, growth of Pst avrRpt2, and Dcfu)

are different between accessions, either (1) more than one class

of mechanisms are different or (2) basal resistance and AvrRpt2-

induced responses share signaling pathways to induce a com-

mon set of responses to different extents and the accessions

differ in some of these shared pathways. We cannot distinguish

these two possibilities. From the 36 possible pairwise compar-

isons among the nine accessions that showed AvrRpt2-induced

resistance (Van-0 excluded), three pairwise comparisons showed

differences only in Class I mechanisms (P [Pst avrRpt2] > 0.05,

P [Pst] < 0.05, and P [Dcfu] < 0.05; e.g., Col-0 and Cvi-1), seven

pairwise comparisons showed differences only in Class II mech-

anisms (P [Pst avrRpt2] < 0.05, P [Pst] < 0.05, and P [Dcfu] > 0.05;

e.g., Col-0 and Est-1), and seven pairwise comparisons showed

differences only in Class III mechanisms (P [Pst avrRpt2] < 0.05,

P [Pst] > 0.05, and P [Dcfu] < 0.05; e.g., Col-0 and Tsu-1; Figure 1,

Table 1). Additionally, 17 pairwise comparisons showed differ-

ences in growth of Pst, growth of Pst avrRpt2, and Dcfu (P [Pst
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Table 1. Pairwise Comparisons between Genotypes

Gene Expression Profilesa

Bacterial Growthb Responsivenessc

Genotype 1 Genotype 2 Pst Pst avrRpt2 Dcfu ELd Mocke Pst avrRpt2e Total Mock Pst avrRpt2

Col-0 Col-rps2 NS *** *** þ – – – – –

Col-0 Cvi-1 *** NS * þ 137 110 78 39 30

Col-0 Est-1 *** *** NS þ 216 135 123 64 29

Col-0 Kas-1 *** ** * þ 267 131 146 101 19

Col-0 Kin-0 * *** *** þ 33 171 91 2 77

Col-0 Ler-0 NS NS NS þ 187 72 119 73 25

Col-0 Mt-0 *** *** ** þ 15 49 11 0 9

Col-0 Tsu-1 NS *** *** þ 36 66 43 6 27

Col-0 Van-0 ** *** *** þ – – – – –

Col-0 Ws-2 * ** NS þ 11 141 101 4 74

Col-rps2 Cvi-1 *** *** *** þ – – – – –

Col-rps2 Est-1 *** *** *** þ – – – – –

Col-rps2 Kas-1 *** *** *** þ – – – – –

Col-rps2 Kin-0 * *** *** � – – – – –

Col-rps2 Ler-0 NS *** *** þ – – – – –

Col-rps2 Mt-0 *** *** *** þ – – – – –

Col-rps2 Tsu-1 NS *** *** þ – – – – –

Col-rps2 Van-0 *** *** NS � – – – – –

Col-rps2 Ws-2 * *** *** þ – – – – –

Cvi-1 Est-1 *** *** ** � 119 180 37 9 19

Cvi-1 Kas-1 *** ** *** þ 164 151 22 7 10

Cvi-1 Kin-0 NS *** *** þ 88 115 39 11 18

Cvi-1 Ler-0 ** NS ** � 64 81 7 1 4

Cvi-1 Mt-0 *** *** NS � 91 102 23 9 12

Cvi-1 Tsu-1 * ** NS � 52 60 2 0 2

Cvi-1 Van-0 *** *** *** þ – – – – –

Cvi-1 Ws-2 * ** *** þ 71 123 9 1 4

Est-1 Kas-1 *** *** * � 54 77 7 2 3

Est-1 Kin-0 *** *** ** þ 201 230 110 38 50

Est-1 Ler-0 *** *** NS � 83 160 30 4 20

Est-1 Mt-0 *** * ** þ 183 136 74 37 19

Est-1 Tsu-1 *** *** *** � 160 164 64 22 27

Est-1 Van-0 *** *** *** þ – – – – –

Est-1 Ws-2 *** *** NS þ 147 225 82 22 52

Kas-1 Kin-0 *** *** *** þ 251 237 98 38 32

Kas-1 Ler-0 *** *** NS � 102 146 7 1 6

Kas-1 Mt-0 NS *** *** þ 256 136 89 59 19

Kas-1 Tsu-1 *** NS *** þ 213 160 42 13 16

Kas-1 Van-0 *** *** *** þ – – – – –

Kas-1 Ws-2 *** *** * � 222 232 51 18 25

Kin-0 Ler-0 * *** *** þ 154 121 43 23 12

Kin-0 Mt-0 *** *** *** þ 34 144 54 7 43

Kin-0 Tsu-1 NS *** *** þ 33 96 24 2 19

Kin-0 Van-0 *** NS ** � – – – – –

Kin-0 Ws-2 NS *** ** þ 45 143 49 7 37

Ler-0 Mt-0 *** *** ** þ 138 55 1 1 5 4

Ler-0 Tsu-1 NS *** *** � 70 43 4 1 2

Ler-0 Van-0 ** *** *** þ – – – – –

Ler-0 Ws-2 NS NS NS þ 87 64 7 0 3

Mt-0 Tsu-1 *** *** ** � 21 46 0 0 0

Mt-0 Van-0 * *** *** þ – – – – –

Mt-0 Ws-2 *** *** * þ 22 101 27 1 22

Tsu-1 Van-0 *** *** *** þ – – – – –

Tsu-1 Ws-2 NS *** *** þ 31 57 7 0 4

Van-0 Ws-2 *** *** *** þ – – – – –

a –, Not measured.
b NS, not significant; *, q < 0.05; **, q < 0.01; ***, q < 0.001.
c ‘‘Responsiveness’’ indicates a comparison between the genotypes in the log ratio of expression values between Pst avrRpt2– and mock-infected samples for each gene. ‘‘Total’’ indicates

the total number of the genes for which the log-ratio values are significantly different between the genotypes. Among the ‘‘Total’’ genes, ‘‘Mock’’ indicates the number of the genes for which

the log-ratio difference was due to the difference in the ‘‘Mock’’ expression values, while ‘‘Pst avrRpt2’’ indicates the number of the genes of which the log-ratio difference was due to the

difference in the Pst avrRpt2 expression values. Note that the sum of the numbers in ‘‘Mock’’ and ‘‘Pst avrRpt2’’ are smaller than that in ‘‘Total.’’ This is because in some genes, both

‘‘Mock’’ and ‘‘Pst avrRpt2’’ expression values, as well as the log ratios, were different between the accessions.
d�, Not significant; þ, significant, based on 95% confidence intervals of DDconductivity.
e These are the numbers of the genes in which the log-transformed expression values between the accessions are significantly different in mock- and Pst avrRpt2–infected samples,

respectively.
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avrRpt2] < 0.05, P [Pst] < 0.05, and P [Dcfu] < 0.05; e.g., Col-0 and

Kas-1; Figure 1, Table 1). Two comparisons did not show any

differences (e.g., Col-0 and Ler-0; Figure 1, Table 1). Thus, the

variation in resistance to Pst avrRpt2 among the chosen acces-

sions can be explained by variation in both basal resistance and

AvrRpt2-induced responses.

Phenotypic Characterization 2: Arabidopsis Accessions

Show Variation in Extent of the HR

Analysis of the growth of the two different bacterial strains on

different accessions as discussed above is a collective mea-

surement of plant defenses and bacterial responses. To study

defense responses more specifically, we analyzed the HR trig-

gered by recognition of Pst avrRpt2 using an electrolyte leakage

assay (Figure 2; see Supplemental Figures 2 to 4 online). Based

on 95% confidence intervals of the difference in electrolyte

leakage between Pst avrRpt2– and Pst-inoculated plants

(Dconductivity; Figures 2A and 2B), two accessions (Kin-0 and

Van-0) did not show significant differences in the electrolyte

leakage between Pst-inoculated and Pst avrRpt2–inoculated

plants (Figure 2D; see Supplemental Figure 3 online). Thus, in

these accessions, AvrRpt2 does not trigger HR. As expected, the

same was true for the rps2 mutant (Figures 2B and 2D; see

Supplemental Figure 3 online). We also asked whether the

difference between electrolyte leakage by Pst-inoculated plants

and Pst avrRpt2–inoculated plants varied between accessions

(DDconductivity) (Figure 2C, Table 1; see Supplemental Figure 4

online). Among the 28 pairs of accessions that did show AvrRpt2-

induced HR (excluding Kin-0 and Van-0), 17 showed differences

in induction of HR at some time points during the measured 24-h

interval, demonstrating that extensive variation in both timing

and extent of AvrRpt2-induced HR exists among accessions

(Table 1). The broad-sense heritability values reach up to 65%

after inoculation with Pst avrRpt2 (see Supplemental Table 1 on-

line), indicating that genetic differences among Arabidopsis

accessions can explain a large part of the variation in HR. The

broad-sense heritability after inoculation of Pst was much lower

(maximum 38%). This is probably because low electrolyte leak-

age that was caused by mechanisms other than HR in the assays

with Pst was not as robust and, therefore, not as reproducible as

high electrolyte leakage that was caused by HR in the assays

with Pst avrRpt2.

As HR is considered an induced plant defense response, we

tested for a correlation between HR and bacterial growth among

accessions. We compared HR measured by conductivity after

inoculation with Pst avrRpt2 from 0 to 24 h at 3-h intervals with

titer of Pst avrRpt2 0, 1, and 2 d after inoculation. Only data from

Figure 1. The Growth of Pst and Pst avrRpt2 Is Highly Variable among Different Arabidopsis Accessions.

Titers of Pst (gray borders) and Pst avrRpt2 (black borders) were measured 0 (white), 1 (striped), and 2 (gray and black, respectively) d after inoculation.

Significant variation among accessions was found for both bacterial strains at day one and day two (see text for details). The rps2 mutant was analyzed

as a control. Values and SE (error bars) of bacterial growth were calculated using analysis of variance (ANOVA) of the raw data. The figure also illustrates

how Dcfu (the difference in growth of Pst and Pst avrRpt2) can be calculated. Results from t tests comparing growth of Pst avrRpt2 with growth of Pst

per plant genotype are indicated by q values.
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the eight accessions that showed AvrRpt2-induced HR (exclud-

ing Kin-0 and Van-0) were included. The bacterial titer 0 d after

inoculation and conductivity 0 h after inoculation were included

as negative controls: no correlations between HR and bacterial

growth at zero time points were expected, and indeed no

significant correlation was found. In fact, the broad-sense her-

itabilities of the bacterial titer on zero day and the conductivity at

zero hour were <6% (see Supplemental Table 1 online). More

interestingly, there was no significant correlation between con-

ductivity at any time point and titer of Pst avrRpt2 at any day

Figure 2. Variation in HR among the Accessions Was Revealed by an Electrolyte Leakage Assay.

Conductivity changes of water containing leaf discs inoculated with Pst or Pst avrRpt2 were measured over a 24-h time period for all genotypes.

(A) Conductivity changes of Col-0 inoculated with Pst (red) or Pst avrRpt2 (black). Dashed lines indicate 95% confidence intervals. This graph also

illustrates how the Dconductivity (the difference between conductivity after Pst avrRpt2 and Pst inoculation) can be calculated. See Supplemental Figure

2 online for similar graphs of all genotypes.

(B) Changes in the Dconductivity over time for Col-0 (black) and Col-rps2 (red). Dashed lines indicate 95% confidence intervals. The graph shows that

for Col-0 after ;3 h, 95% confidence intervals do not include a Dconductivity of zero. By contrast, 95% confidence intervals of Col-rps2 include a

Dconductivity of zero during the complete 0- to 24-h time span, illustrating the absence of HR in Col-rps2 after inoculation with Pst avrRpt2. See

Supplemental Figure 3 online for similar graphs of all genotypes.

(C) Changes in the DDconductivity (the difference in the Dconductivity for two selected genotypes) over time for Col-0 and Col-rps2. After ;3 h, the 95%

confidence intervals do not include a DDconductivity of zero, indicating that from this time point, Dconductivity of Col-0 and Col-rps2 differ significantly.

See Supplemental Figure 4 online for similar graphs of all the pairwise comparisons.

(D) DConductivity of all genotypes without 95% confidence intervals.
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(maximum r2 ¼ 0.40, df ¼ 6, q ¼ 0.44) or between Dcfu and

Dconductivity (maximum r2 ¼ 0.55, df ¼ 6, q ¼ 0.17) among

accessions. Thus, variation in HR does not correlate with vari-

ation in resistance to Pst avrRpt2.

Variation in RPS2 Coding Sequence or Expression Cannot

Fully Explain Variation in Phenotypic Responses among

Arabidopsis Accessions

From the phenotypic analyses, we can conclude that there is

considerable variation in AvrRpt2-induced responses among the

accessions. As RPS2 is essential for AvrRpt2-induced R gene–

mediated resistance, differences in the coding region of RPS2

and/or differences in RPS2 expression could potentially explain

the observed differences. To address this, we sequenced the

entire RPS2 coding region from all the accessions (Table 2) and

analyzed expression of RPS2 in the nine accessions showing

R gene–mediated resistance (excluding Van-0) 6 h after Pst

avrRpt2 or mock inoculation using quantitative RT-PCR (qRT-

PCR) (Figure 3).

Some of the observed phenotypic variation may be explained

by variation in RPS2 sequence. For example, the RPS2 se-

quence of Van-0 is identical to that of Po-1. Like Van-0, Po-1

does not show RPS2-mediated resistance (Banerjee et al.,

2001). Based on sequence analyses of RPS2, Mauricio et al.

(2003) divided Arabidopsis accessions into two clades. One

clade, which includes Po-1, consists mainly of susceptible ac-

cessions; the other clade consists of resistant accessions. Sim-

ilarly, the RPS2 sequence of Kin-0 is identical to that of Yo-0. Like

Kin-0, Yo-0 shows only marginal RPS2-mediated resistance

(Mauricio et al., 2003). Both examples illustrate that RPS2 se-

quence may explain part of the observed variation, although it is

also possible that these accessions share sequence identity at

other loci that can explain this variation. However, accessions

with the same RPS2 sequence, such as Est-1, Mt-0, and Ws-2,

showed significant differences with respect to bacterial growth

and HR. Thus, variation in RPS2 coding sequence cannot explain

all the phenotypic variation observed.

RPS2 expression showed moderate variation among mock-

treated accessions (a 2.8-fold difference between highest and

lowest expression) and low variation among Pst avrRpt2–treated

accessions (a 1.5-fold difference between highest and lowest

expression; Figure 3). The broad-sense heritability of RPS2

expression was higher in mock-inoculated than in Pst avrRpt2–

inoculated accessions (49 and 19%, respectively; see Supple-

mental Table 1 online). Overall, Pst avrRpt2 inoculation affects

RPS2 expression with on average a 1.4-fold induction (df¼ 1, F¼
6.5, P ¼ 0.015 for the treatment factor in ANOVA). There is

significant variation in the effect of Pst avrRpt2 on RPS2 ex-

pression among accessions (df ¼ 8, F ¼ 2.5, P ¼ 0.027 for the

genotype:treatment interaction in ANOVA). Comparing RPS2

expression after the Pst avrRpt2 treatment only, there were no

significant differences among accessions. Comparing RPS2

expression after mock treatment only, Tsu-1 was significantly

different from Est-1 (q ¼ 0.041) and Kas-1 (q ¼ 0.041). Thus,

much of the variation in RPS2 expression among accessions is

due to variation between Est-1 and Tsu-1 and Kas-1 and Tsu-1

after mock inoculation. Additionally, RPS2 expression 6 h after

inoculation with Pst avrRpt2 was not significantly correlated with

growth of Pst avrRpt2 at day one or day two (r2 ¼ 0.41 and 0.40,

respectively, df ¼ 7 and q ¼ 0.10 for both), and no significant

correlations were found between expression of RPS2 after Pst

avrRpt2 inoculation and HR at any time point (maximum r2 ¼
0.44, df¼ 6, q¼ 0.60). Thus, variation in RPS2 expression among

accessions 6 h after inoculation with Pst avrRpt2 cannot explain

the variation of growth of Pst avrRpt2 or the variation in HR.

Inoculation with Pst avrRpt2 Strongly Affects the Variation

in Gene Expression Profiles among Accessions

To investigate whether variation in gene expression profiles can

be related to variation in phenotypic responses, we first mea-

sured the mRNA levels of 571 genes, 465 of which are pathogen

responsive and 106 are stably expressed in Col-0, using the

Arabidopsis miniarray (Pathoarray_464) (Sato et al., 2007). To

assess how inoculation with Pst avrRpt2 changes variation

among accessions, we measured gene expression in both mock-

inoculated and Pst avrRpt2–inoculated plants 6 h after inocu-

lation. In a previous study, gene expression profiles of Col-0

showed dramatic expression changes 6 h after inoculation with

Table 2. Nucleotide and Amino Acid Polymorphisms in the RPS2 Sequence

nta 142 311 426 461 704 1092 1233 1245 1255 1311 1315 1326 1359 1374 1414 1438 1440 1458 1543 1544 1548 1569 1634 1698 1815 1923 1926 1931 1945 1946 1958 2097 2109 2334 2498

Col-0 A A A C G A C A T C C C T T C T G G G T C C C G A C T A G G C A A C G

rps2 . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cvi-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . C

Est-1 . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . T . .

Kas-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . C

Kin-0 . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . C T . .

Ler-0 . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . .

Mt-0 . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . T . .

Tsu-1 . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . T G C

Van-0 G G C . . T T T C T A . C C T C A A . . T T A T G G A G C A T . T . C

Ws-2 . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . T . .

aaa 48 104 154 235 419 439 472 515 515 545 644 649 653 699 703 778 833

Col-0 I Y S W S H H V V S E G A E E N R

V C Y .b P N Y L A Y G Q V D D K T

a nt, nucleotide position, starting from start codon; aa, amino acid position.
b Stop codon.
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Pst avrRpt2 (Tao et al., 2003). We limited this analysis to the nine

accessions that show AvrRpt2 induced resistance (Van-0 ex-

cluded) based on Dcfu and/or Dconductivity (Figures 1 and 2).

Noise reduction by removing genes that did not show gene

expression levels higher than a negative control (a probe that

does not match any Arabidopsis or Pst sequence) in any of the

genotype treatment combinations removed 105 genes from the

data set (P < 0.01), leaving 466 genes (see Supplemental Figure 5

online). Of these 466 genes, 436 were induced or repressed by

Pst avrRpt2 treatment in at least one accession (q < 0.05), and

more than one-third of these (167) were responsive in all acces-

sions. As the majority of the genes on the miniarray were selected

based on their induction or repression upon pathogen or viral

attack, it is not surprising that most of these genes are respon-

sive to Pst avrRpt2 treatment in at least one accession.

Subsequently, we analyzed the gene expression profiles

by pairwise comparisons of accessions (Table 1). Of the 466

genes, 409 showed variation in at least one pair of Pst avrRpt2–

inoculated accessions (q < 0.05). Thus, considerable variation

exists among gene expression profiles after inoculation with Pst

avrRpt2. However, some of this variation may not depend on the

interaction with Pst avrRpt2. Indeed, 386 genes showed variation

in at least one pair of mock-treated accessions (q < 0.05). To

assess whether genes are differentially induced or repressed by

treatment with Pst avrRpt2, we compared the log ratio of ex-

pression values in Pst avrRpt2–inoculated and mock-treated

plants between accession pairs for each gene: 284 genes

showed variation in the log ratio of Pst avrRpt2–inoculated and

mock-treated plants in at least one pair of accessions (q < 0.05).

Of these 284 genes that are differentially induced or repressed

among accessions, 90 genes show similar basal expression

levels but reach different expression levels after treatment with

Pst avrRpt2, 49 genes show different basal expression levels but

reach a similar expression level after treatment with Pst avrRpt2,

and 139 show differences in both basal expression levels and

expression levels after treatment with Pst avrRpt2. Thus, con-

siderable variation exists among expression profiles of Pst

avrRpt2–inoculated accessions, and much of this variation is

caused by differential induction or repression of genes.

More detailed information on specific accession pairs is shown

in Table 1. In some accession pairs, very few genes were

differentially induced or repressed (e.g., Cvi-1 and Tsu-1: two

genes), whereas other accession pairs showed extensive differ-

ences in gene induction or repression (e.g., Col-0 and Kas-1: 146

genes). As described above, in general more genes were differ-

entially induced or repressed due to differences in Pst avrRpt2–

inoculated plants than to differences in mock-inoculated plants

(53% versus 27%). However, this also varied considerably

among accession pairs. For example, between Col-0 and Kas-1,

only 13% (19/146) of the differentially induced or repressed

genes were different in Pst avrRpt2–inoculated plants only, while

69% were different in mock-inoculated plants only, the remain-

ing genes being differentially expressed after both treatments.

By contrast, between Col-0 and Ws-2, 73% (74/101) of the

differentially induced or repressed genes were different in Pst

avrRpt2–inoculated plants only, and just 4% were different in

mock-inoculated plants only. Thus, when interested in gene ex-

pression changes related to resistance against Pst avrRpt2, it

may be more worthwhile to compare, for example, Col-0 and

Ws-2 than Col-0 and Kas-1.

The variation in expression profiles among accessions was

further explored using the algorithm locally linear embedding

graph generator (LEGG). LEGG uses locally linear embedding

(Roweis and Saul, 2000) to perform nonlinear dimensionality

reduction and defines the relationships among expression pro-

files based on the type and the degree of similarities among

them: Directed links are made to a particular expression profile

from the most similar expression profiles, while directed links

that correspond to redundant information are removed by the

dimensionality reduction procedure. Thus, LEGG uses the same

logic as local context finder (LCF) (Katagiri and Glazebrook,

2003), but it uses a different algorithm (see Methods). Unlike LCF,

LEGG has an option to consider expression profiles with large

negative correlations to share similarities, so exactly opposite

expression profile patterns are considered the same. When a

regulatory pathway results in upregulation of some genes and

downregulation of others, both the upregulated and downregu-

lated genes report the signal strength in the regulatory pathway.

Assuming that differences among accessions are due to differ-

ences in signal strength, completely opposite expression pat-

terns likely indicate the same regulatory pathway. Therefore, in

this study, the negative correlation option of LEGG was used.

LEGG analysis was performed with the expression profiles after

mock and Pst avrRpt2 inoculation for the nine accessions (Figure

4A). From this analysis, several observations can be made. First,

the expression profiles, which are indicated as nodes in the fig-

ure, were organized into two disconnected graphs: one contains

the profiles of the mock-inoculated accessions, and the other

contains the profiles of the Pst avrRpt2–inoculated accessions.

As the miniarray is highly enriched with pathogen-responsive

genes, this is not surprising. Second, many directed links be-

tween nodes for accessions change in response to treatment

Figure 3. The Expression Level of RPS2 Has Limited Variation among

the Accessions.

RPS2 expression was measured using qRT-PCR and quantified using

DCt (the difference in cycle number to reach a set threshold of product

amount) between RPS2 and Actin2, 6 h after mock inoculation (gray) or

inoculation with Pst avrRpt2 (black). Values and SE of gene expression

were obtained using ANOVA of the raw data.
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Figure 4. Visualization of the Relationships among Expression Profiles.

(A) LEGG was applied to gene expression profiles of the accessions 6 h after mock inoculation or inoculation with Pst avrRpt2. The expression values of

the 466 selected genes are the parameters of each profile. Expression profiles are indicated as nodes in the graph, and the relationships among the
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with Pst avrRpt2. Of the 27 directed links among mock-inoculated

accessions and 27 directed links among Pst avrRpt2–inoculated

accessions, only 14 overlap, and even in the overlapping di-

rected links, the strength of the connections changes. Thus,

treatment with Pst avrRpt2 changes the relationships among

profiles of accessions considerably, illustrating large effects of

the treatment on variation in gene expression profiles among

accessions.

In summary, there is extensive variation in gene expression

profiles among accessions after inoculation with Pst avrRpt2,

and on average 49% of this variation can be explained by genetic

differences among accessions (see Supplemental Table 1 on-

line). Although some of the variation is present after mock

inoculation, most of it is specifically caused by differential

induction or repression after treatment with Pst avrRpt2. When

comparing pairs of accessions, substantial deviations from this

general trend can be found, with some accession pairs mainly

showing differences after mock inoculation, whereas other ac-

cession pairs mainly show differences after inoculation with Pst

avrRpt2. These results are indicative of significant phenotypic

plasticity among accessions. This is illustrated in the LEGG

analysis: accessions that are strongly connected after mock

inoculation are not strongly connected after inoculation with Pst

avrRpt2 and vice versa.

HR, Bacterial Growth, and RPS2 Expression Show Distinct

Correlations with the Expression of Clusters of Genes

Clearly, there is significant variation among accessions in both

phenotypic responses, as measured by variation in bacterial

growth and HR and in treatment-dependent gene expression.

Some of this variation (or lack thereof) may share the same

genetic origin. For example, between Cvi-1 and Tsu-1, there

were only two genes that showed differential induction or repres-

sion, and Cvi-1 and Tsu-1 did not show any variation in pheno-

typic responses, whereas between Col-0 and Kas-1, many

genes were differentially induced or repressed, and these ac-

cessions showed significant variation in both bacterial growth

and electrolyte leakage phenotypes. However, global results

from gene expression profiling, such as the number of respon-

sive genes or average responsiveness, do not correlate well with

phenotypic data such as bacterial growth and HR (data not

shown). To explore covariation between gene expression profiles

and phenotypic data in more detail, we analyzed the correlation

between phenotypic data and the gene expression profiles.

Separation of signal from noise is a problem with analyses of

many possible predictors (i.e., genes). To address this problem,

we used two sequential methods. First, we ran an ANOVA on the

Pst avrRpt2–inoculated data set only and selected genes (360)

that showed a significant genotype effect, thus selecting genes

that show significant variation in expression among Pst avrRpt2–

inoculated accessions. Second, we clustered genes using hier-

archical clustering (see Methods), thus drastically reducing the

number of comparisons between gene expression and pheno-

typic data and thereby increasing statistical power. This resulted

in 28 clusters containing three or more genes (see Supplemental

Table 2 online). Genes within a cluster showed correlated ex-

pression profiles over the different accessions and thus likely

share upstream signaling factors, for example, regulation by the

same transcription factor. Additionally, clustering filters out

possible effects of sequence variation that affect binding of

cRNA to the probes of the miniarray: It is likely that the measured

expression differences of some genes are actually (partially) due

to different probe binding properties of the mRNA because of

sequence differences among Arabidopsis accessions. However,

it is highly unlikely that similar patterns of probe efficiency varia-

tion across the accessions occur in more than one gene. Selec-

tion of clusters with multiple genes therefore eliminates this type

Figure 4. (continued).

profilesthat were determined by LEGG are depicted as directed links. Gene expression profiles are clearly affected by the different treatments, resulting

in two disconnected graphs: mock-inoculated accessions (left) and accessions inoculated with Pst avrRpt2 (right). The directed links in these two

graphs can be compared based on their presence, absence, or strength. Strength of connections measured by the r2 value is indicated by color: blue,

0.951 to 0.964; green, 0.964 to 0.974; orange, 0.974 to 0.984; and red, 0.984 to 0.990.

(B) LEGG was applied to expression profiles of the gene clusters and the phenotypic data profiles with the accessions as the parameters of each profile.

Clusters of genes (white nodes) were identified based on correlated expression using the data 6 h after inoculation with Pst avrRpt2. The gene clusters

that do not have links to the shown network are not included. Centered and scaled data for both gene expression and phenotypic data across the

accessions was used as input. The analysis shows that electrolyte leakage (brown nodes) is only weakly connected to the major part of the gene

expression graph, whereas bacterial growth (Pst, blue nodes; Pst avrRpt2, red nodes) is much more connected to the gene expression graph. RPS2

expression level (green node) is embedded in the center of the gene expression graph. Strength of the connections (r2): orange, 0.58 to 0.76; red, 0.76 to

1. The colors of the shaded background indicate the different types of data: red, growth of Pst avrRpt2; blue, growth of Pst; orange, electrolyte leakage

of Pst avrRpt2–inoculated plants; gray, gene expression clusters.

(C) to (F) High correlations between expression profiles of member genes in selected gene clusters and phenotypic data across the accessions are

illustrated by a heat map. Data were centered and scaled across the accessions before applying agglomerative hierarchical clustering with average

linkage to generate the heat map. The selected gene expression clusters are the ones that are most correlated to the phenotypic data (see text, Table 3,

Figure 4, and Supplemental Table 2 online for details).

(C) Titer of Pst avrRpt2 2 d after inoculation and expression of genes in cluster c29.

(D) Titer of Pst and expression of genes in cluster c35.

(E) Electrolyte leakage at 17 h after inoculation with Pst avrRpt2 and expression of genes in cluster c25.

(F) RPS2 expression and expression of genes in cluster c15. Note that some genes shown are strongly negatively correlated. The color scale is depicted

in the top left part of each panel.
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of false signal. Thus, clustering has statistical, biological, and

methodological advantages.

After clustering the genes, we analyzed the correlation be-

tween the expression of each cluster and phenotypic data (both

bacterial growth and HR) and RPS2 expression. For bacterial

growth, we used titers of the two bacterial strains on different

days; for electrolyte leakage, we used the electrolyte leakage of

Pst avrRpt2–inoculated plants in 3-h intervals; and for RPS2

expression, we used the data obtained after inoculation with Pst

avrRpt2. Most phenotypic data correlated with the expression of

at least one gene cluster, suggesting that genes in these clusters,

or other genes not present on the miniarray but controlled by

the same regulator, may influence the correlated phenotypic

responses (Table 3, Figures 4C to 4F). For example, five clusters

were correlated with growth of Pst on both day one and day two,

and five other clusters were correlated with growth of Pst on day

two only (q < 0.05). These correlations make biological sense

if these genes induced or repressed by Pst avrRpt2 are also

induced or repressed by Pst. Indeed, previous analyses of gene

expression profile changes of Col-0 after inoculation with Pst and

Pst avrRpt2 indicated that many genes are responsive to both

treatments, albeit to a different extent and on a different time

scale (Tao et al., 2003). Other clusters correlated with AvrRpt2-

induced responses: Two clusters were correlated with growth of

Pst avrRpt2 on day two, and one cluster was correlated with

electrolyte leakage between 15 and 24 h after Pst avrRpt2

inoculation (q < 0.05). Additionally, 10 clusters were correlated

with RPS2 expression (q < 0.05). Gene clusters that show cor-

related expression with RPS2 may indicate genes that are closely

linked with RPS2 in the signaling network.

As the genes on the small-scale microarray were selected for

broad representation of diverse expression patterns defined in

Col-0 and for easy measurement of expression levels, rather than

representation of biological processes, the selected genes are

unlikely to adequately represent biological processes of potential

interest. Furthermore, many clusters are so small that they are

Table 3. Correlations between Gene Expression Patterns and Phenotypic Data

Cluster

No.

Genes

per

Cluster

Growth of Pst Growth of Pst avrRpt2

Electrolyte Leakage (18 h) RPS2 ExpressionDay 1 Day 2 Day 1 Day 2

r2 q r2 q r2 q r2 q r2 q r2 q

c2 10 0.45 0.09 0.41 0.12 0.47 0.13 0.56 0.09 0.01 0.86 0.71 0.03

c3 3 0.25 0.21 0.20 0.27 0.25 0.29 0.33 0.16 0.00 0.93 0.46 0.08

c4 3 0.71 0.02 0.61 0.04 0.45 0.13 0.52 0.10 0.42 0.29 0.79 0.01

c5 30 0.77 0.02 0.72 0.04 0.58 0.13 0.59 0.09 0.25 0.41 0.65 0.03

c7 5 0.43 0.10 0.41 0.12 0.21 0.29 0.37 0.16 0.48 0.26 0.58 0.05

c8 4 0.04 0.64 0.04 0.64 0.15 0.35 0.08 0.50 0.23 0.41 0.06 0.55

c10 3 0.06 0.59 0.08 0.52 0.28 0.28 0.32 0.16 0.24 0.41 0.20 0.25

c14 4 0.38 0.12 0.30 0.20 0.06 0.54 0.05 0.57 0.16 0.43 0.37 0.11

c15 4 0.57 0.05 0.52 0.07 0.21 0.29 0.24 0.24 0.23 0.41 0.84 0.01

c16 3 0.46 0.09 0.37 0.14 0.19 0.31 0.11 0.44 0.16 0.43 0.46 0.08

c17 4 0.30 0.17 0.26 0.23 0.09 0.48 0.15 0.36 0.18 0.43 0.33 0.13

c18 4 0.31 0.17 0.31 0.20 0.54 0.13 0.77 0.03 0.03 0.75 0.51 0.06

c19 5 0.35 0.15 0.29 0.20 0.22 0.29 0.35 0.16 0.36 0.32 0.44 0.09

c21 3 0.00 0.92 0.02 0.74 0.00 0.91 0.04 0.59 0.14 0.43 0.04 0.61

c23 3 0.23 0.23 0.24 0.24 0.15 0.35 0.29 0.19 0.58 0.26 0.30 0.14

c25 3 0.55 0.05 0.60 0.04 0.45 0.13 0.47 0.12 0.87 0.02 0.33 0.13

c28 3 0.63 0.05 0.63 0.04 0.48 0.13 0.60 0.09 0.46 0.26 0.61 0.04

c29 6 0.57 0.05 0.61 0.04 0.75 0.07 0.78 0.03 0.48 0.26 0.39 0.11

c31 4 0.76 0.02 0.66 0.04 0.48 0.13 0.36 0.16 0.19 0.43 0.63 0.04

c32 6 0.57 0.05 0.58 0.05 0.45 0.13 0.55 0.09 0.23 0.41 0.80 0.01

c33 3 0.56 0.05 0.63 0.04 0.41 0.16 0.41 0.15 0.14 0.43 0.69 0.03

c34 4 0.32 0.17 0.23 0.24 0.23 0.29 0.40 0.15 0.12 0.44 0.39 0.11

c35 4 0.82 0.01 0.80 0.03 0.55 0.13 0.50 0.11 0.17 0.43 0.69 0.03

c36 4 0.19 0.28 0.22 0.25 0.39 0.16 0.62 0.09 0.15 0.43 0.45 0.08

c37 5 0.81 0.01 0.75 0.04 0.36 0.19 0.34 0.16 0.52 0.26 0.54 0.06

c39 3 0.04 0.63 0.01 0.78 0.09 0.48 0.08 0.50 0.40 0.29 0.04 0.61

c42 5 0.46 0.09 0.44 0.11 0.27 0.28 0.39 0.15 0.49 0.26 0.37 0.11

c50 4 0.58 0.05 0.45 0.11 0.23 0.29 0.28 0.19 0.31 0.38 0.54 0.06

Electrolyte leakage (21 h)

c29ma 3 0.80 0.04

Significant correlations (q < 0.05) are in bold.
a For gene expression clusters from mock-inoculated accessions, only the cluster that showed significant correlation is shown for a selected

electrolyte leakage time point.

Natural Variation in Disease Resistance 4055



not appropriate for statistical analysis of biological processes

associated with gene clusters. For these reasons, we did not

attempt to associate biological processes with the clusters.

However, these results do demonstrate that gene expression

profiling at a single time point after Pst avrRpt2 infection contains

information that can be correlated to several phenotypic re-

sponses. Additionally, these gene expression profiles likely

contain information about the structure of the underlying signal-

ing network. The correlation analyses also gives us some insight

into how the signaling network connects different phenotypic

responses, as several clusters show correlation with multiple

phenotypic responses. For example, cluster 18 is specifically

correlated with growth of Pst avrRpt2 and cluster 35 is specif-

ically correlated with growth of Pst. Other clusters are correlated

with more than one phenotypic response, such as cluster 29,

which is correlated with growth of both bacterial strains, and

cluster 25, which is correlated with HR and with growth of Pst.

Thus, clusters correlating with several phenotypic responses

may indicate overlaps in the signaling networks influencing the

different phenotypes. Interestingly, of the 10 clusters correlated

with growth of Pst, seven overlapped with clusters correlated

with RPS2 expression, suggesting a role of RPS2 in basal

resistance or coregulation of RPS2 with basal resistance. It

was reported that an inducer of the basal defense response,

flg22, induces RPS2 expression (Zipfel et al., 2004) and that a

mutation in RPS2 does not affect the growth of a hrcC mutant of

Pst (Katagiri and Sato, 2007). These facts indicate that RPS2 is

coregulated with basal resistance but does not play a crucial role

in basal resistance against Pst.

As a negative control, we also investigated whether any

patterns were significantly correlated with bacterial titer at day

zero, right after inoculation. No patterns correlated with bacterial

titer at day zero for either bacterial strain (q $ 0.62). These results

strengthen our conclusion that gene expression profiles contain

information that is relevant to the phenotypic responses.

We performed the same analyses using gene expression

profiles after mock inoculation. ANOVA resulted in the selection

of 349 genes that showed significant variation in expression

levels among accessions after mock treatment. Gene clustering

resulted in 15 clusters of three or more genes. None of these

clusters showed significant correlation with titer of either Pst or

Pst avrRpt2 at any time point, but one cluster correlated with

electrolyte leakage at 21 and 24 h (Table 3). Clearly, few differ-

ences in phenotypic responses can be explained by differences

in expression profiles after mock inoculation. Thus, it appears

that differences in basal gene expression levels do not strongly

affect the phenotypic variation. By contrast, certain expression

changes after Pst avrRpt2 infection are strongly correlated with

phenotypic variation. This implies that an eQTL approach using

uninfected plants has a very limited chance of detecting loci

involved in resistance.

To visualize the relationships between gene expression pat-

terns, HR, and bacterial growth, we used LEGG to embed the

phenotypic data in a gene expression graph. As LEGG uses

dimensionality reduction, not all significant correlations between

gene expression clusters are represented by direct links in the

LEGG analyses. Still, the LEGG analysis of combined phenotypic

and gene expression data reflects and integrates many of the

results from the statistical analyses (Figure 4B). First, Figure 4B

shows many more links between the gene expression graph and

bacterial growth than between the gene expression graph and

HR. The gene cluster connected with HR is not strongly con-

nected to the rest of the network. Thus, these results confirm the

lack of strong correlation between HR and bacterial growth and

show that this lack of correlation is reflected in separate parts of

the gene expression graph that are associated with either phe-

notypic response. RPS2 expression level is embedded in the

center of the graph and shows no direct connections with

phenotypic data. Again, this fits with the observation that RPS2

expression is not correlated with the phenotypic data. Thus, it

appears that variation in signaling downstream or independent of

RPS2 is causing much of the observed variation in phenotypic

responses to Pst avrRpt2 among accessions.

DISCUSSION

Phenotypic Characterization and Gene Expression Profiling

of Arabidopsis Accessions Show Distinct and Shared

Mechanisms of Resistance against Pst and Pst avrRpt2

We have demonstrated that variation exists in RPS2-mediated

resistance among Arabidopsis accessions (Figure 1, Table 1).

Such variation has been reported previously and as far as the

accessions used overlap, our data confirm previous results

(Caicedo et al., 1999; Mauricio et al., 2003). By analyzing vari-

ation in Dcfu and variation in growth of Pst and Pst avrRpt2, we

can separate variation in resistance to Pst between accession

pairs into four distinct classes. Some of the variation in resistance

to Pst and Pst avrRpt2 among accessions suggests that the

molecular mechanisms underlying basal and R gene–mediated

resistance in Arabidopsis have shared features. The strong

interconnectedness of gene expression clusters that are asso-

ciated with growth of the two bacterial strains (Figure 4B) also

support overlapping molecular mechanisms. Obviously, this

overlap is not complete, with some variation specifically affecting

one bacterial strain but not the other. Thus, our results with

natural accessions of Arabidopsis corroborate the conclusion

that basal and R gene–mediated resistance in Arabidopsis have

both distinct and shared features (Tao et al., 2003).

Phenotypic Characterization and Gene Expression

Profiling of Arabidopsis Accessions Show Uncoupling

of HR and Resistance

In line with our finding that there is variation in the level of resis-

tance among accessions that show AvrRpt2-induced resistance,

there is also variation in the HR among accessions, as measured

by electrolyte leakage (Figure 2, Table 1). However, there is no

significant correlation between the variation in bacterial growth

and HR. As HR-associated cell death may not be an appropriate

defense to the hemibiotrophic Pst, the discrepancy between

variation in cell death and bacterial growth may not be unex-

pected. However, the lack of correlation indicates that there is

either relatively little variation between signaling events affecting

both HR and bacterial growth among the chosen accessions or
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that signaling events affecting HR and signaling events affecting

bacterial growth are not tightly connected. Indeed several

Arabidopsis mutants show AvrRpt2-induced resistance with little

or no HR (Clough et al., 2000; Jurkowski et al., 2004), and several

Pseudomonas effector proteins induce R gene–mediated resis-

tance without HR (Gassmann et al., 1999; Gassmann, 2005). Gene

expression profiling reflected the lack of correlation between HR

and resistance, with different clusters correlating to HR and to

resistance (Table 3). Moreover, the gene clusters connected to

HR are not well integrated into the gene expression graph that is

connected to resistance (Figure 4B).

Gene Expression Profiling Identifies Robust yet Variable

Responses to Pst avrRpt2

From these results, it is clear that infection with Pst avrRpt2 results

in dramatic changes in gene expression, and these changes cor-

relate with phenotypic responses induced by Pst avrRpt2. Inter-

estingly, approximately one-third of the Pst avrRpt2–responsive

genes are responsive in all accessions (see Supplemental Figure

5 online). Salicylic acid is a plant hormone that plays a key role in

resistance against Pst avrRpt2 and other biotrophic pathogens. A

recent study of the effect of salicylic acid on gene expression in

seven accessions, all of which were included in our study, found

that very few genes showed conserved induction (van Leeuwen

et al., 2007). Thus, it appears that infection with a pathogen results

in a much more robust change in gene expression profile than

treatment with a single hormone, suggesting a high level of re-

dundancy in signaling pathways affecting gene expression pro-

files and resistance.

Even though many genes are responsive in all accessions,

there is considerable variation in the extent of this response

(Table 1). For example, when considering the average response

of all 436 responsive genes, Ler-0 and Kas-1 are least responsive

to Pst avrRpt2 (average absolute fold changes of 1.2 and 1.3;

Figure 5), whereas Col-0 is most responsive (average absolute

fold change of 2.0). Limiting the analyses to the 167 genes that

are responsive in all accessions does not change these results

dramatically (Figure 5). Thus, it is not only the number of respon-

sive genes but also the extent of induction or repression that

varies among accessions. In the previously mentioned study

including the same accessions except for Kas-1, Ler-0, and

Ws-2, van Leeuwen et al. (2007) demonstrated that Cvi-1 is

hyporesponsive to salicylic acid, whereas Mt-0 is hyperrespon-

sive to salicylic acid with respect to induction and repression of

genes. Our data on those seven accessions show that Cvi-1 was

least responsive, whereas Mt-0 showed the second highest re-

sponsiveness. Our observations after treatment with Pst avrRpt2

therefore resemble the observations after treatment with salicylic

acid. Thus, even though there may be a high level of redundancy

in signaling pathways, this redundancy seems only partial such

that salicylic acid signaling has a strong effect.

From Correlation to Causal Effect

In this article, we have demonstrated that variation in gene

expression patterns and phenotypic responses among natural

accessions is correlated. This correlation indicates that varia-

tion in phenotypic plasticity is reflected in variation in gene

expression patterns and that these gene expression patterns

contain predictive information on phenotypic responses. How-

ever, correlations do not necessarily signify causal effects. To

demonstrate causal effects, we need to identify the trans-

acting genetic loci that affect clusters of genes and assess their

effects on phenotypic variation. Identification of these loci can

be achieved using a segregating population from a cross

between two parental accessions in an eQTL approach. The

information from expression profiles can aid us in selecting the

parental accessions. For example, when interested in identify-

ing trans-acting genetic loci that specifically affect R gene–

mediated resistance, it may be more worthwhile to select Col-0

and Ws-2 as parental lines rather than Col-0 and Kas-1, even

though Col-0 and Kas-1 show more significant phenotypic

differences. This is because between Col-0 and Kas-1, differ-

ential induction or repression of genes is mainly caused by

differences in expression profiles after mock inoculation,

whereas differential induction or repression of genes between

Col-0 and Ws-2 is mainly caused by differences in expression

profiles after inoculation with Pst avrRpt2. Thus, we can quickly

screen many candidate parental lines and select the most

promising combinations using the results presented here. We

are currently undertaking an eQTL approach to identify regu-

latory loci affecting clusters of genes and assess the effect of

these loci on Arabidopsis resistance against Pst avrRpt2.

Figure 5. Average Fold Change of Gene Expression in Response to Pst

avrRpt2.

The average fold change was determined using both induction and

repression at 6 h after inoculation. Thus, a gene whose expression is

twofold induced in response to Pst avrRpt2 and a gene whose expres-

sion is twofold reduced in response to Pst avrRpt2 both have a twofold

response. The average fold change of these two genes would thus be 2.

The average fold change is shown using all 436 genes that are respon-

sive in at least one accession (black bars) or the 167 genes that are

responsive in all accessions (gray bars). Letters above the black bars

indicate significant differences among accessions after multiple t tests

comparing average responsiveness among accession pairs using false

discovery rate correction. The t tests were performed using the data of all

436 responsive genes.
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METHODS

Plants and Bacteria

Arabidopsis thaliana accessions were chosen to represent diverse geo-

graphic origins. Seeds of Arabidopsis accessions Col-0 (ABRC stock

number CS22625), Cvi-1 (CS8580), Est-1 (CS22629), Kas-1 (CS22638),

Kin-0 (22,654), Ler-0 (CS20), Mt-0 (CS22642), Tsu-1 (CS1640), Van-0

(CS22627), Ws-2 (CS2360), and the rps2 mutant rps2-101C (Col-0 back-

ground) (Mindrinos et al., 1994) were suspended in 0.1% agar for a

minimum of 4 d at 48C. Cold-treated seeds were transferred to 12 3 12 3

5-cm (l 3 w 3 h) pots filled with twice-autoclaved, sterile soil (either BM-2

soil from Berger Peat Moss or LG3 germinating mix from Sun Gro

Horticulture). Plants were grown in a controlled-environment chamber at

228C, with 80% RH and a 10/14 h (R gene expression and gene expres-

sion profiling) or 12/12 h (all other experiments) light/dark cycle. Plants

used were either 5 (R gene expression and gene expression profiling) or 4

(all other experiments) weeks old. We noticed that Col-0 plants used in

this study (CS22625) reproducibly showed higher bacterial growth than

Col-0 plants that were used for the genome sequencing (CS60000). We

do not know genetic difference underlying this phenotypic difference.

Pseudomonas syringae pv tomato DC3000 strains containing either

avrRpt2 (Pst avrRpt2) or the empty pLAFR3 plasmid vector (Pst) were

grown for 2 d on King’s B plates containing appropriate antibiotics and

subsequently were grown overnight in liquid King’s B, again containing

appropriate antibiotics (25 mg/mL rifampicin and 10 mg/mL tertracycline).

Inoculum was prepared and hand-infiltrated as described by Katagiri

et al. (2002), at indicated doses, using a needleless syringe.

Bacterial Growth Analysis

Zero, one, and two days after inoculation with either Pst avrRpt2 or Pst

OD600 ¼ 0.001 (1 3 106 cfu/mL), two leaf discs (total surface 0.57 cm2)

were punched from a single leaf using a new plant for each time point.

Leaf discs were pulverized in 400 mL 5 mM MgSO4, and a dilution series of

the suspension was made. Of each dilution, 10 mL was streaked on King’s

B plates containing appropriate antibiotics. After 2 d, colonies were

counted from the dilution that resulted in 15 to 150 colonies per streak.

From this data, the log10 of the number of cfu per cm2 leaf surface was

calculated. The experiment was repeated three times, with eight repli-

cates per genotype per treatment per experiment.

Results were analyzed separately by day using a fixed-effects linear

model: log2(Cijk) ; Gi þ Tj þ G:Tij þ Rk þ eijk, where C ¼ cfu/cm2, G ¼
genotype; T ¼ treatment; R ¼ replicate; e ¼ residual; i ¼ 1,. . .,11; j ¼ 1,2;

and k ¼ 1,. . .,4.

The results from the linear model were used for two-tailed t tests using

Benjamini and Hochberg false discovery rate (BH-FDR) multiple tests

correction per hypothesis tested (Benjamini and Hochberg, 1995). Re-

sults are shown using q values and the BH-FDR–corrected P values. All

the statistical analyses in this study were performed in the R environment

(R Development Core Team, 2007) with R packages for linear mixed-

effects models (R package versions 0.99875-7 and 3.1-83).

Electrolyte Leakage Analysis

The use of an electrolyte leakage assay as a measure of HR has been

described previously (Goodman and Novacky, 1994). In short, per sam-

ple, three leaves per plant were inoculated with Pst or Pst avrRpt2 in 5 mM

MgSO4 at an OD600 of 0.1 (1 3 108 cfu/mL). One hour after inoculation,

two leaf discs per leaf, six per plant, were transferred to a Petri dish

containing 25 mL of purified water and placed on a shaker for 2 h. After

this washing step, the leaf discs were transferred to glass tubes contain-

ing 6 mL of purified water. The conductivity of the samples was deter-

mined using a portable conductivity meter (VWR Scientific) every 3 h for

24 h. This experiment was repeated on five experimental days, with four

to six replicates per genotype per treatment (either inoculated with Pst or

Pst avrRpt2) per day.

Results were analyzed by fitting a polynomial linear model through the

electrolyte leakage curves of individual plants and using a mixed-effect

linear model on the coefficients of these curves: Cijk ;0 þ G:Tij þ G:T:

(Tm þ Tm2þTm3þTm4)ij þ (1þ Tm þ Tm2þTm3þTm4)jPijk þ 1jRl þ eijk,

where C¼ conductivity; G ¼ genotype (fixed effect); T¼ treatment (fixed

effect); Tm ¼ time (fixed effect); P ¼ plant (random effect); R ¼ replicate

(random effect); e ¼ residual; i ¼ 0,. . .,11; j ¼ 1,2; k ¼ 1,..,336; and l ¼
1,. . .,5. To avoid convergence problems, the coefficients of the (1þ Tmþ
Tm2þTm3þTm4)jPijk random effect were assumed to be independent and

time was centered and scaled to range from �1 to 1.

RPS2 Sequencing

Six fragments were PCR amplified from DNA isolated as described by

Weigel and Glazebrook (2002) (see Supplemental Table 3 online for

primer sequences). Amplification products were sequenced using stan-

dard procedures. Per accession, the concatenated sequence of the six

fragments was compared with public sequences using BLASTN 2.2.15

(Altschul et al., 1997). DNA and protein alignments were performed using

DNASTAR MegAlign 6.1. For those accessions for which RPS2 sequence

information was (partially) available at www.ncbi.nlm.nih.gov, our se-

quence data matched these sequences.

RPS2 Expression Analysis

RPS2 expression was analyzed using qRT-PCR as by Sato et al. (2007)

from mRNA collected for gene expression profiling (see below) with

Actin2 (At3g18780) as internal reference and using three technical rep-

licates per reaction. Primer sequences are shown in Supplemental Table

4 online. Ct values of technical replicates were averaged, and from this

DCt (RPS2-Actin2) was calculated. The following fixed-effects linear

model was used to analyze the data: DCtijk ; Gi þ Tj þ G:Tij þ Rk þ eijk

(model 3), where DCt ¼ DCt; G ¼ genotype; T ¼ treatment; R ¼ RNA

replicate; e ¼ residual; i ¼ 1,..,9; j ¼ 1,2; and k ¼ 1,2,3.

The results from the linear model were used for two-tailed t tests with

BH-FDR multiple tests correction per hypothesis tested.

Gene Expression Profiling

Gene expression profiling was performed using a small-scale microarray

containing 571 gene-specific probes (miniarray, Pathoarray_464; Sato

et al., 2007). Per sample, plant mRNA was isolated from five leaves of a

single plant; leaves were mock (water) inoculated or inoculated with Pst

avrRpt2 in water at OD600¼ 0.05 (5 3 107 cfu/mL) 6 h prior to harvest. For

each of three replicate experiments, one plant per accession per treat-

ment was used. Data from individual miniarrays were normalized as

described by Sato et al. (2007) using the expression of 106 stably

expressed genes. To reduce noise, gene expression values were com-

pared with values from a negative control probe to which no Arabidopsis

or Pseudomonas mRNA should bind, using a t test on the replicates of

each genotype treatment combination, without multiple tests correction.

Only genes that were significantly different (P < 0.01) from the values of the

negative control in at least one of the genotype treatment combinations

were used for further analyses. For each gene, the following fixed-effects

linear model was used to determine which genes show significant effects

for genotype:treatment interaction: log2(Eijk) ; Gi þ Tj þ G:Tij þ Rk þ eijk,

where E ¼ expression; G ¼ genotype; T ¼ treatment; R ¼ replicate; e ¼
residual; i ¼ 1,..,9; j ¼ 1,2; and k ¼ 1,2,3.

The results from the linear model were used to determine which genes

show different treatment-dependent expression per genotype pair using
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two-tailed t tests with BH-FDR multiple tests correction. For selection of

genes varying among accessions per treatment, the raw data set was

split into two sets, each containing the raw data of one treatment. Per

treatment data set, the following fixed-effects linear model was used

to determine which genes show significant genotype effects: log2(Eik) ;
Gi þ Rk þ eik. Results from this statistical analysis were corrected for

multiple tests using BH-FDR.

Correlation Analysis Using LEGG

Nonlinear dimensionality reduction was performed using locally linear

embedding (LLE) (Roweis and Saul, 2000). LCF (Katagiri and Glazebrook,

2003) and LEGG use the same mathematical principle to generate graphs

based on the results of LLE, but they use different algorithms. Each profile

was described by m parameters. Thus, each profile can be described as

m-dimensional vector. LEGG uses the cosine correlation coefficient

(uncentered Pearson correlation coefficient) as the similarity metric. First,

for each profile vector (seed vector, ~xi ), the n nearest neighboring profile

vectors were identified (n, the number of neighboring vectors to explore;

~xi1;~xi2; . . . ;~xij ; . . . ;~xin). Second, the coefficients in the linear combination

of the neighboring vectors that have the highest similarities to the seed

vector were determined, that is, maximize ~xi �+n
j¼1 aij~xij for each i

when
�
�
�+

n
j¼1 aij~xij

�
�
� ¼ 1. This can be achieved by solving a set of simul-

taneous first-order equations for each i, Bi~ai ¼ ~pi, where Bi is an n by

n matrix of ðbjkÞi ¼ ~xij �~xik ; ~ai ¼ tðai1; ai2; . . . ; ainÞ, and ~pi ¼ tð~xi1 � ~xi ;

~xi2 � ~xi ; . . . ;~xin � ~xiÞ. The coefficients ~ai can be determined by multiplying

both sides of the equations with B�1
i from the left and then scale

for
�
�
�+

n
j¼1 aij~xij

�
�
� ¼ 1. In practice, the neighboring vectors ~xij were included

into Bi one by one in the order of similarity to ~xi, and if addition of a

particular~xij made the determinant of matrix Bi equal to 0, this particular~xij

was omitted from being included in Bi; thus, the dimensionality is reduced.

In LCF, the coefficients ~ai were determined by an optimization algorithm,

but in LEGG, they were determined explicitly as described above. This

algorithm difference made LEGG more accurate and faster than LCF.

Another difference between LEGG and LCF is that any aij was limited to

positive in LCF, but LEGG allows choices between limiting to positive and

not limiting. When aij is not limited to positive in LEGG (this was the case in

this study), by determining the neighboring vectors using the absolute value

of the cosine correlation coefficient, LEGG considers the opposite expres-

sion patterns as similar patterns. Third, directed links were made from the

neighboring profiles where the absolute values of the associated aij were

larger than a threshold value to the seed profile. The directed graph gen-

erated in this way was visualized using Pajek (http://vlado.fmf.uni-lj.si/pub/

networks/pajek/) (Batagelj and Mrvar, 1998). The Perl script for LEGG is

freely available from F.K. for noncommercial research.

Clustering of Genes Based on Expression Profiles of

Different Accessions

The squared Pearson correlation coefficient was used in average linkage,

agglomerative hierarchical clustering of the expression value profiles for

each gene across the accessions. The clustering procedure was termi-

nated at a predetermined critical correlation coefficient value (P < 0.001,

r2 > 0.81). From the resulting clusters, those that contained three or more

genes were selected. The expression pattern of each cluster was calcu-

lated by taking the means of the centered and scaled expression values of

the genes in a cluster. If genes clustered together due to negative corre-

lation, the signs of the expression values of the negatively correlating

genes were changed before taking the mean.

Accession Numbers

Expression profile depositions to the Gene Expression Omnibus are as

follows: GSE8298, GSM205842, GSM205843, GSM205844, GSM205845,

GSM205846, GSM205847, GSM205848, GSM205849, GSM205850,

GSM205851, GSM205852, GSM205853, GSM205854, GSM205855,

GSM205856, GSM205857, GSM205858, GSM205859, GSM205860,

GSM205861, GSM205862, GSM205863, GSM205864, GSM205865,

GSM205866, GSM205867, GSM205868, GSM205869, GSM205870,

GSM205871, GSM205872, GSM205873, GSM205874, GSM205875,

GSM205876, GSM205877, GSM205878, GSM205879, GSM205880,

GSM205881, GSM205882, GSM205883, GSM205884, GSM205885,

GSM205886, GSM205887, GSM205888, GSM205889, GSM205890,

GSM205891, GSM205892, GSM205893, GSM205894, and GSM205895.

The GenBank accession numbers for RPS2 sequences are EF560559 to

EF560565.
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