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ABSTRACT The emergence of language was a defining
moment in the evolution of modern humans. It was an
innovation that changed radically the character of human
society. Here, we provide an approach to language evolution
based on evolutionary game theory. We explore the ways in
which protolanguages can evolve in a nonlinguistic society and
how specific signals can become associated with specific
objects. We assume that early in the evolution of language,
errors in signaling and perception would be common. We
model the probability of misunderstanding a signal and show
that this limits the number of objects that can be described by
a protolanguage. This “error limit” is not overcome by
employing more sounds but by combining a small set of more
easily distinguishable sounds into words. The process of “word
formation” enables a language to encode an essentially un-
limited number of objects. Next, we analyze how words can be
combined into sentences and specify the conditions for the
evolution of very simple grammatical rules. We argue that
grammar originated as a simplified rule system that evolved
by natural selection to reduce mistakes in communication.
Our theory provides a systematic approach for thinking about
the origin and evolution of human language.

Language remains in the minds of many philosophers, lin-
guists, and biologists a quintessentially human trait (1-3).
Attempts to shed light on the evolution of human language
have come from many areas including studies of primate social
behavior (4-6), the diversity of existing human languages (7,
8), the development of language in children (9-11), and the
genetic and anatomical correlates of language competence
(12-16), as well as theoretical studies of cultural evolution
(17-21) and of learning and lexicon formation (22). Studies of
bees, birds, and mammals have shown that complex commu-
nication can evolve without the need for a human grammar or
for large vocabularies of symbols (23, 24). All human languages
are thought to possess the same general structure and permit
an almost limitless production of information for communi-
cation (25). This limitlessness has been described as “making
infinite use of finite means” (45). The lack of obvious formal
similarities between human language and animal communica-
tion has led some to propose that human language is not a
product of evolution but a side-effect of a large and complex
brain evolved for nonlinguistic purposes (1, 26). Others suggest
that language represents a mix of organic and cultural factors
and, as such, can only be understood fully by investigating its
cultural history (16, 27). One problem in the study of language
evolution has been the tendency to identify contemporary
features of human language and suggest scenarios in which
these would be selectively advantageous. This approach ig-
nores the fact that if language has evolved, it must have done
so from a relatively simple precursor (28, 29). We are therefore
required to provide an explanation that proposes an advantage
for a very simple language in a population that is prelinguistic
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(30-32). This work can be seen as part of a recent program to
understand language evolution based on mathematical and
computational modeling (33-37).

The Evolution of Signal-Object Associations. We assume
that language evolved as a means of communicating informa-
tion between individuals. In the basic “evolutionary language
game,” we imagine a group of individuals (early hominids) that
can produce a variety of sounds. Information shall be trans-
ferred about a number of “objects.” Suppose there are m
sounds and n objects. The matrix P contains the entries py,
denoting the probability that for a speaker object i is associated
with sound j. The matrix Q contains the entries gj, which
denote the probability that for a listener sound j is associated
with object i. P is called “active matrix,” whereas Q is called
“passive matrix.” A similar formalism was used by Hur-
ford (22).

Imagine two individuals, 4 and B, that use slightly different
languages L (given by P and Q) and L’ (given by P’ and Q).
For individual 4, p; denotes the probability of making sound
J when seeing object i, whereas g;; denotes the probability of
inferring object i when hearing sound j. For individual B, these
probabilities are given by p’; and q’;;. Suppose A sees object
and signals, then B will infer object i with probability 3 \p;q’;i.
A measure of A’s ability to convey information to B is given by
summing this probability over all objects (n). The overall
payoff for communication between 4 and B is taken as the
average of A’s ability to convey information to B, and B’s ability
to convey information to 4. Thus,

1 n m
F(L,L") = 5 > (Piq'si + P39 [1]

i=1j=1

In this equation, both L and L' are treated once as listener and
once as speaker, leading to the intrinsic symmetry of the
language game: F(L,L") = F(L',L). Language L obtains from
L' the same payoff as L' obtains from L. If two individuals use
the same language, L, the payoff is F(L,L) = X/-13"=1p;q;i.

Hence, we assume that both speaker and listener receive a
reward for mutual understanding. If for example only the
listener receives a benefit, then the evolution of language
requires cooperation.

In each round of the game, every individual communicates
with every other individual, and the accumulated payoffs are
summed up. The total payoff for each player represents the
ability of this player to communicate information with other
individuals of the community. Following the central assump-
tion of evolutionary game theory (38), the payoff from the
game is interpreted as fitness: individuals with a higher payoff
have a higher survival chance and leave more offspring who
learn the language of their parents by sampling their responses
to individual objects.

Fig. 1 shows a computer simulation of a group of 100
individuals. Initially, all individuals have different random
entries in both active and passive matrices. After some rounds,
specific sounds begin to associate with specific objects. Even-
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Fic. 1. Emergence of a protolanguage in an initially prelinguistic
society. The population consists of 100 individuals. Each of them starts
with a randomly chosen P and Q matrix. There are five objects and five
signals (sounds). In one round of the game, every individual interacts
with every other individual and the payoff of all interactions is
evaluated according to Eq. 1. The total payoff of all individuals is
calculated. For the next round, individuals produce offspring propor-
tional to their payoff. Children learn the language of their parents by
sampling their responses to each object. The figure shows the popu-
lation average of the P matrix; the radius of the circle is proportional
to the corresponding entry. Initially, all entries are about 0.25. After
five generations some initial associations begin to form, which become
stronger during subsequent rounds. At¢ = 20, each object is associated
with one signal. Signal 1, however, is used for two objects, whereas
signal 5 is not used at all. This solution is suboptimum but evolution-
arily stable. Interestingly, errors during language acquisition increase
the likelihood of reaching the optimum solution (M.A.N., J. Plotkin,
and D.C.K., unpublished work).

tually each object is exactly associated with one signal. The
simulation shows how a protolanguage can emerge in an
originally prelinguistic society.

For m = n, the evolutionary optimum is reached if each
object is associated with one specific sound and vice versa.
Evolution does not always lead to the optimum solution, but
certain suboptimum solutions, in which the same signal is used
for two (or more) objects, can be evolutionarily stable.

A Linguistic Error Limit. Below, we discuss two essential
extensions of the basic model. First, we include the possibility
of errors in perception: early in the evolution of communica-
tion, signals are likely to have been noisy and can therefore be
mistaken for each other (39). We denote the probability of
interpreting sound i as sound j by u;. The payoff for L
communicating with L' is now given by

1 n m m m
F(L,L") = 5 E E Pi E Ujqii | T D E Ujiq ki
i=1j=1 k=1 k=1

[2]

The probabilities, u;;, can be expressed in terms of similarities
between sounds. We denote the similarity between sounds i
and j by s;. We obtain u; = s;;/2;"~15i. As a simple example,
we assume the similarity between two different sounds is
constant and given by s; = €, whereas s; = 1. In this case, the
probability of correct understanding is u; = 1/[1 + (m — 1)g].
The maximum payoff for a language with m sounds (when
communicating with another individual who is using the same
language) is given by F(m) = X" u;, and therefore F(m) =
m/[1 + (m — 1)e]. The fitness, F, is an increasing function of
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m converging to a maximum value of 1/ for large values of m.
Without error, we would have F(m) = m. Thus, in the presence
of error, the maximum capacity of information transfer is
limited and equivalent to what could be achieved by 1/& sounds
without error.

Next, we assume that objects can have different values, a;.
(For example when a leopard represents a higher risk than a
python, the word “leopard” may be more valuable than
“python.”) We have F(m) = [1 + (m — 1)e]" 13" 1a;, where
the objects are ranked according to their value, a; > as >. . ..
This fitness function can adopt a maximum value for a certain
number m and decline if the value of m becomes too big. In this
case, natural selection will limit the number of sounds used in
the language and consequently also limit the number of objects
described. Fig. 2 shows a computer simulation of this extended
evolutionary language game. The final outcome is a language
that uses only a subset of all available sounds to describe the
most valuable objects.

The principal result of the extended model, including mis-
understanding, is that of a “linguistic error limit”: the number
of distinguishable sounds in a protolanguage, and therefore the
number of objects that can be accurately described by this

U‘I
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FiG. 2. Evolution of protolanguage in the context of misunder-
standing. There are 20 objects and 40 sounds, but evolution leads to
a language that uses only 9 sounds to describe 11 objects. Sounds are
represented on a linear spectrum by numbers between 0 and 1. The
similarity between two sounds, x; and x;, is given by s; = exp(—afx; —
xj|). For the computer simulation, m sounds are randomly chosen from
a uniform distribution on (0,1). Objects have different values, a;,
chosen from a uniform distribution on (0,1). The payoff for language
L against L’ is given by Eq. 2. In this simulation, we do not model
individual players but simply evaluate whether or not a mutant
language will be able to invade and replace the existing language. The
simulation is started with a language L whose active matrix P has
random elements p; sampled from a uniform distribution on (0,1) and
normalized such that all rows have a sum of one. The passive matrix
Q is derived from the active matrix: ¢; = p;/Zp;. Then a mutant
language L' is produced. If F(L',L) < F(L,L), then L’ cannot invade.
Another mutant is generated. If F(L',L") > F(L',L) > F(L,L), then L’
can invade and take over. The original language L is replaced by L'.
The simulation searches for mutants that can replace L’. (It is also
possible, though very rare, that F(L',L) > F(L,L), but F(L',.L') <
F(L,L"). In this case, there would be a stable equilibrium between L
and L’ and the simulation would stop.) The figure shows the final
outcome after 100,000 different mutants, but the basic structure of the
language is already present after 4,000 mutants. The x axis indicates the
different sounds sorted according to their x; value; the y axis indicates
objects ranked according to their a; value (20 being the most valuable).
The 11 most valuable objects (y axis) are associated with nine different
sounds (x axis). One sound is used for three different objects (including
the two least valuable objects described by the language). The sounds
seem ideally selected to minimize their similarity. Parameter values:
a = 2,n = 20, m = 40; mutation process: all p; values between 0 and
1 are randomly changed within an interval * 0.01; with probability
0.001, any p;; is changed to 0 or 1; with probability 0.001, a whole
column or a whole row of the P matrix is changed into 0. The mutation
rules are designed to provide enough chance to gain or lose sounds or
objects.
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language, is limited. Adding new sounds increases the number
of objects that can be described but at the cost of an increased
probability of making mistakes; the overall ability to transfer
information does not improve. This obstacle in the evolution
of language has interesting parallels with the error-threshold
concept of molecular evolution (40). The origin of life has been
described as a passage from limited to unlimited hereditary
replicators, whereas the origin of language as a transition from
limited to unlimited semantic representation (41).

Word Formation. The way to overcome the error limit is by
combining sounds into words. Words are strings of sounds. As
before, we define the fitness of a language as the total amount
of successful information transfer. The maximum fitness is
obtained by summing over all probabilities of correct under-
standing of words. For a language with m sounds (phonemes)
and a word-length /, the maximum payoff is given by F(m,l) =
m![1 + (m — 1)&]~/, which converges to 1/& for large values
of m, thus allowing a much greater potential for communica-
tion. This equation assumes that understanding of a word is
based on the correct understanding of each individual sound.

More realistically, we may assume that correct understand-
ing of a word is based (to some extent) on matching the
perceived string of phonemes to known words of the language.
Consider a language with N words, w;, which are strings of
phonemes: w; = (x;z, X;2. . . x;;). For m different phonemes there
are m' possible words. A particular language will contain a
subset of these words, N = m!. We define the similarity
between two words as the product of the similarities between
individual phonemes in correspondmg posmons The similar-
ity between word w; and w; is S = Hk 18ii(k), where s;(k)
denotes the similarity between the k-th phonemes of words w;
and w;. The probability of correctly understandmg word w; is
P = 1/2}",15,](7,, where o; = 1 if word w; is part of the
language, and o; = o if word w; is not part of the language. The
parameter ¢ is a number between 0 and 1 and specifies the
degree to which word recognition is based on correct under-
standing of every phoneme versus understanding of the whole
word. If o = 0, then each word is only compared with every
other word that is a part of the language; correct understanding
of a word consists in comparing the perceived word with all
other words that are part of the lexicon. An implicit assump-
tion here is that individuals have perfect knowledge of the
whole lexicon. If o = 1, then every word is compared with
every other possible word that can be formed by combining the
phonemes. Correct understanding of a word requires a correct
identification of each individual phoneme. The listener does
not need to have a list of the lexicon. A value of o between 0
and 1 blends these two possibilities. In this case, recognition of
a word is to some extent based on identification of each
individual phoneme and to some extent on identification of the
word selected from the list of all words that are contained in
the langu age. The maximum payoff for such a language is given
by F = %;_P; (Fig. 3).

Comblnmg sounds into words leads to an essentially unlim-
ited potential for different words. This step in language
evolution can be seen as a transition from an analogue to a
digital system. The repertoire is not increased by adding more
sounds, but by combining a set of easily distinguishable sounds
into words. In all existing human languages, only a small subset
of the sounds producible by the vocal apparatus are employed
to generate a large number of words. These words are then
used to construct an unlimited number of sentences. The
crucial difference between word and sentence formation is that
the first consists essentially of memorizing all (relevant) words
of a language, whereas the second is based on grammatical
rules. We do not memorize a list of all possible sentences.

The Evolution of Basic Grammatical Rules. The next step in
language evolution is the emergence of a basic syntax or
grammar. Recall that by combining sounds into words, the
protolanguage achieves an almost limitless potential for gen-
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erating words with the power of describing a large number of
objects or actions. Grammar emerges in the attempt to convey
more information by combining these words into phrases or
sentences. Simply naming an object will be less valuable than
naming it and describing its action. (A leopard can be stalking,
in which case it is a serious risk, or merely sleeping and thereby
posing a lesser risk.) There is an obvious advantage to de-
scribing both objects and actions. Suppose there are n objects
and / actions; there are nk possible combinations, but only a
fraction, ¢, of them may be relevant (for example: leopard
runs; monkey runs; but not banana runs). A “nongrammatical”
approach would be to conceive N = ¢nh different words for all
combinations. A “grammatical” approach would be to have n
words for objects (i.e., nouns) and 4 words for actions (i.e.,

a 20]
« 16.
* >~
2 12]
O
ms:r—\
4]
20 40 60 80 100
b 20] 6 7 8 ¢

20 40 60 80 100

20 40 60 80 100
Objects

FiG. 3. Word formation can overcome the error limit. Suppose
there are n = 100 objects with values a; uniformly distributed between
0 and 1. (a) Without word formation, each object is described by one
sound. The similarity between different sounds is &. The maximum
payoff of a language with m sounds is given by F = [1 + (m —
1)e] 1372 a;, where the g; are ranked in descending order. In our
example, ¢ = 0.2. The maximum payoff is obtained if the 28 most
valuable objects are being described by individual sounds. All other
objects are ignored. (b) As a simple example of word formation, we
consider that each word consists of two sounds. The maximum payoff
of a language with m sounds is F = [1 + (m — 1)&] 23 ,a;, where M
is the smaller of m? or n. In this model, correct identification of a word
requires correct understanding of each individual sound. The figure
shows the payoff curves for languages that have m = 2 to 10 different
sounds. For each language, it is best to make use of the whole
repertoire, that is, to use all m? combinations as words. The maximum
payoff is achieved for m = 7, which leads to 49 words describing 49
objects. (¢) A more sophisticated theory of word recognition assumes
that correct understanding of a word is based on matching the
perceived sequence of sounds to all combinations that are thought to
be part of the lexicon of the language. For our example, we find that
the maximum fitness is obtained for m = 11 sounds, when 52 of the
121 possible combinations are used as words. A smaller or higher
number of sounds, m, leads to a lower maximum fitness. If longer
words are being admitted, then both cases (b and c) lead to optimum
solutions that describe a larger fraction of all objects.
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verbs). Let us compare the fitness of grammar and non-
grammar.

Again, we will include errors, this time as a probability to
mistake words, which can include acoustic misunderstanding
and/or incorrect assignment of meaning. The maximum fitness of
a nongrammatical language with N different words is F,, = N/[1
+ (N — 1)&]. The maximum fitness for a grammatical language
isFe=N/{[1+ (n—1)&[1 + (h — 1)&]}. Here, &is the similarity
between words. In the nongrammatical language, each event is
described by one word, and correct communication requires that
this word is distinguished from N — 1 other words. The gram-
matical language uses two words for every event: we can say that
nouns describe objects and verbs describe actions. Each noun has
to be distinguished from n — 1 other nouns, and each verb from
h — 1 other verbs. Whether grammar wins in the evolutionary
language game depends on the number of combinations of nouns
and verbs that describe relevant events. F, > F,,, leads to

N-n—-h+1
§<§max_(n_1)(h_l)' [3]

If there is no possibility of mistakes (¢ = 0), then there is no
difference between grammar and nongrammar. If there are too
many mistakes (§ > &max), then grammar is disadvantageous.
Between these two limits, there is a “grammar zone” (0 < & <
&max), where grammar has a higher fitness than nongrammar.

From Egq. 3, it follows that a necessary condition for
grammar to win is

N=n+h. [4]

The number of events must exceed (or equal) the sum of nouns
and verbs that can be constructed to describe these events. In
other words, a grammatical system is favored only if the number
of relevant sentences (that individuals want to communicate to
each other) exceeds the number of words that make up these
sentences. Note that the main difference between grammar and
nongrammar is not to use one or two words for each event, but
the number (and types) of rules that need to be remembered for
correct communication. Grammar can be seen as a simplified rule
system that reduces the chances of mistakes in implementation
and comprehension and is therefore favored by natural selection
in a world where mistakes are possible.

Thus far, we have specified only those conditions conducive for
grammar to have a higher fitness than nongrammar. We can also
formulate a model describing how grammar can evolve gradually
by natural selection (see Fig. 4 and Appendix).

The model can be extended in many ways. For example, events
can consist of one action and several objects. Objects may be
associated with properties, giving rise to adjectives. Events can
have similar associations, giving rise to adverbs. The essential
result is that a grammatical language that has words for each
component of an event receives a higher payoff in the evolution-
ary language game than a nongrammatical language that has
words (or a string of words) for the whole event. In this context,
the grammar of human languages evolved to reflect the “gram-
mar of the real world” (that is, the underlying logic of how objects
relate to actions and other objects).

Conclusions. In this paper, we have outlined simple mathe-
matical models that provide new insights into how natural selec-
tion can guide three fundamental, early steps in the evolution of
human language.

The question concerning why only humans evolved language is
hard to answer. Interestingly, however, our models do not suggest
that a protolanguage will evolve under all circumstances but
outline several obstacles impeding its emergence. (i) In the
simplest model (Fig. 1), signal-object associations form only
when information transfer is beneficial to both speaker and
listener. Otherwise, the evolution of communication requires
cooperation between individuals. Thus, cooperation may repre-
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sent an important prerequisite for the evolution of language. (ii)
In the presence of errors, only a very limited communication
system describing a small number of objects can evolve by natural
selection (Fig. 2). We believe that this error limit is where most
animal communication came to a stop. The obvious means to
overcome this limit would be to use a larger variety of sounds, but
this approach leads into a cul-de-sac. A completely different
approach is to restrict the system to a subset of all possible sounds
and to combine them into “words” (Fig. 3). (iif) Finally, although
grammar can be an advantage for small systems (Fig. 4), it may
become necessary only if the language refers to many events.
Thus, the need for grammar arises only if communication about
many different events is required: a language must have more
relevant sentences than words. It is likely that for most animal
communication systems, the inequality (4) is not fulfilled.

We view this paper as a contribution toward formalizing the
laws that governed the evolution of the primordial human lan-
guages. There are, of course, many important and more complex
properties of human language that we have not considered here
and that should ultimately be part of an evolutionary theory of
language. We argue, however, that any such theory has to address
the basic questions of signal-object association, word formation,
and the emergence of a simple syntax or grammar, for these are
the atomic units that make up the edifice of human language.

APPENDIX

Consider two objects, O; and O, that can cooccur with two
actions, A and A,. Thus, there are four events, 0141, 041, O1A4,,
and O»A4,. The nongrammatical approach is to describe each
event with a separate word, W;—W,. The grammatical approach
is to have separate words for objects, Ny and N,, and actions, V;
and V,. Consider mixed strategies that use the grammatical
system with probability x. The active matrix, P, is given by

il-x 0 0 0 x 000
0 1-x 0 0 0x 00
P=l o 0 1=x 0 00 x 0
O 0 0 1-x 00 0 x

The rows correspond to the four events: 0141, 0241, 0142, and
0,A,. The columns correspond to the eight signals: Wy, W), W3,
Wa, N\V1, N2V, NiVa, and Nobs. The pure strategies, x = 0 and
x = 1, describe nongrammar and grammar, respectively. The
passive matrix, Q, is obtained by replacing all nonzero entries in
P by 1 (and transforming this matrix). Note that mixed strategies,
0 < x < 1, have eight nonzero entries, whereas pure strategies
have only four nonzero entries in both P and Q. Thus, mixed
strategies have the possibility to understand both grammar and
nongrammar, whereas the two pure strategies do not understand
each other. Finally, we include the possibility of errors, either in
implementation or comprehension. The error matrix is given by

m méE mé mé

mé m mé mié

0 0 0
0 0 0
mé méE ;o mé 0 0 0
0 0 0

o o o O

mé mé mé m

0 0 0 0 M MmE Mé 7)252

0 0 0 0 méE M n2§2 2§
0 0 0 0 mé 77252 N2 M€
0 0 0 0 ”flzgz méE M€ M
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Linguistic Precursor
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OZAZ N2v2
Grammar
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x 0 Q 0
0 x 0 o]
0 0 x 0
Q 0 0 x
C
Adaptive dynamics
Nongrammar Grammar
x =0 x = 1
Pure ESS Pure ESS

Mixed Strategies

F1G. 4. Grammar can evolve by natural selection. (¢) Imagine a simple protolanguage describing two objects, O1 and O», by two words, W; and
W>. Suppose each object can occur with two actions, A1 and A». Thus, there are four events, O1A41, 0241, O1A42, and 024>, that are described by
two words. However, simply specifying the object may be less valuable than specifying the object and describing its action. Therefore, the language
can be improved by distinguishing between all 4 events. This improvement can happen in two ways: (i) a nongrammatical approach is to specify
four words, W1-Wj, for these events; (ii) a grammatical approach is to have two words, N1 and N> (nouns), for the objects and two words, V1 and
V> (verbs), for the actions. (b) The active matrix, P, for a range of mixed strategies that use the grammatical or the nongrammatical approach with
probability x. The pure strategies are nongrammar (x = 0) and grammar (x = 1). (¢) Both nongrammar and grammar are evolutionarily stable
strategies (ESS), but every mixed strategy, x, is dominated by all mixed strategies, y, with y > x. The adaptive dynamics (42-44) flow from

nongrammar to grammar.

Here, & is the similarity between words or the fraction of times
a word is mistaken or misimplemented for another. We used
m = 1/(1 + 3¢ and n, = 1/(1 + &> We assume that the
nongrammatical one-word sentences are not confused with the
grammatical two-word sentences. The error matrix specifies
the crucial difference between grammar and nongrammar.
The system can be completely understood in analytic terms.
The payoff for language x communicating with language y is
given (with Eq. 2) by: F (x,y) = (2 —x — y)fi + (x +y)f>, where
fi=4/(1 + 3¢ and f> = 4/(1 + £ These equations hold for
x andy between 0 and 1. Otherwise, we have F(x,0) = F(0x) =
(2 — x)f1 and F(x,1) = F (1x) = (1 + x)f>. The payoffs for
nongrammar and grammar are, respectively, F(0,0) = 2f; and
F(1,1) = 2f,. Because f; < f; and f> < 2f}, we have the following
interesting dynamics: both x = 0 and x = 1 are evolutionarily

stable strategies that cannot invade any other strategy, but
every mixed strategy, x, is invaded and replaced by every other
strategy, y, if x <y < 1. Thus, the adaptive dynamics flow
toward grammar. Alternatively, one can also assume that the
pure strategies can understand each other, that is, the passive
matrices of all strategies are the same; in this case, grammar
(x = 1) is the only evolutionarily stable strategy and can beat
every other strategy.
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