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ABSTRACT We apply the diagrammatic method developed by Hill (1977. Free 
Energy Transduction in Biology. Academic Press, New York) to analyze single-file 
water transport. We use this formalism to derive explicit expressions for the osmotic 
and diffusive permeabilities Pf and Pd of  a pore. We first consider a vacancy 
mechanism of transport analogous to the one-vacancy pore model previously used 
by Kohler and Heckmann (1979. J. Theor. Biol. 79:381-401). (a) For the general 
one-vacancy case, we find that the permeability ratio can be expressed by Pf/Pd = 
(Pf/Pa)~qf( w A, WB), where the second factor is a function of  the water activities in the 
two adjoining compartments A and B. As a consequence, the permeability ratio in 
general can effectively differ from its value at equilibrium. We also find that n - 1 < 
(Pf/Pa)~q < n, a result already proposed by Kohler and Heckmann (1979.J. Theor. 
Biol. 79:381-401). (b) When vacancy states are transient intermediates, the model 
can be reduced to a diagram consisting of only fully occupied states. Such a diagram 
resembles the one describing a no-vacancy mechanism of transport (c), but in spite 
of  the similarity the expressions obtained for the permeability coefficients still retain 
the basic relationships of  the original (a) nonreduced one-vacancy model. (c) We 
then propose a kinetic description of  a no-vacancy mechanism of single-file water 
transport. In this case, the expressions derived for Pf and I'd are formally equivalent 
to those obtained by Finkelstein and Rosenberg (1979. Membrane Transport  
Processes. Vol. 3. C.F. Stevens and R.W. Tsien, editors. Raven Press, New York. 
73-88.) A main difference with the vacancy mechanism is that here the permeability 
coefficients are independent of  the water activities. 

I N T R O D U C T I O N  

Descriptions o f  the rate o f  water movement  across biological membranes  have usually 
involved the determinat ion o f  permeability coefficients for water. The  diffusive 
permeability o f  water, Pd, is often obtained as the ratio between a net  water tracer flux 
and the tracer concentrat ion difference under  the condit ion of  water equilibrium. 
The  osmotic permeability coefficient, Pf, is defined as RTLp/Vw, where R is the 
universal gas constant, T the temperature  in kelvin, Vw the partial molar  volume of  
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water, and Lp the hydraulic permeability coefficient per unit area of the membrane. 
In this context, Lp is obtained as the ratio between a water volume flow and the 
osmotic (or hydrostatic) pressure difference. The significance of these permeability 
coefficients in terms of molecular mechanisms of water permeation has become a 
matter of controversy. Thus, the interpretation of data on the Pf/Pd ratio in human 
erythrocytes using macroscopic hydrodynamic theories leads to conclusions about the 
water pore dimensions that have been questioned (Galey and Brahm, 1985). This is 
because hydrodynamic models (Solomon, 1968) assume that water is a smooth, 
continuous fluid and that water transport through pores can be represented by 
Poiseuille-type flow. This could be an accurate description for pores with radii several 
times larger than that of water. For pores with smaller radii, such models may not 
adequately represent the possibly discrete nature of the mechanism of transport of 
water molecules, and therefore could not constitute proper  descriptions to interpret 
macroscopic determinations, such as diffusive and osmotic permeabilities. 

For the limiting case of single-file pores, continuum models have been used (Levitt, 
1974; Finkelstein and Rosenberg, 1979) to derive expressions for Pd and Pf. The 
basic assumption underlying these types of dynamical descriptions is that the water 
pores are constantly completely filled with water molecules. In this "no-vacancy" 
mechanism, molecules are packed together inside the pore. As a consequence, during 
the transport process the pore contents are displaced as a whole. Hence, individual 
molecules are not free to move back and forth to vacant positions, but are forced to 
move by the pushing of the neighboring molecules. These models derive expressions 
in the near-equilibrium region, as emerges from the fact that derivations depend on 
the exact balancing of the forces involved in volume displacement in the diffusive and 
osmotic processes. However, as we discuss below, since the "independence principle" 
holds, the permeability coefficients are not affected by the water activities in the 
compartments. Therefore, the permeability ratio remains constant arbitrarily away 
from equilibrium. These models provide explicit expressions for I'd and Pf that could 
result in accurate interpretation of the transport properties of some pores, like the 
gramicidin A pore, provided that the transport process only takes place by this 
no-vacancy, or hydrodynamic, mechanism. The formalism of linear irreversible 
thermodynamics has also been used to derive expressions for the water permeabilities 
(Levitt, 1984), which have basically confirmed the results obtained with the dynamical 
continuum theories. 

On the other hand, if the single-file water pore consists of a nonuniform structure 
and the transport process takes place by a vacancy mechanism, a discrete description 
will be more appropriate than a continuous model. In such a type of mechanism, the 
movements of the molecules can be envisaged as '~jumps" over energy barriers 
between adjacent positions, from an occupied position to a vacant one. A description 
of this type of diffusion in nonuniform media is provided by the kinetic formalism. 
The basic general aspects of a kinetic model of a tracer-main isotope transport 
process through a single-file pore mediated by vacancies have been analyzed by 
Kohler and Heckmann (1979, 1980). Although expressions for the permeabilities of 
the two species are not explicitly derived, these authors examine the restrictions that 
govern the unidirectional flux ratio, directly related near equilibrium to the perme- 
ability ratio (Hille and Schwartz, 1978). Our purpose in this paper is to show how the 
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kinetic formalism can provide an alternative way to interpret experimental data 
about water permeability which is more general than the classical continuous 
descriptions. 

In the first part, we derive explicit steady-state kinetic expressions for Pd and Pr 
from the analysis of a single-file model of water transport formally analogous to the 
one-vacancy model studied by Kohler and Heckmann (1979). We show there, in 
particular, that the relation (Pf/Pd) ~ n, where n is the number of positions inside the 
pore, is strictly valid for this kind of  pore only in the near-equilibrium region, and 
that far from equilibrium the permeability ratio can be larger than n. We comment on 
this result because of the previous idea that this ratio would not exceed n (Finkelstein, 
1987). We also obtain here expressions for the permeability coefficients in the 
particular case of the uniform pore. 

In the second part of the paper we analyze the model under the assumption that 
the vacancy pore states are transient intermediates. Under this condition, the kinetic 
model can be "reduced" to a diagram of only fully occupied pore states, where the 
new kinetic constants are complicated functions of the primitive constants. Although 
this reduced model resembles the description of the permanently fully occupied 
pore, the rate constants are overall entities with complex internal structure. Analyzed 
in their explicit expressions, the permeability coefficients obtained in this case retain 
the basic relationships of the original nonreduced model. This is a consequence of 
the fact that although vacancies are not made explicit in the reduced diagram, their 
existence remains as the basic mechanism involved in this type of transport process. 

In the third part we describe the water tracer transport process through a 
permanently completely filled, single-file pore. We obtain the expressions for the 
permeability coefficients of this type of pore, which turn out to be formally analogous 
to the ones derived by Finkelstein and Rosenberg (1979). We also discuss the fact that 
in this no-vacancy mechanism the permeability coefficients are independent of the 
water activities in the compartments, and therefore that the ratio Pf/Pd remains 
constant arbitrarily away from equilibrium. Finally, we compare the expressions 
obtained with those of the one-vacancy uniform pore. 

In general, the basic assumption implicit in the kinetic description of water 
transport through pores is that this process can be adequately represented by the 
movement of molecules between well-defined sequential positions inside the pore. 
The definition of positions permits us to establish a correspondence between a 
particular position of the water tracer molecule and/or  the available vacancy, and a 
particular state in the kinetic diagram. Accordingly, the rate constants of transition 
between states can be related to the rate constants of displacement between positions. 
Throughout  the paper, the kinetic formalism developed by Hill (1977) provides the 
basic technique for the derivation of the steady-state expressions. 

THE ONE-VACANCY S I N G L E - F I L E  WATER PORE:  GENERAL 
K I N E T I C  MODEL 

A membrane separating two aqueous compartments, A and B, is traversed by a total 
number /V of identical pores that contain, when saturated, a single file of water 
molecules located at n fixed positions inside each pore. In the time scale of the 
model, at most only one vacancy can exist per pore. Since vacancies are formed at the 
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posit ions in contact with the two compartments ,  this assumption is justified by the 
very large activity of  water in most  aqueous solutions (Kohler and Heckmann,  1980). 
Each compartment  contains a very small concentration o f  a tracer (labeled water 
molecules)  that has diffusive properties  identical to those of  c o m m o n  (unlabeled) 
water molecules .  Since the tracer concentrations are negligible,  there is at most  only 
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FIGURE 1. The one-vacancy kinetic model of labeled and unlabeled water diffusion through a 
single-file pore. x, vacancies; open circles, positions occupied by unlabeled water molecules; 
filled circles, positions occupied by labeled water molecules. Compartment A is assumed to be 
on the left side, compartment B on the right side. Solid lines are actual transitions; dashed lines 
summarize many intermediate pore states. Positions (sites) within the pore are numbered 1, 
2 . . . . .  n from A to B. See text for further details. 

one  tracer per pore. T o  pass from one  compartment  to the other, a tracer molecule  
must  sequentially "hind" to the n sites along the pore.  From these considerations,  the 
kinetic diagram shown in Fig. 1 describes the process o f  diffusion o f  tracer and 
c o m m o n  water molecules  across the .~-pore ensemble .  This  m o d e l  is formally 
identical to the one  analyzed by Kohler and H e c k m a n n  (1979).  
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contex t  o f  the  analysis p e r f o r m e d  here,  the symbols r ep re sen t  the  following: 

rate constants of binding from compartments A and B 
rate constants of release to compartments A and B 
total number of saturated pores in state Ni, with the tracer located in the ith site 
( i=  1, 2 . . . . .  n) 
total number of saturated pores in state No, without a tracer molecule 
total number of pores in state N#, having the tracer at the ith site and the vacancy 
at the j th  site ( j  = 1, 2 . . . . .  n) 
total number of pores in state Noj, without a tracer having the vacancy at the j th  site 
water activities in compartments A and B 
tracer activities in compartments A and B 

To  avoid over load ing  Fig. 1, the d i ag ram has been  drawn simplifying t ransi t ions 
No. . . . . .  N01 and  Ni . . . . .  Ni+b which consist of  in t e rmed ia te  successive steps. Every 
t ransi t ion Ni . . . . .  Ni+l, for i = 1, 2 . . . . .  n - 1, actually consists of  the  following n + 
1 steps: 

kn(n+l) kn (n - 1).,., kl2 kol 
Ni "~---~ k.~._,~ X " - '  " " " X2 ~ XI ~,oNi+I 

where  Xj represen t s  a state with the vacancy at the j t h  site. U n d e r  the assumpt ions  of  
the  model ,  ki(i+l) and  k(i+l)i (for i = 1, 2 . . . .  n - 1) can be cons ide red  as the  rate  
constants  of  d i sp lacement  (of e i ther  un labe led  or  labe led  water  molecules)  between 
posi t ions  i and  i + 1 in the  A to B and  B to A direct ions,  respectively.  We have also 
def ined:  

kol = bAWA, 

kl0 = rA, 

k,( ,+l) = r~, and  (1) 

k(n+l)n = bBWB 

In turn,  t ransi t ion No. . . . . .  N01 actually consists of  

k(n_])~ k~2 

Non k~(,_~)N0("-I) " " "N02 ~ N01 
k2~ 

T h e  kinetic scheme of  Fig. 1 involves th ree  d i ag ram cycles, n a m e d  a, b, and  c, 
which are  shown in Fig. 2. T h e  t racer  and  (common)  water  fluxes can be expressed  in 
terms o f  the co r r e spond ing  cycle fluxes. In  A p p e n d i x  I, we show the ma in  steady- 
state express ions  ob ta ined  f rom the analysis o f  the  mode l  by us ing the a lgor i thmic  
m e t h o d  deve loped  by Hill  (1977) and  by impos ing  the necessary the rmodynamic  
restrict ions.  F r o m  the results  shown there,  we now derive expl ici t  express ions  for the 
t racer  and  water  permeabi l i t ies .  

F rom Eqs. A2-A5,  the water  permeabi l i ty  for the  condi t ion  Ca = cB -- 0 is given by 

Pw = N~r/l~b (2) 

When  WA = WB ---- W, we obta in  the  t racer  permeabi l i ty  for water  equi l ibr ium from 
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Eqs. A6-A1 1 as 

P~ = IQ(~'w)"-l[LrArBbAbBw + w(r A + rB)]/(~) w (3) 

Considering the assumptions for the derivation of Eqs. 2 and 3, we may establish 
the following relations: 

P f = P ,  and Pd=Pt r  (4) 

From Eqs. 2--4, and using the relations obtained in Appendix I, we can express the 
permeability ratio by 

(f~b)w[(n -- 1)rArBbAbBwL + n (r^ + rB)'rr] 
Pf/Pd = flb[rxrBbAbBwL + (rA + rB)xr] (5) 

N O 

/ \  
No, No, 

No N 1 
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NoT . . . . . . . . .  No1 
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N O  n- . . . . . . . .  N01 

Nn Nl 

\ 
/ /  

a c 

FIGURE 2. The three cycles arising from the kinetic diagram of Fig. 1. J~, Jb, and Jc are the 
cycle fluxes, taken positive in the clockwise direction. 

W h e n / 3 )  A = /-/)B ~" W~ ~"~b "~ (~o)w, a n d  w e  o b t a i n  t h e  near-equilibrium permeability 
ratio: 

(P~/Pd)~ = 

From Eq. 6 we deduce that 

[(n - 1)rArBb^b~wL + n (rA + rB)~r] 

[rArBbabBwL + (rA + rB)rr] 
(6) 

n - 1 <_ (Pf/Pd)oq <- n (7) 

a result already encountered from considerations about the restrictions imposed on 
the unidirectional flux ratio of the permeating species in the particular case of 
single-file transport (Hille and Schwartz, 1978; Kohler and Heckmann, 1979). 

From Eqs. 5 and 6, we can express the permeability ratio by 

Pf/  P d = ( Pr/ P d)~q[ ( I~b)w/ D~] (8) 
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T he  term (~b)w/l'~ b, a function o f  WA and wB, determines the effective difference 
between the actual permeability ratio Pf/Pd and the limiting values defined by Eq. 7. 
From Eqs. A4 and A5 we see that, expressed in terms of  c o m m o n  factors containing 

the water activities, D. b is of  the form R~wAwB + R2WA + R3wB + R4, where R~ . . . .  , R 4 

are functions o f  the rate constants. Hence, (D~)w is given by Rlw ~ + (R~ + R3)w + R4. 
Therefore,  if WA = W and wB < w, then (D~o)w/l'l b > 1, and Pf/Pd can be larger than n. 
This result is a direct consequence o f  the fact that, in this discontinuous diffusion 
process, the permeability coefficients depend  on the water activities. We comment  on 
this proper ty  below, when compar ing  this model  with the no-vacancy pore model.  

We define the uniform pore as the one where 

ki(i+l) = k(,+j), = k (for all i = 1, 2 . . . . .  n - 1), 

rA = rB = k, and (9) 

bA = bB = k/w 

where w is the activity o f  pure water. 
Substitution of  these definitions (Eq. 9) into Eq. 2 allows us to obtain 

N(k /w)  

Pr = {(n - 1)WAWB/W 2 + [(n ~ -- n + 2)/2](WA + Wa)/W + 2n} (10) 

Analogously we obtain, from Eq. 3, 

N(k /w)  
Pd = (n ~ + 1)(n + 1) (11) 

Therefore,  the near-equilibrium osmotic permeability is given, for the uniform 

one-vacancy pore, by 

N(k/w)  
(Pr)eq - (n + 1)------~ (12) 

From Eq. 6, and also from Eqs. 11 and 12, the near-equilibrium permeability ratio 
becomes, in this case, 

(Pf/Pd)~ = ( n2 + 1)/(n + 1) (13) 

Hence, for a sufficiently large n, the one-vacancy uniform pore model  exhibits a 
near-equilibrium permeability ratio that approximately equals n. 

T H E  O N E - V A C A N C Y  S I N G L E - F I L E  P O R E :  V A C A N C Y  

S T A T E S  A R E  T R A N S I E N T  I N T E R M E D I A T E S  

When the pore states containing the vacancy are transient intermediates, the model  
in Fig. 1 can be reduced to a diagram comprising only fully occupied states. In 
Appendix  II we perform the model  reduct ion using the methods  described in Hill 
(1977). Fig. 3 shows the resulting reduced diagram. In this scheme, every transition 
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N i  ~ Ni+~ (i  = 1, 2 . . . . .  n - 1) is of  the form 

AN,+, 

The  rate constants e~, 13, and cr have a complex  internal structure, given by Eqs. 
A15, A19, and A20. 

The  reduced model  strictly maintains the basic kinetic relationships of  the 
extended diagram. Vacancies occur with mean lives significantly smaller than the 
time scale of  the model,  and although the transport process microscopically takes 
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FIGURE 3. The "reduced" kinetic di- 
agram. The rate constants et, [3, and er 
are defined by Eqs. AI5, A19, and 
A20 (see Appendix II). 

place by a vacancy mechanism, the pore kinetics can be completely described by 
considering the apparent constants a, 13, and cr. 

From considerations similar to those of  the previous section, we obtain for this 
model  the water permeability under the condition that ca = cB -- 0 as 

Pt = ~re~ (14) 

= WB = W, we can obtain the equilibrium diffusive Analogously, when WA 
permeability: 

~ n [Nhww (13w + %)(Crw + %)] 
Pd = [h~,w,(13w + trw + 2%) + w2(13w + %)(crw + %)] (15) 
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As in the previous case, we have neglected terms containing CA and/or  CB. In Eq. 15, 
t~, [3~, ~w, and h~ are given by Eqs. A15 and A19-A21 under  the condition WA = WB = 
W. 

From Eqs. 14 and 15 we obtain the permeability ratio 

Pf/Pd = (Pf/Pd)eq(Dw/D) (16) 

where Dw = D for WA = Wa = W (Eq. A11), and where 

[t~(13w + (r~ + 20~) + (n - 1)([3~ + ~)(G% + tXw)] 
(Pf/Pd)eq = [([~ + 0tw)(t~w + t~)] (17) 

Since it can be demonstrated from Eqs. A15, A19, and A20 that ~t cannot b e  
simultaneously larger than 13 and o, Eq. 17 conforms to the restriction contained in 
Eq. 7. This is a consequence of the fact that although the reduced model only 
represents no-vacancy states, the basic mechanism of transport remains the same as 
in the general model of  Fig. 1, that is, the generation of vacancies at the pore- 
compar tment  interfaces. 

It can be demonstrated that the necessary conditions (Eqs. AI2 and AI6) for model 
reduction (Hill, 1977, pp. 196-197) are fulfilled if 

bAWA, bBW B >> rA, r B (18) 

Substitution of the definitions of  Appendix II into Eqs. 14 and 15 allows one to 
obtain the permeability coefficients and permeability ratio of  the reduced model in 
terms of the basic rate constants. Thus, applying Eq. 18, the osmotic and diffusive 
permeability given by Eqs. 14 and 15 are equivalendy expressed by 

Pf = ]~"~/D (19) 

and 

Pd = iV~/[(n -- 1)Dw] (20) 

From Eqs. 19 and 20 we see that, for the reduced model, 

(Pf/Pd)eq = n -- 1 (21) 

Eq. 21 can be obtained by the above mentioned substitution, or by the following 
direct reasoning. It can be demonstrated that Eq. 18 is also a necessary condition for 
obtaining the limiting value (n - 1) for the permeability ratio in Eq. 6 (see also 
Kohler and Heckmann, 1979). Therefore we can directly obtain Eq. 21 as the 
particular value of  this expression in the case of  the reduced model. In relation to 
this, it can be demonstrated that Eq. 18 makes the rate constants ~ and tr~ 
significantly larger than 0~. 

The reduced diagram shown in Fig. 3 represents a particular type of behavior of  
the general one-vacancy mechanism. When Eq. 18 applies, a complete kinetic 
description of the process can be done by considering only the no-vacancy states. As 
shown below, this description resembles the one given for the no-vacancy mechanism 
of transport by the single-file water pore. The  significanCe of the overall rate 
constants involved is, however, quite different. In the present case of  the reduced 
model, these constants are complicated expressions of  the basic rate constants, which 
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is a consequence  of  the  d iscont inuous  na ture  of  the basic process  of  t r anspor t  
involved in the vacancy mechanism.  

K I N E T I C  D E S C R I P T I O N  O F  T H E  N O - V A C A N C Y  P O R E  

In the no-vacancy mechanism,  molecules  p resen t  at  the mouths  of  the po re  are  
pushed  inside the po re  by the pressure  effect of  the  su r round ing  molecules in each 
compar tmen t .  In  turn, since there  are no empty  spaces inside the pore ,  the po re  
contents  are compact ly  d isplaced as a whole. Therefore ,  in a s implif ied scheme o f  this 

OOt JO0 
0 0 0 0  0 0 0 0  
OOI I  ~ . - in lO0 
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0 0  O 0  - - - - -  O 0  O 0  
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O 0  O 0  - - - - -  O 0  0 0  
O01 I O 0  

A B 
FIGURE 4. The no-vacancy single-file water pore. (A) The water molecules occupy positions 1, 
2 . . . . .  n inside the pore, analogous to the vacancy pore model of Fig. 1. In this case, no 
vacancies are generated at the pore-compartment interfaces. (B) The process of displacement 
of a tracer molecule through the pore in the no-vacancy mechanism. As a result of the pressure 
effect of the surrounding molecules, the tracer is introduced inside the pore at one extreme 
while a water molecule simultaneously leaves the pore at the other. 

type of  process,  one  water  molecule  enters  the po re  across one  mouth  and one 
s imultaneously leaves the po re  across the other .  T h e  si tuat ion is dep ic ted  in Fig. 4, 
inc luding the case o f  a t racer  molecule.  This  t r anspor t  process  consti tutes a 
mechanism ana logous  to the one  cons idered  in such dynamical  app roaches  as those 
by Levitt  (1974) or  Finkels te in  and  Rosenberg  (1979). Notice that  since no empty  
spaces exist  near  the mouths  o f  the pore ,  en t e r ing  molecules  do not  exchange  with 
molecules p resen t  at the po re  inner  ex t r eme  posit ions.  This  no-vacancy process  is 
also equivalent  to the  "knock-on"  mechanical  descr ip t ion  first in t roduced  by 
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Hodgkin and Keynes (1955) to interpret permeability properties of potassium 
channels. 

The kinetic description of this kind of no-vacancy water and tracer transport model 
is shown in Fig. 5. Since every transition N i ~ N,+ 1 involves the same type of 
molecular events, the same rate constant is used for all the transitions. We symbolize 
that constant by a* to recall the analogy with the reduced one-vacancy model. As in 
the vacancy models, in order to traverse the pore completely a water or tracer 
molecule must experience n + 1 transitions. In the analysis performed by Finkelstein 
and Rosenberg (1979), it is assumed that the tracer molecule starts from position 1 
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FIGURE 5. Kinetic model of the no-vacancy mechanism of transport of water through a 
single-file pore. 

(or from n), therefore lowering the number of transitions to n. As mentioned above, 
the kinetic model of Fig. 5 contains pore states analogous to those of the one-vacancy 
reduced model. 

This no-vacancy transport process is therefore characterized by the continuity of 
the water phase at the molecular level, even inside the pore. The use of a discrete 
state diagram to represent it deserves a word of caution. Whenever this kind of 
discrete description is used, some assumptions are implicit (for a discussion on this 
general problem see Hill, 1977, pp. 57-59). That  continuity is what dictates that ~x* is 
independent of the water activities in the compartments (independence principle). 
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This constitutes a basic difference from the vacancy mechanism (see Eqs. A11 and 
A15), where the presence of vacancies inside the pore allows for a discontinuity of the 
diffusion process. As is well recognized (Schultz, 1980), permeability coefficients 
depend on species activities in this type of transport processes. In contrast, in the 
no-vacancy mechanism the overall constant ~* obeys the independence principle. 

Due to the simplicity of the scheme of Fig. 5, the steady-state diagrammatic 
analysis can proceed in a straightforward manner.  We now show the expressions 
obtained. 

For this model, the osmotic permeability is given by 

Pf = Net* (22) 

The tracer flux is given by the cycle flux of the single cycle involved in the tracer 
transport in this no-vacancy case. Under  the condition wA = wB = w, the diffusive 
permeability becomes 

Pd = filet*/(n + 1) (23) 

From Eqs. 22 and 23, the permeability ratio is 

Pf/Po ---- n + 1 (24) 

From the above considerations, this ratio is independent of  the water activities, and 
therefore remains constant arbitrarily away from equilibrium. As can be seen, this is a 
consequence of the independence principle (Schultz, 1980, p. 33) that holds for the 
water permeability coefficients in this no-vacancy mechanism of transport. 

Every time an ~t* transition takes place, n + 1 molecule displacements occur. 
Hence, we define 

k* = (n + 1)~t* (25) 

where k* is the number  of individual displacements between sequential positions per 
transition of the state diagram. 

From Eqs. 22, 23, and 25 we express the permeability coefficients by 

Pf = Nk*/(n + 1) (26) 

and 

Pd= Nk*/(n + 1) z (27) 

Comparison of Eqs. 10-12 and 26-27 shows the basic difference between the two 
types of  mechanisms. In terms of the dependence upon n, we see that the vacancy 
mechanism represents a slower process. This is intuitively acceptable, since vacancies 
cause a larger rate of "distractions" to the molecules moving inside the pore. 

Expressions similar to Eqs. 26 and 27 have been previously derived for the water 
permeability (Finkelstein and Rosenberg, 1979), although in the denominator n 
appears instead of n + 1. As noted above, the difference relates to the fact that n 
transitions of  the water molecules are considered by those authors, while n + 1 
transitions are shown here to take place in the process. From comparison with the 
expressions obtained by those authors, the rate constant k* can be interpreted in 
terms of the frictional coefficient per  water molecule. 
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D I S C U S S I O N  

Membrane proteins have been proposed to act as water pores across biological 
membranes (Macey, 1984; Parisi and Bourguet, 1985). Some of  the possible candi- 
dates for that role, like the anion (Solomon, Chasan, Dix, Lukacovic, Toon, and 
Verkman, 1983) or glucose (Fischbarg, Kuang, Vera, Arant, Silverstein, Loike, and 
Rosen, 1990) transporters, are complex structures for which a description of the pore 
properties using a continuum pore model could not represent a good approxima- 
tion. As shown in this article, the kinetic formalism can be used to represent the water 
transport process in diverse situations, thus providing a more versatile tool for the 
interpretation of the water permeability properties of biological membranes. A main 
advantage of the kinetic formalism is that it permits us to extend derivations 
arbitrarily far from the near-equilibrium region, fundamentally allowing us to test the 
validity of the equilibrium approximation in particular situations. 

Two different mechanisms of water transport through single-file pores are distin- 
guished here: a one-vacancy and a no-vacancy mechanism. For both of them, the 
analysis of the kinetic descriptions leads to expressions for the diffusive and osmotic 
permeability coefficients. One of the main differences is that, in the no-vacancy 
mechanism, the permeability coefficients obey the independence principle, while in 
the vacancy mechanism the coefficients are functions of the water activities in the 
compartments. As a consequence, the permeability ratio also exhibits differences. 
The far-from-equilibrium analysis of the kinetic expressions derived for the water 
permeahilities in the one-vacancy model shows that, contrary to what has been 
suggested (Finkelstein, 1987, p. 54), single-file water transport may exhibit perme- 
ability ratios PdPa larger than n. However, in all probability, significant deviations 
from the rule PdPd <- n could be achieved given only relatively large differences in 
water activity. If that is the case, the conclusion could therefore be that the 
near-equilibrium hypothesis is satisfactory, and that n (or n + 1, if permeation is by a 
no-vacancy mechanism) sets an upper  limit to the value of the permeability ratio in 
the vast majority of situations involving single-file transport, including perhaps 
physiological ones. It is worth noting that the upper  limits of the near-equilibrium 
permeability ratio obtained here (n, n + 1) are the same as those previously derived 
by Heckmann and Vollmerhaus (1970) from the general analysis of (a) one-vacancy 
and (b) no-vacancy (or knock-on) mechanisms of single-file transport, respectively. 

The kinetic diagram proposed here to describe the no-vacancy mechanism of 
transport represents a kinetic analogue of the knock-on mechanical model of 
Hodgkin and Keynes (1955) and of dynamical models of  the type of those by Levitt 
(1974) and Finkelstein and Rosenberg (1979). In the course of their analysis, the 
latter authors derive expressions assuming near-equilibrium conditions. As men- 
tioned above, however, since the independence principle holds, the expressions 
obtained for the permeability coefficients in a no-vacancy model remain valid 
arbitrarily away from equilibrium. In agreement with this, we show here that it is not 
possible to derive the kinetic description of the no-vacancy mechanism as a limiting 
case of the one-vacancy model. The reduction of the one-vacancy diagram in the case 
where vacancy states are transient intermediates shows that, although the kinetic 
description only retains the fully occupied states, the apparent rate constants (a, [3, 
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and or) are complicated expressions of the primitive ones. This is not the case in the 
no-vacancy model, where the overall rate constant (cx*) can be expressed in a simple 
form in terms of only the total number of molecule displacements between sequential 
positions per transition. 

To the question, "Is water transport through biological pores carried on by a 
vacancy mechanism?" a possible answer may emerge from applying the above 
mentioned conclusions, which provide a basis for an experimental distinction 
between vacancy and no-vacancy mechanisms. What remain to be understood, 
however, are the basic theoretical aspects of the mechanisms involved in the 
generation of vacancies. Among other reasons, such an analysis would be crucial for 
the following possibility: water transport across biological pores could take place by 
the two basic regimes discussed here, the "hydrodynamic" continuum no-vacancy 
mechanism and the "diffusive" discontinuous vacancy mechanism. If an ensemble of 
pores has mixed properties, the permeability coefficients determined macroscopically 
would then represent a function of  all the permeability coefficients typical of the 
different basic mechanisms of water transport involved. In another case, for example, 
a pore through which discontinuous water transport mediated by vacancies can take 
place could also be the site for continuous no-vacancy transport. A unifying 
formalism is needed that will be able to properly describe the transition between both 
regimes. 

A plausible theoretical model of the kinetic constants of displacement of the water 
molecules between sequential positions inside the pore, especially one describing 
their relation with diffusional parameters, is a prerequisite for facing this problem 
properly. We now sketch speculative guidelines on this subject. 

A possible formal dependency of the kinetic constants is of the Arrhenius type: 

k d = k 0 exp (-Ea/kB T) 

where Ea is the activation energy, kB is Boltzmann's constant, and the preexponential 
factor k ° could be proportional to an activation energy-independent  diffusion 
coefficient (for a discussion on this topic see Cooper, Gates, and Eisenberg, 1988; see 
also Zwanzig, 1988). The mean life of the vacancies might depend on the height of 
the energy barriers between positions. If the activation energy is large in comparison 
with the thermal energy, the rate constant will exhibit an important dependency on 
the exponential factor, and the mean life of the vacancy can be relatively long. In this 
case, discontinuous diffusion takes place. On the other extreme, a high hydrostatic 
pressure could diminish activation energies significantly. Under this condition, the 
corresponding rate constant could be of the form of a diffusion coefficient, since it 
would be affected very little by the exponential term. The overcoming of the energy 
barriers would then take place as a consequence of the high pressure condition, and 
the no-vacancy mechanism would dominate. An adequate physical theory of the rate 
constants, perhaps based on some of these ideas, therefore seems to be necessary in 
order to account for the basic phenomena involved in the process of water transport. 

A P P E N D I X  I 

Steady-State Solution of the One-Vacancy Single-File Kinetic Model 

We show here the main steady-state expressions obtained from the analysis of the model shown 
in Fig. 1, using the method developed by Hill (1977). For the application of this method the 
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conservation condition (Hill, 1977, pp. 1-16) is necessarily assumed for the total number  N of 
pore states. 

The water fluxjw (A to B positive) is determined by the cycle fluxesJ~,Jb, andJc (Fig. 2): 

jw = (n - 2)Ja + (n - l)Jc - J b ,  (A1) 

where the cycle fluxes have been taken positive in the clockwise direction. In particular, when 

CA = ca = 0,Ja =Jc = o, andjw = - Jb  

it follows that: 

jw = (~"¢/l~b)(WA -- WB) (A2) 

where, as mentioned, ~r is the total number  of pores and where, from the detailed balance 
restriction, 

n - I  n - I  

"Iv = rAbB H k(i+l)i = rBbA H ki(i+l). (A3) 
i=1  i=l  

The denominator  1~ b is the sum of all the directional diagrams of all the states of the single 
cycle b. Expressed in terms of factors containing the rate constants of binding and release, l~b is 
given by 

= (bAWArB + bBWBrA + bAWAbBwB)L + (rA + rB)A 

n - I  n - I  

+ (bAWA + rA + rB) H ki(i+l) + (bBwa + rA + ra) l-I k(i+t)i 
i=1 i=l 

+ bAWArB~#=.~ ki(i+l, + + bBWBrA k(i+l)/+ C ( i4)  

where 

k(n-i+l)(n-i) + H ki(i+l) + k(i+l)i L = k i ( i+l )  i=1  i=1 i = 2  

-if ) n-2 j 
A = X k(i+l)/ k(i+l)(i+2) 

j = l  ~=j 

and 

X , , , . , , ,  
j = 2  [ i = j + l  = i=1  m = l  i=1 i=  2 

C = X k(i+l)/ ki(i-l) + k(i-2)(i-1) + Z ki(i+l) H k(i+l)/ 
j=2 [ i=1 i= +2 i=n-j+2 m=l ~ i=n-j i=n-m 

The tracer flux is given by 

When W A = W B = W 

j t r = J a + J c  

JR = [NLr ̂ rBb ̂bB(~w ) ' -  lw (CA -- cB)]/(XL 

and 

Jc = [/Q~'('ww)n-l(rA + rB)(CA -- CB)]/(•)w 

where the thermodynamic restriction of detailed balance has been imposed. 

(AS) 

(A6) 

(A7) 

(A8) 
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T h e  d e n o m i n a t o r  (2~)~ is the  sum o f  all the  d i rec t ional  d iagrams  o f  all the  states ar is ing f rom 
the  m o d e l  o f  Fig. 1, for the  par t icular  case where  WA = WB = W. If  we neglec t  t e rms  con ta in ing  

CA a n d / o r  CB, 

(]~)w m (~.b)w(~'~b)w (A9) 

w h e r e  (l-lb)w = (l~b) for wA = WB = W, a n d  where  (~b)w is the  sum o f  all the  par t s  o f  the  flux 
d iagrams  that  feed  into cycle b, also for  WA = WB = W. The re fo re ,  

(]~b)w = (n -- 1)rArB(~W)n-ZDw + (r A + rB)(WW) n-I (A10) 

w h e r e  Dw = D for WA = WB = W, with 

n-I  n--I 

D = bAWAbBWBL + bAWA H ki(i+l) + bBWB H k(,+l)i (A11) 
i=l i=l 

A P P E N D I X  I I  

Reduction of the Diagram for  the Case That Vacancy States Are Transient 

Intermediates 

I f  the  vacancy states are  t rans ien t  in te rmedia tes ,  the  d i ag ram in Fig. 1 can be  r e d u c e d  to a 
d i ag ram compr i s ing  only the  fully occup ied  states. T h e  m e t h o d o l o g y  used  he re  follows that  
d iscussed in Hill (1977), pp .  193-200.  

1. Reduction of transition N, . . . . .  N,+v The  necessary  condi t ion  for r educ t ion  is that,  in any 

si tuation,  

P(Nij) << P(Ni), P(Ni+l) (h12) 

with i = 1, 2 . . . . .  n - 1 ; j  = l ,  2 . . . . .  n, and  where  P(X) is the  probabi l i ty  (frequency) o f  state 

X in the  total p o r e  ensemble .  
F r o m  Eq. A12, we may assume  that  

dfil~j/ dt -~ 0 (A13) 

appl ies  to every state Nq. 
F r o m  Eq. A I 3  we can p r o c e e d  by successive subst i tut ions to obta in  dlqi/dt and  dlVi+l/dt as 

explici t  funct ions  o f ~ / ,  A/i+ 1, and  the  in t e rmed ia t e  ra te  constants .  F rom these  express ions ,  the  

t ransi t ion fluxJili+j) can be  ob ta ined  as 

Ji(i+l) = a(WA]~i -- WB/Vi+I) (A14) 

for i = 1, 2 . . . . .  n - 1, and  where ,  f rom de ta i led  balance,  

a = ~/D (AI5) 

2. Reduction of transitions N,, . . . . .  Nl, N,, .. . . .  No and No .. . . .  Nz. We p r o c e e d  in a way 
ana logous  to that  in t he  previous case. T h e  cond i t ion  for  r educ t ion  is 

P(Noj) << P(N0), P(N~), P(Nn) (Al6)  

w i t h j  = 1, 2 . . . . .  n. 
F r o m  Eq. A16 we assume that ,  for every state Noj, 

diCCoj/dt ~- 0 (Al7)  

F r o m  Eq. A17 we can p r o c e e d  b_y successive subst i tu t ions  to obta in  d/V0/dt, d/~/l/dt, and  
dlqn/dt as explici t  funct ions  o f  N0, N b  ~/,, and  the  in t e rmed ia t e  ra te  constants .  We show the  
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expressions obtained: 
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d~o/dt  = (BWA + awB)N~ + (o-wB + ~wA)N. + (~wA - moB)~0 1 

+ (mvB - ,xw~)~'o - [(c, + I~)cA + (a  + ~)c~F~o 

d N l / d t  = (C/L7 A + hw~-')~'. + (or + [3)CANo -- [a(CB + WB) + [3WA + hW"A-']lq, (A18) 

and 

d/~./dt " - ' -  + " = (OtC B + hw A )N 1 (or + W)CBN0 -- [a(CA + WA) + O'WB + hw~-I]lV, J 

In these expressions, cx is given by Eq. A15, and 

[ (  -H )1/ ~r = rBbB bAWAL + k(i+l~ D (A20) 
i=1 

and 

i ,-,-2 (A21) h = ~r D W-AWB 

In Eq. A18 the expression for d/Q0/dt explicitly shows the result, obtained in the derivation, 
that determines the cyclic transition 

No 

For the derivation of  Eqs. A18-A21, transition 

WA W B 

N,'4"X"I'~N2 " " " N , _ , ' ~ - ~  N ,  
Ot Ot 

has been assumed to take place in steady state. It has also been assumed that CA << WA and 

C B <<  W B. 

Eqs. A15 and A18 allow us to establish the kinetic relationships between the fully occupied 
pore states in the form of the diagram of Fig. 3. 
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