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Summary

In this second review on chemokines, we focus on the polymorphisms and
alternative splicings and on their consequences in disease. Because chemok-
ines are key mediators in the pathogenesis of inflammatory, autoimmune,
vascular and neoplastic disorders, a large number of studies attempting to
relate particular polymorphisms of chemokines to given diseases have already
been conducted, sometimes with contradictory results. Reviewing the pub-
lished data, it becomes evident that some chemokine genes that are polymor-
phic have alleles that are found repeatedly, associated with disease of different
aetiologies but sharing some aspects of pathogenesis. Among CXC chemok-
ines, single nucleotide polymorphisms (SNPs) in the CXCL8 and CXCL12
genes stand out, as they have alleles associated with many diseases such as
asthma and human immunodeficiency virus (HIV), respectively. Of CC
chemokines, the stronger associations occur among alleles from SNPs in
CCL2 and CCL5 genes and a number of inflammatory conditions. To under-
stand how chemokines contribute to disease it is also necessary to take into
account all the isoforms resulting from differential splicing. The first part of
this review deals with polymorphisms and the second with the diversity of
molecular species derived from each chemokine gene due to alternative splic-
ing phenomena. The number of molecular species and the level of expression
of each of them for every chemokine and for each functionally related group
of chemokines reaches a complexity that requires new modelling algorithms
akin to those proposed in systems biology approaches.
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Increasing chemokine variability: polymorphisms
and alternative splicing

In a first review [1] we examined data which indicated that,
during evolution, the variability of the chemokine superfam-
ily grew in complexity, and we took advantage of the conser-
vation of physiological functions among chemokines located
in the different genetic clusters and miniclusters to improve
our perspective of their functions. As for many gene families,
the main mechanism that has generated this diversity of
chemokines is gene duplication, which is particularly evident
in the chemokine clusters. However, another important
mechanism by which variation has been increasing at the
genomic level is the existence of single nucleotide polymor-
phisms (SNPs), which are the most common form of DNA
sequence variation. SNPs are highly abundant, stable and
distributed throughout the genome. SNPs are an increas-

ingly important tool for the study of the structure and
history of human genome and they are also useful polymor-
phic markers to investigate genetic susceptibility to disease
or to pharmacological sensitivity [2]. Other types of poly-
morphisms such as deletion/insertion polymorphisms
(DIPs), copy number polymorphisms (CNPs) or those due
to repeated elements (as minisatellites and microsatellites)
also contribute importantly to the genomic variation but
their distribution is more restricted. In addition to DNA
sequence variation, alternative mRNA splicing is becoming
recognized increasingly as an important mechanism for
the generation of structural and functional variability in
proteins. Several studies indicate that alternative splicing in
humans is more the rule than the exception: primary tran-
scripts from more than 50% of all human genes undergo
alternative splicing, with a bias towards genes that are
expressed in the nervous and immune systems [3,4].
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In this second review, we focused upon the polymor-
phisms and disease associations of chemokine genes as well
as variations in splicing which should be taken into account
in order to understand these disease associations more
clearly. We proceeded by collecting all information available
in public databases, organized it by families following the
systematic nomenclature [5], and finally we highlighted the
cases in which disease association is stronger. In the course of
this process we also analysed data available on isoforms gen-
erated by differential splicing. Even though we can expect
that new data will still be produced on the polymorphisms
and isoforms of chemokines, we now have a picture of their
complexity and we can begin to discern patterns of disease
association; this is also the subject of this review.

Polymorphisms and disease in the human
chemokine superfamily

Polymorphisms in the genes of the immune system can
influence the immune response markedly, human leucocyte
antigen (HLA) genes being the paradigm. After the HLA
genes, chemokine genes are probably one of the most
polymorphic sets of genes in the immune system and it is
becoming increasingly clear that chemokine polymorphisms
influence the immune response to a remarkable extent. As
the genome project progressed and the abundance of SNPs
became evident, databases began to record SNPs and now
millions of them are registered. However, the quality of the
initial data contained in these databases had been ques-
tioned, because a considerable proportion of the initial SNPs
may simply represent sequencing errors. Fortunately, the
validation status of SNPs is improving and in this review we
have included only well-documented and functionally rel-
evant SNPs. The number of reports on disease-associated
SNPs including members of the chemokine superfamily is
increasing and will probably continue to rise during the next
few years, as the importance of chemokines in the immune
response gains recognition. As has already been documented
for cytokines, the majority of SNPs found in the chemokines
genes or their receptors are not located in the coding
sequence but either in the promoter, the introns or the 3′
untranslated regions, and they can affect all aspects of gene
expression and mRNA levels. Interestingly, most polymor-
phisms associated with disease in the chemokine superfamily
affect their inflammatory members, thus confirming that
they are the genes under stronger evolutionary pressure
(Fig. 1).

Human CXC chemokines

Several interesting polymorphisms affecting both inflam-
matory and homeostatic CXC ligands have been described
(Table 1), CXCL8 [interleukin (IL)-8] and CXCL12 stromal
cell-derived factor (SDF-1) being the chemokines that
accumulate most of them.

CXCL8, a proinflammatory chemokine, is a potent
chemoattractant for neutrophils, basophils and T
lymphocytes. High levels of CXCL8 have been detected in
biofluids from various acute inflammatory diseases, which is
in keeping with neutrophilic infiltration into inflammatory
sites as one of the hallmarks of acute inflammation. Among
all CXCL8 described SNPs, the presence of -251A/T in the
transcription start site is known to exert a strong influence
on protein synthesis. The distribution of this SNP shows a
remarkable heterogeneity among world populations [6] and
has been associated with a spectrum of diseases (for refer-
ences see Table 1): (a) airway diseases such as asthma, respi-
ratory syncytial virus (RSV) infection and oral squamous
cell carcinoma. Anecdotally, the inflammatory prone allele A
may influence the initiation or characteristics of the smoking
habit [7]; (b) gastrointestinal diseases such as Clostridium
difficile and enteroaggregative Escherichia coli diarrhoea,
Helicobacter pylori-induced gastric ulcer, atrophic gastritis,
severe acute pancreatitis and gastrointestinal tract cancer; (c)
central nervous system (CNS) diseases such as Parkinson’s,
multiple sclerosis (MS) and multiple system atrophy; and
(d) a miscellany of diseases such as AIDS-related Kaposi’s
sarcoma and acute pyelonephritis has also shown to be influ-
enced by the -251A/T CXCL8 polymorphism. However, in
spite of the numerous studies on this polymorphism, data
are still far from clear. Since the publication of the original
association of the CXCL8 -251A/T polymorphism [8,9],
there have been reports showing higher CXCL8 production
by the A allele [8,10,11] while others showed higher produc-
tion by allele T [12]. These contradictory data have their
counterpart in association studies: the -251 T allele fre-
quency has been increased significantly in asthma [13] and
reduced significantly in RSV bronchiolitis [8]. In fact, it
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Fig. 1. Overview of chemokine polymorphisms and disease. Columns

represent chemokines with disease-involved polymorphisms. Rows

represent different disease categories: upper lines refer to diseases

grouped by systems (black squares show polymorphism involvement),

middle lines refer to infectious diseases (grey squares) and lower lines

refer to other interesting physiopathological groups of diseases

(dashed squares).
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seems that the differences in CXCL8 expression are not
linked directly to the -251A/T polymorphism. In one
haplotype-based association study, Hacking et al. [14] have
shown that there are two main CXCL8 haplotypes including
six SNPs (-251A/T, +396G/T, +781T/C, +1238delA/insA,
+1633T/C, +2767T/A), constituting the so-called haplotype
2 (A/G/T/delA/T/T), the haplotype associated with signifi-
cantly higher CXCL8 transcription levels relative to the
mirror haplotype 1. Strikingly, the -251A allele present on
the high producer haplotype had no significant effect on
the allele-specific level of transcription when analysed in
reporter gene experiments. This indicates that the functional
allele might be in linkage disequilibrium (LD) with haplo-
type 2 and that the -251A/T is not the functional SNP. Four
SNPs of the previously described haplotypes (-251A/T,
+781T/C, +1633T/C and +2767T/A) have been found to be

associated with asthma in different studies [13,15]. These
multiple SNPs associations are due probably to the existence
of a very tight LD among them. The -845C/T SNP in the
CXCL8 promoter region has been associated with severe
systemic lupus erythematosus (SLE) nephritis [16]. Another
distant SNP in 3′UTR (+2767A/T) has been associated
with acute pyelonephritis [17] and nephritis in cutaneous
vasculitis [18].

CXCL12 is a homeostatic CXC chemokine widely
expressed which possesses a broad range of actions (from
attraction of mature T and B cells to migration of haemato-
poietic progenitor cells from the bone marrow). CXCL12
plays an especially important role in two non-related dis-
eases such as human immunodeficiency virus (HIV) and
cancer, because its receptor (CXCR4) is also the co-receptor
used by HIV T-tropic strains and because it is the most

Table 1. Polymorphisms and disease in the human CXC subfamily.

Ligand Polymorphism Location Symbol Disease involved References

CXCL2 Tandem repeat -665(AC)n Promoter Severe sepsis [28]

CXCL8 Microsatellite D4S2641 Diffuse parabronchiolitis [64]

SNP -845 (C/T) Promoter rs2227532 SLE nephritis [16]

SNP -251 (A/T) Promoter rs4073 Asthma

RSV infection

Smoking behaviour

Oral squamous cell carcinoma

EAEC diarrhoea

Clostridium difficile diarrhoea

Helicobacter pylori-induced gastric diseases

Acute pancreatitis severity

Gastric cancer

Colorectal cancer

Prostate cancer

Parkinson’s disease

Multiple sclerosis

Multiple system atrophy

AIDS-related Kaposi’s sarcoma

Acute pyelonephritis

[13]

[8, 9, 14]

[7]

[65]

[10]

[66]

[11, 67–70]

[71]

[12, 72, 73]

[74]

[75]

[76]

[77]

[78]

[79]

[17]

SNP +781 (C/T) Intron 1 rs2227306 Asthma [13, 15]

SNP +1633 (C/T) Intron 3 rs2227543 Asthma [13]

SNP +2767 (A/T) 3′UTR rs1126647 Asthma

Nephritis in cutaneous vasculitis

Acute pyelonephritis

[13]

[18]

[17]

Haplotypes Behcet’s disease [80]

CXCL10 Haplotypes Multiple sclerosis [81]

CXCL11 DIP -599del5 Promoter Hepatitis C virus (HCV) infection [29]

CXCL12 SNP +801 (G/A) 3′UTR rs1801157 HIV-1 infection

Atherosclerosis in HIV patients

Breast and lung cancer

Acute myeloid leukemia

Lymphoma

Chronic myeloproliferative disease

Liver transplantation

Type 1 diabetes

[20, 22–24]

[82]

[83–85]

[86]

[87]

[88]

[89]

[90]

CXCL16 SNP +599 (C/T) Exon 4 rs2277680 Coronary artery stenosis [30]

Variability in chemokines (II)
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widely expressed chemokine receptor in many different
types of cancers [19]. The +801G/A SNP, located in 3′UTR, is
the best-studied polymorphism in CXCL12 gene. It has been
associated extensively with clinical features of HIV infection
but, as in CXCL8–251A/T polymorphism, there are some
contradictory reports. The published effect of the mutated
allele (-801A) ranges from strong protection of HIV infec-
tion progression to AIDS [20,21] to enhanced progression to
AIDS and shorter survival [22,23]. Even though it was pro-
posed originally that the -801A allele was associated with
higher CXCL12 production [20], later studies indicated the
opposite [24], and other reports claimed that there were no
differences in the CXCL12 production by the A or G alleles
[25,26]. A recent haplotype-based study [27] demonstrated
that other polymorphisms in LD with the CXCL12 +
801G/A SNP, rather than CXCL12 + 801G/A itself, are
responsible for the different transcription levels. Therefore,
the discrepancy among the previous epidemiological studies
may be attributed to the haplotype structures and frequen-
cies in the studied populations. CXCL12 + 801G/A has also
been associated with many different types of cancers such as
breast and lung cancer, acute myeloid leukaemia, lymphoma
and chronic myeloproliferative disease.

Relatively few reports deal with the effect of polymor-
phisms of other CXC chemokines on disease. A short
tandem repeat (STR) in CXCL2 may contribute to the devel-
opment of severe sepsis [28], one haplotype in CXCL10 pos-
sibly contributes to reduce the rate of progression in MS
patients, a 5-base pairs (bp) deletion in the promoter of
CXCL11 may favour hepatitis C virus (HCV) infection to
evolve towards chronicity [29] and, finally, a SNP in exon 4
of CXCL16, leading to an amino acid change (V200A),
seemed to influence the severity of coronary artery stenosis
[30].

Human CC chemokines

As many as 14 of the 26 members of CC chemokine sub-
family have polymorphisms associated with disease, and
most affect the inflammatory chemokines (Table 2). CCL2
[monocyte chemoattractant protein (MCP)-1] attracts spe-
cifically monocytes and memory T cells and tissue expres-
sion is found in a large variety of diseases characterized by
mononuclear cell infiltration, with an essential role in ath-
erosclerosis and multiple sclerosis. CCL2 has a SNP located
in the 5′ distal regulatory region (-2518G/A) and it seems
clear that the -2518G allele is associated with an increased
CCL2 production (at both mRNA and protein levels)
[31–34]. This -2518G/A polymorphism has been associated
with a large variety of diseases: (a) systemic inflammatory
diseases such as systemic lupus erythematosus (SLE), juve-
nile rheumatoid arthritis, systemic sclerosis and HLA-B27-
associated acute uveitis; (b) conditions affecting the kidney
such as renal transplantation, long-term haemodialysis and
IgA nephropathy; (c) heart diseases such as myocardial

infarction, coronary artery disease and the cardiomyopathy
of Chagas’ disease; (d) CNS diseases such as Alzheimer’s and
major depression; (e) endocrine diseases such as type 1 and
type 2 diabetes: (f) infectious diseases such as those caused
by HIV-1, HCV, HBV and Mycobacterium tuberculosis; and
(g) other diseases such as breast cancer and asthma. It is
important to note that there are also many negative reports
showing a lack of association of this SNP with various dis-
eases (including some of those cited previously as associated
diseases).

CCL3 [macrophage inflammatory protein (MIP)-1a],
CCL4 (MIP-1b), CCL4L [lymphocyte activation gene
(LAG)-1] and CCL5 [regulated upon activation normal T
cell expressed and secreted (RANTES)] have a diversity of
polymorphisms that have an important impact on suscepti-
bility to HIV-1 infection. This is not surprising, as they are
ligands of the CCR5 receptor, which is the co-receptor used
by HIV M-tropic strains to enter into the cells. Haplotypes
defined on the region containing the genes CCL18, CCL3
and CCL4 (chromosome 17 q11–q21) have been found to be
associated with HIV infection susceptibility and progression
[35]. Although CCL18 has not yet been implicated in HIV-
1/AIDS pathogenesis and its receptor is not known, this
genetic analysis points to this gene as a candidate for modu-
lating HIV-1 pathogenesis. CCL5 haplotypes have also been
shown to influence the clinical progression of HIV infection
[36,37]. Two interesting SNPs in the CCL4L gene have been
associated with different aspects of HIV-1 infection: (a) the
+590A/G is located at the intron 2 acceptor splice site. The G
allele disrupts the original acceptor splice site and provokes a
new complex transcription pattern. This allele modifies sus-
ceptibility to HIV-1 infection [38]. (b) The +59C/T is located
in exon 2, leading to an amino acid change (R22H). The H
variant has been associated with a lower overall survival of
HIV-1 infected individuals [39]. Three CCL5 individual
SNPs have also been associated with HIV-1 infection, two of
them located in the promoter region (-403G/A and -28C/G)
and the other in intron 1 (In1.1T/C). It has been demon-
strated clearly that the -403A and -28G alleles enhance
CCL5 production [40–43] and, conversely, the In1.1C allele
reduces CCL5 gene transcription [37]. The two CCL5 pro-
moter polymorphisms, -403G/A and -28C/G, have also
been associated with a variety of other diseases such as aller-
gic diseases (i.e. asthma, atopy, allergic rhinitis and atopic
dermatitis), inflammatory diseases [i.e. SLE, MS, rheuma-
toid arthritis (RA), sarcoidosis and polymyalgia rheumatica]
and infectious diseases (i.e. HIV-1 and HCV). Additionally,
the -403G/A polymorphism has been found to be associated
with metabolic risk-related conditions such as hypercholes-
terolaemia, coronary arteriosclerosis and cardiac mortality
in type 2 diabetes.

CCL11 (eotaxin-1), CCL24 (eotaxin-2) and CCL26
(eotaxin-3) are CCR3 ligands and potent eosinophil
chemoattractants, playing a fundamental role in asthma
and other allergic diseases and in eosinophil-associated
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Table 2. Polymorphisms and disease in the human CC subfamily.

Ligand Polymorphism Location Symbol Disease involved References

CCL1 SNP (A/T) Intron 2 rs2282691 Chronic obstructive pulmonary disease [91]

CCL2 SNP -2518 (G/A) Promoter rs1024611 Systemic sclerosis

Asthma

Systemic lupus erythematosus

Juvenile rheumatoid arthritis

Renal transplantation

Breast cancer

Long-term haemodialysis

IgA nephropathy

HLA-B27 associated disease

Coronary artery disease

Myocardial infarction

Alzheimer’s disease association

Major depressive disorder

Type 1 diabetes

Type 2 diabetes

HIV-1 infection

Pulmonary tuberculosis

Cardiomyopathy in human Chagas’ disease

Hepatitis B virus (HBV) clearance

Hepatitis C virus (HCV) severity

[92]

[93, 94]

[95–97]

[98]

[99]

[100]

[101]

[102]

[103]

[104, 105]

[106]

[107]

[108]

[109]

[110]

[33]

[111]

[112]

[113]

[34]

Haplotypes Multiple sclerosis [114, 115]

Haplotypes HIV-1 infection [116]

CCL3 Haplotypes Multiple sclerosis [114, 115, 117]

Haplotypes HIV-1 infection [35, 36]

CCL4 Haplotypes HIV-1 infection [35]

CCL4L SNP +59 (C/T) Exon 2 rs3744595 HIV-1 infection [39]

SNP +590 (A/G) Intron 2 rs4796195 HIV-1 infection [38]

CCL5 SNP -403 (G/A) Promoter rs2107538 Allergic rhinitis

Atopy and asthma

Atopic dermatits

Renal damage in SLE

Rheumatoid arthritis

Multiple sclerosis

HIV-1 infection

HCV infection

Sarcoidosis

Coronary arteriosclerosis

Hypercholesterolaemia

Cardiac mortality in type 2 diabetes

[118]

[119–121]

[40–42]

[122]

[123, 124]

[125]

[36, 126, 127]

[128, 129]

[130]

[131]

[132]

[133]

SNP -28 (C/G) Promoter rs2280788 Allergic rhinitis

Asthma

Nephropathy in type 2 diabetes

HIV-1 infection

Multiple sclerosis

Systemic lupus erythematosus

Atopic dermatitis

[118]

[134, 135]

[136]

[36, 43, 127]

[125]

[137]

[42]

SNP In1.1 (T/C) Intron 1 rs2280789 Cardiac mortality in type 2 diabetes

HIV-1 infection

[133]

[37, 127, 138]

Haplotypes HIV-1 infection [36]

Haplotypes Type 1 diabetes [139]

CCL7 Microsatellite Promoter Multiple sclerosis [140, 141]

Haplotypes HIV-1 infection [116]

CCL8 SNP +11 (A/C) Exon 3 rs1133763 HCV infection [128]

Haplotypes Multiple sclerosis [114]

Variability in chemokines (II)
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gastrointestinal diseases. Not unexpectedly, SNPs in these
three chemokines have been found to be associated with
allergic diseases such as asthma, allergic rhinitis and atopic
dermatitis. Four SNPs of the CCL11 gene have been found to
be associated independently with asthma in several studies
[44–47]. Three of them are located in the promoter region
(-576C/T, -426C/T and -384 A/G) and the other (+67G/A)
in the signal peptide (exon 1) leading to an amino acid
change (T23A). Interestingly, both the -384G and +67A
alleles are associated with lower CCL11 production [44,46].
The three polymorphisms of the CCL24 gene associated with
asthma are intronic SNPs: +179TC and +275C/T in intron 1
and +1265A/G in intron 2. There are data indicating that the
+1265A allele is associated with lower CCL24 levels than the
G allele [48]). Finally, CCL26 has two SNPs affecting asthma
differently: the +2497T/G (in the 3′UTR region) have been
associated with susceptibility and the +77C/T (in intron 2)
seem to play a critical role in attracting eosinophils and
maintaining high IgE levels.

Regarding the C and CX3C subfamilies, no relevant poly-
morphisms in their members have so far been described.

Transcriptional variability: alternative splicing in the
chemokine superfamily

The mRNA of several chemokines is known to undergo
alternative splicing (Table 3), some of them with repercus-
sions in the molecular activity and/or in the tissue distribu-
tion of the differentially spliced variants. However, to date,

there are no reports on their implication in disease
pathogenesis.

CXCL12 is the only CXC chemokine known to generate
isoforms by alternative splicing. The two main splice forms
of CXCL12 (SDF-1a and SDF-1b) have similar amino acid
sequences except for the presence of four additional amino
acids at the carboxy terminus of SDF-1b. Both isoforms
display a similar tissue expression pattern, but SDF-1a
mRNA can be detected in the adult human brain, whereas
SDF-1b cannot. The two isoforms are subjected to different
proteolytic processing, and this fact could explain functional
differences [49]. Recently, four additional human SDF-1 iso-
forms derived from alternative splicing events have been
identified (SDF-1g, SDF-1d, SDF-1e and SDF-1f), showing
some differential distribution of tissue expression [50].

CCL4 and CCL4L, two closely related chemokines, have
different isoforms due to alternative splicing. Both chemok-
ines have exon 2 skipped variants that keep only the two first
amino acids from the original protein due to a frameshift in
the new junction between exon 1 and exon 3. Additionally,
CCL4L2 (an allelic variant of CCL4L) has a nucleotide
change in the acceptor splice site of intron 2 leading to a
complex transcription pattern due to multiple usage of new
alternative acceptor splice sites surrounding the original
mutated one [38].

Two alternative splice isoforms of CCL20 have been iden-
tified, resulting from the alternative usage of two potential
acceptor splice sites separated by three nucleotides in the
junction of intron 1 and exon 2. The longer form

Table 2. Continued

Ligand Polymorphism Location Symbol Disease involved References

CCL11 SNP -576 (C/T) Promoter rs4795896 Asthma [44, 45]

SNP -426 (C/T) Promoter rs16969415 Atopic dermatitis

Asthma

[45, 142]

[45]

SNP -384 (A/G) Promoter rs17809012 Atopic dermatitis

Asthma

[44, 142]

[45]

SNP +67 (G/A) Exon 1 rs3744508 Asthma

Myocardial infarction

[46, 47]

[143]

Haplotypes Multiple sclerosis [114]

Haplotypes HIV-1 infection [116]

CCL13 Haplotypes Multiple sclerosis [114]

CCL15 Haplotypes Multiple sclerosis [114, 115]

CCL18 Haplotypes HIV-1 infection [35]

CCL24 SNP +179 (T/C) Intron 1 rs2302004 Asthma

Ulcerative colitis

[144]

[145]

SNP +275 (C/T) Intron 1 rs2302005 Asthma

Ulcerative colitis

[144]

[145]

SNP +1265 (A/G) Intron 2 rs11465310 Asthma [47, 48]

CCL26 SNP +77 (C/T) Intron 2 rs2240478 Asthma [144]

SNP +1577 (G/A) Intron 3 rs6965556 Rheumatoid arthritis [146]

SNP +2497 (T/G) 3′UTR rs2302009 Rheumatoid arthritis

Asthma

Allergic rhinitis

[146]

[144]

[147]
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(CCL20Ala) has an alanine (Ala27) as its predicted
N-terminal amino acid, whereas the deletion of Ala27 leads
to Ser27 as the predicted N-terminal amino acid in the
short form (CCL20Ser) [51,52]. The biological activity of
CCL20Ala and CCL20Ser and the tissue-specific preference
of different acceptor splice-sites usages are not yet known.

CCL23 has two variants originated by alternative splicing
in exon 3: the originally described CKb8 and the splicing
variant CKb8-1, which is 17 amino acids longer. The mature
proteins CKb8 and CKb8-1 consist of 99 and 116 amino
acids, respectively. It has been shown that CKb8 differed
from CKb8-1 in the monocyte chemoattraction and in the
binding to human formyl peptide-receptor-like-1 (FPRL-1),
suggesting that these two CCL23 isoforms could possibly
have different a kinetic and specificity of chemotactic func-
tion in vivo [53,54].

Finally, CCL27 is produced as two splice variants. One
of these variants encodes a classical chemokine with an
associated signal peptide (CCL27), while the other variant
(PESKY) maintains the sequence of the mature chemokine,
but the signal peptide has been replaced by an alternative
stretch of amino acids that directs this isoform to the nucleus
where it modulates transcription. Surprisingly, secreted
CCL27 can also reach the nucleus after CCR10-mediated
internalization, and in this way directly modulates transcrip-
tion and influences several cellular processes [55]. Expres-
sion studies have revealed differential tissue expression of
CCL27 and PESKY. Interestingly, while CCL27 is highly
expressed in the placenta, PESKY is expressed mainly in the
testes and brain and weakly in the developing embryo [56].
Recently, several novel CCL27 variants have been identified
in mouse but their presence in humans has not yet been
demonstrated [57].

Concluding remarks

The high variability of the chemokine superfamily includes
mechanisms of genomic and transcriptional variation. There
is already a good number of well-described polymorphisms
of chemokines with functional relevance and we made a
detailed review of those involved significantly in disease.
In spite of the many reports on the association of these
polymorphisms to diseases, there are still confusing and
contradictory data. Many factors in the epidemiological
investigation could explain this phenomenon (covered
widely in several reviews [58–60]), but it is clear that further
studies are necessary to define more clearly the role of
genetic variants of chemokines in disease. The recently
developed high-throughput methods for SNP genotyping
should make it easy to carry out larger association studies
using a high number of SNPs, covering from one or a few
genes (candidate gene approach) to the whole genome
(genome-wide approach). In fact, the single SNP association
studies are currently being replaced by the haplotype-based
studies using tagSNPs, as this approach ensures the capture

of most of the genetic variation in a relatively transferable
manner among global populations [61]. With regard to the
alternative splicing phenomena in the chemokine superfam-
ily, several members with different splice variants have been
identified but there are still few available data about its func-
tional role. Molecular analyses during the last decade dem-
onstrate that alternative splicing determines the binding
properties, intracellular localization, enzymatic activity,
protein stability and post-translational modifications of a
large number of proteins [62,63]. Efforts are now being
directed at establishing the full repertoire of functionally
relevant transcript variants generated by alternative splicing,
the specific roles of such variants in normal and disease
physiology, and how alternative splicing is co-ordinated on a
global level to achieve cell- and tissue-specific functions.
Although the interaction between all these factors will prob-
ably provide us with the true key to understanding their real
effect on pathology, future studies will be necessary to
achieve all these goals in the chemokine superfamily.
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