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Summary

The F1 and V antigens of Yersinia pestis, despite acting as virulence factors
secreted by the organism during infection, also combine to produce an effec-
tive recombinant vaccine against plague, currently in clinical trial. The pro-
tective mechanisms induced by rF1 + rV probably involve interactions with
dendritic cells (DC) as antigen uptake, processing and presenting cells. To
study such interactions, naive ex vivo DC from bone marrow, spleen and
lymph node were cultured with rF1, rV or combined antigens and demon-
strated to secrete interleukin (IL)-4 and IL-12 into the culture supernatant.
Cytokine production in response to pulsing was dependent on the maturity of
the bone marrow-derived DC culture, so that pulsed 8-day-old cultures had
accumulated significantly more intracellular IL-4 and IL-12 than unpulsed
cells. DC, pulsed with rF1 + rV for 2–24 h, were able to prime naive autolo-
gous lymph node T cells to proliferate in an antigen dose-dependent manner,
with an order of potency of 3d bone marrow-derived DC (BMDC) > 7d
BMDC > splenic DC. Significantly, cell-free supernatants from rF1 + rV-
pulsed BMDC and splenic DC were also able to induce specific primary
responses effectively in naive T cells, suggesting that these supernatants con-
tained stimulatory factor(s). This study suggests an important role for DC, or
factors secreted by them, in the induction of protective immunity to plague by
the rF1 and rV antigens.
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Introduction

The virulence mechanisms exerted by the plague-causing
bacterium, Yersinia pestis, are complex and have evolved with
the changing lifestyle of the organism [1,2]. The result is that
Y. pestis is one of the most virulent bacterial pathogens
known. While other members of the Yersinia genus (Y.
pseudotuberculosis and Y. enterocolitica) cause mild but self-
limiting infections in man [3], Y. pestis can cause a lethal
infection if undetected, undiagnosed and untreated [2]. This
is intriguing, given the recent evidence that Y. pestis evolved
away from the lifestyle of Y. pseudotuberculosis estimated
between 1500 and 20 000 years ago [1], to become infective
systemically rather than perorally. As a result of this evolu-
tionary divergence, Y. pestis may have acquired some viru-
lence mechanisms which differ from those of the other
Yersiniae and which are more suited to its current lifestyle [4].
The virulence of Y. pestis is determined largely by three major
plasmids which it carries: the 100–110 kb pFra, the 70kb
pCD1 and the 9·5kb pesticin plasmid (pPCP1). The pFra and

pPcP1 plasmids are present only in Y. pestis [3].While the pFra
plasmid shows extensive sequence homology with a plasmid
(pHCM2), possessed by some strains of Salmonella enterica
serovar Typhi [5], some regions of pFra appear to be unique to
Y. pestis. One of these regions includes the caf operon encod-
ing the 17 kDa polypeptide Fraction 1 (F1) capsular antigen
[6] which has anti-phagocytic activity. Plasmid CD1 (whose
homologue in Y. enterocolitica and Y. pseudotuberculosis is
pYV) encodes a type III secretion system (TTSS) which com-
prises a secretion apparatus, chaperones, several secreted
effector proteins including the low calcium response V
antigen (lcrV) and a series of yersinia outer proteins (Yops)
(for review see References [7–10]). The lcrV protein is
thought to play a key role in regulating the TTSS in all the
yersinia species, both intracellularly and at the cell surface
[11], and is intrinsic to forming a channel between the bac-
terium and the host cell, through which the Yop proteins can
be translocated [7]. This translocation channel comprises the
protein YscF and the lcrV protein has been identified at the
distal tip [12], possibly functioning to make contact with
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the host cell. The translocated Yops have potent anti-host
functions, with YopM thought to cause an early and severe
depletion of natural killer (NK) cells, which are important in
the host’s innate immune defence [13,14]. OtherYops, such as
YopJ (YopP in Y. enterocolitica), are thought to act by reducing
the display of cellular activation markers on immune effector
cells, which in turn damps down the induction of proinflam-
matory cytokines such as tumour necrosis factor (TNF)-a
and may be implicated in the induction of apoptosis in
infected cells [15,16], although YopJ may be less effective than
YopP in this, due to poor translocation from Y. pestis to the
target cell [17]. Although this effect of Yop P has been
observed for Y. enterocolitica, paradoxically the activation
marker CD54 has been observed on dendritic cells during Y.
pestis infection [18]. Hence, it is thought that reducing the
display of cellular activation markers is not the principal
mechanism used by Y. pestis to disarm dendritic cells (DC).
Instead, Y. pestis may have the effect of reducing the matura-
tion and adhesion of DC for endothelial surfaces and there-
fore reduces their ability to migrate to the site of infection
[18]. There is evidence that Y. pestis preferentially hijacks
monocytes or macrophages and uses them as a safe niche in
which to multiply [19,20], and may deter other antigen-
presenting cells (APC) such as DC, so that the major classes of
APC are functionally neutralized. In this situation, antigen
presentation to T cells would not occur and no immune
response would be initiated.

DC are arguably the most potent APC known [21], and
have a surveillance function for invading microorganisms or
microbial products. Contact with the microorganism trig-
gers DC maturation with uptake, internalization and pro-
cessing of the pathogen, accompanied by cellular signalling
initiated by Toll-like receptor recognition [22–26].

In this context, it was of interest to determine the direct
effect on DC of the F1 and V protein antigens of Y. pestis,
particularly as these have a dichotomous role: as purified
recombinant proteins combined in a vaccine they are potently
immunogenic and protective against plague infection
[27–29]; on the other hand, each of these proteins functions
as a potent virulence factor with an anti-phagocytic (F1) and
a pivotal regulatory role in TTSS(V), respectively, when
expressed by the organism during infection [2]. The ability of
the ex vivo DC to interact with the F1 and V antigens and to
initiate a primary immune response in naive T cells in vitro
has been studied. The F1 and V antigens stimulated the
production of both type 1- and type 2-promoting cytokines
from the DC and cell-free supernatants from the pulsed DC
were also able to induce proliferation in naive T cells.

Materials and methods

Animals

Female Balb/c mice between 6 and 8 weeks old (Harlan UK,
Bicester, UK) were purchased as specific pathogen free (SPF)

stock and housed in groups of five with free access to food,
water and environmental enrichment.

Antigens

Recombinant proteins V and F1 were used. The V antigen
was expressed as a fusion protein with glutathione-S-
transferase (GST) in Escherichia coli and then cleaved and
purified [30]. The F1 antigen was expressed from the Y. pestis
caf operon, cloned in E. coli and purified from the superna-
tant [31]. Both proteins were treated with immobilized poly-
myxin B to remove lipopolysaccharide (LPS) and the
absence of LPS was confirmed by assaying the proteins in the
limulus amoebocyte lysate (LAL) assay (Charles River
Endosafe, Charleston, SC, USA).

Isolation of dendritic cells from spleen

Single-cell suspensions were prepared from mouse spleen by
pressing through a sterile wire gauze into complete medium
comprising RPMI-1640 Dutch modification (Sigma-
Aldrich, Poole, UK) supplemented with 10% fetal calf
serum, 100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM
glutamine and 5 ¥ 10-5 M 2-mercaptoethanol. Cells were
incubated in T25 tissue culture flasks (Falcon, Cockeysville,
MD, USA) overnight and non-adherent splenocytes (5 ml)
layered onto 2 ml of metrizamide (analytical grade 13·7%
w/v; Nygaard, Oslo, Norway) and centrifuged at 600 g for
10 min at room temperature. Low-density interface cells
were collected, washed once and resuspended in medium;
>70% were DC by morphology and displayed CD11c [32].

Growth of dendritic cells from bone marrow

Bone marrow cells from mouse femurs were flushed into
complete medium, washed once and the single-cell suspen-
sion overlaid onto lympholyte M (Cedarlane, Ontario,
Canada) and centrifuged at 1200 g for 30 min at room
temperature. The interface cells were washed and cultured at
1 ¥ 106 cells/ml in complete medium supplemented with
granulocyte–macrophage colony-stimulating factor (GM-
CSF) (100 U/ml) and TNF-a (50 U/ml). On day 3, non-
adherent cells were washed and either centrifuged over
metrizamide and DC at the interface washed and analysed,
or replaced in the original tissue culture flask with com-
plete medium supplemented with GM-CSF and TNF-a
(50 U/ml). After 6–14 days’ culture, non-adherent cells were
centrifuged over metrizamide, as described above. Cells were
> 95% viable (Trypan blue) and from light scatter and phe-
notype were > 95% DC [33].

Measurement of cytokines

DC culture supernatants were assayed by OptEIATM mouse
interleukin (IL)-4, IL-10, IL-12 (p40), interferon (IFN)-g set
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(Pharmingen, San Diego, CA, USA). Nunc-ImmuneTM

96-well microtitre plates (Nalge Nunc International,
Roshilde Denmark) were coated with the appropriate
capture monoclonal antibody (mAb). Cytokine binding was
detected with biotinylated detection antibody and avidin–
horseradish peroxidase conjugate. The data are presented as
mean concentrations of specific cytokines (pg/ml) with
standard errors.

Intracellular cytokine measurements

DC in medium, some with 3 mM monensin (Calbiochem,
San Diego, CA, USA), were incubated at 37°C for 6 h, washed
twice and fixed for 15 min in solution A of Leucoperm kit
(Serotec, Kidlington, Oxford, UK). Following one wash, DC
were resuspended in permeabilization medium (solution B
of Leucoperm kit), rabbit serum and rat anti-mouse IL-10
phycoerythrin (PE), rat anti-mouse IL-12p70 PE or rat anti-
mouse IL-4 PE antibody and incubated in the dark at room
temperature for 30 min. Cells were washed, fixed in 1%
paraformaldehyde, stored at 2–8°C in the dark and analysed
by flow cytometry within 24 h. Analysis was carried out
using the winlist software program (Verity Software,
Topsham, ME, USA) with calculation of positive cells (%) by
enhanced normalized subtraction (ENS) where the histo-
grams of the control (no monensin) and the test (with mon-
ensin) samples are compared and subtraction used to assess
positivity. The test sample is represented by an open histo-
gram and the number of positive events (%) by the filled area
within this histogram. Negative ENS results are recorded as
0% values. Kolmogorov–Smirnov statistics were used to
assess the significance of a positive result by calculating the
critical Dvalue (Dcrit) with the following equation:

D D ,crit = +( ) ×( )⎡⎣ ⎤⎦max n n n n1 2 1 2

where Dmax is the maximum value between the test (with
monensin) and control (no monensin) samples after the two
histograms have been converted into cumulative normalized
histograms, n1 is the number of events in the test sample and
n2 is the number of events in the control sample. Dcrit with
P < 0·01 was accepted as a significant positive value. Stu-
dent’s paired t-test was used for assessing the differences
between DC unpulsed or pulsed with rV and rF1 antigens at
days 3, 8 and 13 of culture.

Flow cytometry

Cells in cold phosphate-buffered saline (PBS) containing
ethylenediamine tetraacetic acid (EDTA) (1 mM), sodium
azide (0·02%) and fetal calf serum (2%) were incubated on
ice with fluorescein isothiocyanate (FITC)-conjugated
mouse antibodies H-2Dd (mouse IgG2a, clone 34-2-12);
H-2Kd (mouse IgG2a); H-2Dk (mouse IgG2a clone 15-5-55);
H-2Kk (mouse IgG2a); H-2Ad (mouse IgG2b, clone AMS-
32·1); H-2Ak (IgG2b, clone 11-5-2); H-2Ek (mouse IgG2a,

clone 17-3-3); CD11c (clone HL3) and IgG (clone HL3).
Isotype-control antibodies were FITC-conjugated mouse
IgG2a, IgG2b, hamster IgG (Pharmingen).

Primary proliferative responses

Dendritic cells (500, 1000 and 2000/well) either unpulsed or
pulsed for 2–24 h with rV, rF1, a combination of both anti-
gens or V peptides, were washed and cultured with (25–
100) ¥ 103 T cells, taken from inguinal, brachial and axillary
lymph nodes, in triplicate 20 ml drops in Terasaki plates.
Control responses were obtained using concanavalin A
stimulation (5 mg/ml). Plates were inverted and cultured for
3 or 4 days over sterile saline in plastic boxes at 37°C. Each
hanging drop received 1 ml [3H]-thymidine (74 GBq/mM,
1 mg thymidine/ml; GE Healthcare, Amersham, UK) and
after 2 h at 37°C they were blotted onto filter discs, washed
with saline, trichloroacetic acid (5%) and methanol and
counted in a scintillation counter [32].

Preparation of supernatants

DC from spleen cultures were pulsed with rV (10 mg/ml) or
rF1 (20 mg/ml) and 3-day bone marrow-derived DC
(BMDC) were pulsed with rV (10 mg/ml) or rF1 (5 mg/ml)
for 2–4 h, washed twice by centrifuging them at 400 g for
10 min and cultured overnight at a concentration of
1–2 ¥ 105 DC/0·1 ml medium in round-bottomed tubes. The
tubes were centrifuged at 10 000 g for 10 min and superna-
tant transferred to sterile Eppendorf tubes and microfuged at
10 000 g for 15 min to remove cell debris. Supernatant
(1–3 ml) was used to stimulate (40–160) ¥ 103 syngeneic
lymph node T cells/well, in triplicate 20 ml cultures. Prolif-
eration was measured on day 3 of culture as described above.

Results

Cytokine secretion by dendritic cells

Initially, the cytokine response of DC from three different
sources (bone marrow, spleen and lymph node) to ex vivo
pulsing with single or combined antigens (rF1, rV or
rF1 + rV) was assessed (Fig. 1). BMDC samples were subdi-
vided into 3-, 8- or 13-day-old cultures prior to pulsing with
antigens, while splenic and lymph node DC were used
without ageing. BMDC (Fig. 1a–c) and splenic DC
(Fig. 1d–f) cultures produced the cytokines IL-10, IL-4,
IL-12 and IFN-g. There was some differential production; for
example, day 8 BMDC produced most IL-10 and IL-12, both
of which were up-regulated by pulsing the DC with rF1 and
rV, whereas significant quantities of IL-4 were detected only
from day 13 BMDC and this was up-regulated by the com-
bined antigens. Splenic DC produced IL-12 (which was not
up-regulated by rF1 and rV) and IFN-g (which was
up-regulated by pulsing with the antigens). IL-12 only was
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detected in the supernatant from lymph node DC
(Fig. 1g–i), but this was up-regulated in response to rF1 and
rF1 + rV. Thus the timing and quantity of cytokines pro-
duced varied with the cell source and maturity.

Intracellular cytokine production

Due to the differential production of cytokines with age of
BMDC, further analysis of intracellular cytokines in BMDC
was undertaken. For this, 3-, 8- or 13-day cultures of BMDC
were pulsed with the combined rF1 + rV antigens for 24 h
prior to the assay of intracellular IL-4, IL-10 and IL-12
(Fig. 2). Production of cytokine within the cells, both with
and without exposure to antigen, was measured by its accu-
mulation following exposure of the cell for 6 h to monensin.
Monensin itself did not stimulate cytokine production and
specificity of the labelling was confirmed in early experi-
ments using these reagents by demonstrating blocking with
excess specific cytokine (not shown). Cytokine expression
was either up-regulated or initiated by exposure to rV + rF1.
DC showed background production of each cytokine in a

proportion of the experiments. However, the maturity of the
cells was again critical for the production of cytokines within
the BMDC. Figure 2 shows cytokine production in a repre-
sentative experiment. The shaded areas within the histo-
grams represent the percentages of positive events, after
winlist ENS calculations, and these values are shown in
the boxed areas. Plots of DC treated with rV + rF1
(Fig. 2a,ii,iv,vi; Fig. 2b,ii,iv,vi) were greater than those not
treated with antigen (Fig. 2a,i,iii,v; Fig. 2b,i,iii,v). Data from
three to four experiments of this kind are summarized in
Fig. 3. The intracellular IL-4 was seen only in the presence of
monensin, indicating that it was being produced within the
cells and not remaining from their IL-4 exposure during
development. We showed, in parallel studies, that the pres-
ence of intracellular IL-4 was promoted by the exposure of
the developing DC to IL-4 through binding to IL-4 receptors
on DC [34]. The up-regulatory effect of the antigens on day
8 BMDC was significant over all experiments for IL-4
(Fig. 3a) and IL-12 (Fig. 3c). For day 13 BMDC, there was a
significant reduction of IL-4 and IL-10 in one of three indi-
vidual experiments but these effects were variable and not

Fig. 1. Production of cytokines by dendritic

cells (DC). Bone marrow, spleen and lymph

node-derived DC were either unpulsed (open

box) or pulsed with rV (solid box), rF1

(/hatched box), rV + rF1 (\hatched box) for

2–24 h. Supernatants were collected and assayed

by enzyme-linked immunosorbent assay

(ELISA) (a,b,c). Production of interleukin

(IL)-10 (a); IL-4 (b); IL-12 (c) in 3-, 8- and

13-day-old bone marrow-derived DC (BMDC)

are shown from triplicate experiments except

for the day 13 IL-4. No IL-4 was seen in 3- and

8- and only intermittently in 13-day-old BMDC

and the result from one positive experiment of

three is shown (b). Production of IL-10 (d);

interferon (IFN)-g (e) and IL-12 (f) in splenic

(d–f) and lymph node DC (g–i).
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significant overall. The production of IL-10 was seen repro-
ducibly only when the cells were pre-exposed to antigen for
24 h before the block with monensin, whereas IL-4 and IL-12
production were seen following a 1-h exposure to antigen
before the addition of the monensin. Thus, pulsing the
BMDC with the combined antigens induced both IL-12 and
IL-4 production in parallel in the same cell populations.

Primary stimulation with antigen-pulsed DC

Next, the ability of rF1- or rV-pulsed BMDC and splenic DC
to prime naive syngeneic lymph node T cells was assessed by
pulsing with tritiated thymidine (Fig. 4). Freely available
thymidine of low specific activity for a short 2-h pulse time
was used to give uptakes that truly reflected DNA syntheses
with minimal radiation damage to cells taking up the tritium
[35]. For reference, responses to concanavalin A, the positive
control used in all experiments, ranged between 5086 and
26 800 counts per min (cpm). Both BMDC and splenic
(gradient-separated) DC pulsed with antigen were used in
these studies; the BMDC were derived from stem cells by
growth in the presence of GM-CSF and IL-4 and studied
between days 3 and 13 of culture. BMDC from 3-day cul-
tures, which had been pulsed for 18 h with the antigens,
stimulated high levels of primary T cell proliferation
(Fig. 4a,b) and were more effective than splenic DC which

had been pulsed for 18 h with single or combined antigens
(Fig. 4c) in stimulating proliferation; pulsing doses of
1–10 mg/ml of rV or 0·5–10 mg/ml of rF1 were optimal.
Seven-day-old BMDC (Fig. 4d,e) pulsed for 2 h with rV or
rF1 stimulated lower primary proliferative responses, which
were dose-dependent for rV. Higher antigen pulsing doses
(10–20 mg/ml of rV antigen for 2 h) or (20–50 mg/ml of rF1
for 4 h) were required to achieve primary proliferation of
naive T cells with splenic DC (Fig. 4f,g).

Primary proliferative responses in T cells exposed to
supernatants from antigen-pulsed DC

Because antigen-pulsed 3d BMDC were most stimulatory for
naive T cells, cell free supernatants were collected from these
cultures which had been pulsed for 4 h with rF1 or rV and
then washed and incubated overnight. Initially, 1 ml of super-
natant was cultured with naive syngeneic lymph node T cells
for 3–4 days and thymidine uptake into new DNA measured.
A significant response to the supernatant from rF1- and
rV-pulsed BMDC was obtained (Fig. 5a). A significant pro-
liferative response in naive T cells was also induced by the
supernatant from rF1-pulsed, but not rV-pulsed, splenic DC
(Fig. 5b), and increasing the volume of stimulatory superna-
tant used to 3 ml increased responder cell proliferation to
levels equivalent to those induced by 3d BMDC (Fig. 5c).

Fig. 4. Primary T cell proliferative responses in

vitro to rV and rF1 antigens. Different numbers

of lymph node T cells from naive mice were

cultured with 1000 autologous dendritic cells

(DC), which were either unpulsed or pulsed

with antigens. Proliferation was measured on

day 3 of culture. (a, b) Three-day bone

marrow-derived DC (BMDC) were either

unpulsed (O) or pulsed with rV (a) or rF1 (b)

at 0·1 (�), 0·5 (�), 5 (�), 10 (�) for 18 h. (c)

Naive donor T cells (105) were cultured with

splenic DC pulsed with 5 m g/ml rV, 10 mg/ml

rF1 or both antigens at these same

concentrations for 18 h. (d–e) Seven-day

BMDC. Responder cells only (�). DC were

either unpulsed (O) or pulsed with rV (c) at 5

(�) and 10 mg/ml (�) or rF1 (d) at 1 (�), 5

(�) and 10 mg/ml (�) for 2 h. (f–g) Splenic DC

were either unpulsed (O) or pulsed with rV (e)

at 2·5 (�), 4·5 (�) and 10 mg/ml (�) for 2 h; or

rF1 (f) at 5 (�), 10 (�), 20 (�) and 25 mg/ml

(�) for 4 h. All figures are representative of

data gained in at least three experiments.
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More mature BMDC (from 6- to 12-day cultures) did not
produce stimulatory supernatants (not shown). If the
antigen-pulsing period was increased from 2–4 h to 6–24 h,
the supernatants were not stimulatory.

By comparison, supernatants from rV-pulsed splenic DC
caused marginal effects that were only 1·5–2 times the back-
ground and when the pulse time with antigen increased to
24 h, less stimulation was seen (not shown). Taken together,
these data suggest that the stimulatory component(s) in DC
supernatants was produced early after the exposure to
antigen.

Discussion

This study has demonstrated that the in vitro interaction of
DC with the rF1 and rV proteins leads to the induction of
primary proliferative responses in lymph node T cells and
the secretion of a spectrum of cytokines into the cell culture
supernatant. While DC derived from peripheral lymph
nodes principally secreted IL-12 when pulsed with rF1 + rV,
and appeared to have a type 1 default cytokine pattern, DC
from systemic sources (spleen and bone marrow) secreted
the range of types 1 and 2 cytokines. It was also observed that
a 24-h pulse with rF1 and rV in vitro, accelerated the expres-
sion of major histocompatibility complex (MHC) molecules
on 15–20% of the BMDC taken at 3–9 days of culture and
hence the maturation of these cells (data not shown),
although such effects were difficult to quantify because of the
biphasic nature of MHC class II expression on the cells as
they matured.

Intracellular cytokine production in BMDC was studied
by flow cytometry. This measurement was particularly
important for IL-4, where IL-4 binding back onto its own
receptor on DC means that little secreted cytokine is detected
[34]; a similar situation has been described for other cell
types [36]. In our studies, secreted IL-4 was detected only at
day 13 of culture and with DC exposed to antigens for 24 h
but, as expected, IL-4 was demonstrated more readily by
intracellular analysis. The production of IL-4 seen in
unstimulated cells is also likely to be a consequence of the
exposure to IL-4 during the development of the DC [34].
There were variations depending on the maturity of the cells,
but using 8-day cells there was up-regulation of intracellular
IL-12 and IL-4. The duration of exposure to the antigens
required to stimulate cytokine production varied. Thus
IL-10 and IL-4 were induced after 24 h exposure to the anti-
gens before the block with monensin, whereas IL-12 was
induced after only 1 h of exposure to the antigens. Although
these variations added to the problems of assessing the
effects of these antigens on cytokine production so that the
use of multiple time-points both in the maturation of DC
and in exposure to antigen were required, it appeared that
the processing of rF1 + rV by DC resulted in the production
of both type 1 and type 2 cytokines. This differs from the
processing of other microbial products, such as Leishmania
major promastigotes, by DC which results in polarization
towards a type 1 response with IL-12 secretion [23].

Significantly, the cell-free culture supernatants from rF1-
pulsed DC, were also able to induce primary T cell stimula-
tion, due presumably to the secretion of stimulatory
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Fig. 5. Primary T cell proliferative responses to supernatants from rV- and rF1-pulsed DC. (a) Cell free supernatants were collected at 24 h of

culture from 3d bone marrow-derived DC (BMDC) which had been pulsed with rV and rF1 for 4 h, and then washed. The supernatants (1 ml) were

used to stimulate syngeneic lymph node T cells. Lymph node cells alone (�); supernatants from unpulsed DC (O); supernatants from rV- and
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factor(s) secreted by the DC. The most effective production
of such material was when the DC were exposed to antigens
for just a short period (2–4 h) and the stimulatory products
were secreted over the next 24 h. In addition, immature DC
derived from the bone marrow (3d BMC) were more effec-
tive at secreting stimulatory factors than DC from other
sources.

It is known that when DC are pulsed with antigens to
induce primary responses, the antigen is transferred to other
DC [22,32,37,38]. If these DC secondarily acquiring antigen
have not already been exposed directly to antigen, they
stimulate a primary T cell response. This requirement for
transfer of antigen between DC has been seen in primary
stimulation of allogeneic cells, and following exposure of DC
to contact sensitizer, viral antigens and peptides [37,39,40].
In addition, in vivo, DC of recipient animals may be required
for production and/or amplification of primary immune
responses to antigens delivered by DC or from DC-derived
exosomes [41–45]. DC secrete a high proportion of their
MHC class II molecules into the supernatant in the form of
exosomes [46]. Such exosomes also contain heat shock
protein, which may act as an adjuvant. Although electron
microscope pictures suggest that DC interact with other DC
or monocytes by direct contact [47] and may transfer
antigen in this way, exosomes or secreted factors may also be
a major route of antigen transfer. Evidence supporting this
view is that the supernatants of DC exposed to a variety of
antigens induce primary T cell responses in vitro if the
responding lymphocyte populations contain DC [32,37].
Exosomes from DC have previously been used successfully to
vaccinate mice against tumours [48] and such factors may
also constitute a putative novel generic approach to anti-
microbial vaccination. In future experiments we plan to
characterize these DC products, as they have the potential
advantage of harnessing the potency of DC without the
problems associated with using live cell vaccines.

Proof of principle that DC can induce protective immu-
nity by passive transfer has already been gained from studies
in which immune naive mice received GM-CSF + TNF-a-
matured BMDC which had also been pulsed with heat-killed
Burkholderia pseudomallei [49] and developed both cellular
and antibody responses to the pathogen [50].

The data gained in this study indicate that the interaction
of DC with the rF1 and rV protein antigens of Y. pestis has
induced an adaptive primary immune response in naive
lymph node T cells in vitro. The in vivo processing of the
rF1 + rV antigens and subsequent presentation to T cells are
critical components of the success of this antigen combina-
tion in the observed protective immunity induced by this
next-generation plague vaccine [28]. These effects are in
marked contrast to those of infection with the whole organ-
ism Y. pestis on DC function, which are to reduce DC adhe-
sion and migration to the site of infection [18]. These are due
probably to integrated virulence mechanisms exerted by this
complex organism which inhibit the initiation of processing

and presentation of Y. pestis antigens such as F1 and V in vivo
and thus prevent the establishment of a protective immune
response. However, we speculate that selection of multiple
primary T cell epitopes stimulating both type 1 and type 2
Th cell-promoting cytokines in DC may be characteristic of
a vaccine successful in stimulating both cellular and humoral
immunity effective against the intracellular and extracellular
lifecycle phases of Y. pestis.
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