
Conditional regulation of cyclooxygenase-2 in tracheobronchial
epithelial cells modulates pulmonary immunity

G. Y. Park,*§ N. Hu,¶ X. Wang,*

R. T. Sadikot,* F. E. Yull,‡ M. Joo,¶

R. Stokes Peebles Jr,¶ T. S. Blackwell¶

and J. W. Christman*§

*Department of Medicine, Section of Pulmonary,

Critical Care and Sleep Medicine, University of

Illinois, Chicago, IL, ¶Division of Allergy,

Pulmonary and Critical Care Medicine and
‡Department of Cancer Biology, Vanderbilt

University, Nashville, TN, and §Department of

Veterans Affairs, Nashville, TN, USA

Summary

Cyclooxygenase-2 (COX-2) gene expression in the lung is induced in patho-
logical conditions such as asthma and pneumonia; however, the exact impact
of COX-2 gene expression in the airway in regulating inflammatory and
immunological response in the lung is not understood. To define a physiologi-
cal role of inducible COX-2 in airway epithelial cells, we developed a novel line
of transgenic mice, referred to as CycloOxygenase-2 TransActivated (COTA)
mice, that overexpress a COX-2 transgene in the distribution of the CC-10
promoter in response to doxycycline. In response to doxycycline treatment,
COX-2 expression was increased in airway epithelium of COTA mice and
whole lung tissue contained a three- to sevenfold increase in prostaglandin E2

(PGE2), prostaglandin D2 (PGD2) thromboxane B2 (TXB2) and 6-Keto pros-
taglandin F2a (PGF2a) compared to wild-type and untreated COTA mice.
Interestingly, primary mouse tracheal epithelial cells from COTA mice pro-
duced only PGE2 by doxycycline-induced COX-2 activation, providing an
indication of cellular specificity in terms of mediator production. In the oval-
bumin model, in which doxycycline was given at the sensitization stage, there
was an increase in interleukin (IL)-4 level in lung tissue from COTA mice
compared to untreated COTA and wild-type mice. In addition, COTA mice
that were treated with doxycycline had impaired clearance of Pseudomonas
aeruginosa pneumonia compared to wild-type mice. COX-2 gene expression
in airway epithelial cells has an important role in determining immunological
response to infectious and allergic agents.
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Introduction

There is increasing evidence indicating that airway epithelial
cells act not only as a physical barrier but also play an
active role in regulating inflammatory and immunological
responses to inhaled environmental stimuli. Airway epithe-
lial cells possess pathogen recognition receptors (e.g. Toll-
like receptors) and are one of the first cells that contact
inhaled antigen, prior to the professional immune cells [1,2].
Airway epithelial cells express low basal levels of
cyclooxygenase-2 (COX-2) that liberate active prostanoid
mediators into the airway and alveolar space [3]. COX-2 is
induced in airway epithelial cells in response to inhaled aller-
gen challenge and airborne infection with bacteria [4].

Prostanoids are enzymatic products of COX that are
potent regulatory lipid mediators involved in numerous

physiological and pathological processes. Prostanoids act as
autocrine and paracrine lipid mediators in the vicinity of
their production site to maintain local homeostasis. COX is
the rate-limiting enzyme in the metabolism of arachidonic
acid which is then acted upon further by specific isomerases
and oxidoreductases to catalyse the production of various
bioactive prostaglandin isomers. Differential cellular gene
expression of the enzymes that are involved in prostanoid
biosynthesis, as well as differences in the distribution of spe-
cific prostanoid synthases within cells, determine the profile
of prostanoid production and thereby their effects on neigh-
bouring cells. Thus, there is a spectrum of eicosanoid pro-
duction that differs from one cell type to another.

The pattern of eicosanoid production in bronchoalveolar
lavage (BAL) fluid is altered in many pulmonary disease
states [5–7]. Because inflammatory cells in the airway
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also release prostanoids and contribute to the prostanoid
balance, the specific contribution of airway epithelial cells in
producing COX-2 that results in cell-to-cell interaction is
unknown [8]. We hypothesize that COX-2 gene expression
and prostanoid production by airway epithelial cells are
critical determinants of immune response in the lung. To
investigate this hypothesis, we developed novel conditional
inducible transgenics that express COX-2 specifically in the
airway epithelium. We examined the response of these mice
with and without induction of COX-2 gene expression in the
tracheal–bronchial epithelium in both an allergic and a
pneumonia disease model. The ovalbumin-sensitized airway
inflammation model represents a T helper 2 (Th2)-type
immune reaction and the Pseudomonas aeruginosa pneumo-
nia model examines the effect of airway prostanoid produc-
tion in regulating host defence.

Materials and methods

Genotyping the transgenic mice

All transgenic mice were generated on the FVB strain back-
ground under specific pathogen-free condition at Vanderbilt
University, Nashville, TN. The presence or absence of the
transgene was evaluated initially using Southern blot analysis
and polymerase chain reaction (PCR). DNA prepared from
tail biopsies was used for genotyping. PCR for the COX-2
transgene was performed using primers which were designed
not to detect endogenous COX-2 gene: 5′-CAGCAAAT
CCTTGCTGTTCC-3′, 5′-TTCCAAGGGCATCGGTAAACA
TCTG-3′. Mice transgenic for CC10-tetracycline-controlled
transcriptional silencer (tTS)/(tet-O)7-COX2 were mated
with CC10-rtTA homozygous mice to obtain transgenic mice
carrying all three transgenes, designated CycloOxygenase-2
TransActivated (COTA) mice (Fig. 1a).

COX-2 expression in lung tissue

Lung tissue homogenates were prepared as described previ-
ously [4]. Immunostains for COX-2 were performed with
lung homogenates. The anti-mouse COX-2 antibody
(Cayman Chemical, MI, USA) was applied at a 1/100
dilution. For COX-2 immunohistochemistry in lung tissue,
mice were perfused with saline. The lungs were inflated with
1 ml of 10% neutral-buffered formalin. The Vectastain ABC
Elite (Vector Laboratories, Burlingame, CA, USA) system
was used to produce localized, visible staining of COX-2
protein.

Assessment of prostaglandins production in lung

Mouse lung was harvested after flushing with saline and
stored at -80°C until measured. The total lung homogenate
and culture supernatant was used for measurement.

Prostaglandins were determined by gas chromatography in
conjunction with mass spectrometry (GC/MS), as described
previously [4].

Mouse tracheal epithelial cell (MTEC) isolation

For isolating primary MTEC, we followed a previously pub-
lished protocol with minimal modifications [9]. Briefly, the
tracheas were opened longitudinally, incubated in 1·5 mg/ml
pronase (Roche Molecular Biochemicals, Indianapolis, IN,
USA) for 18 h at 4°C. Epithelial cells were dislodged from
tracheas, collected by centrifugation and resuspended in
DNase solution to avoid clumping together. These cells
were centrifuged and resuspended in MTEC basic media
[Dulbecco’s modified Eagle’s medium (DMEM)-Ham’s
F-12 (1 : 1 v/v), 15 mM HEPES, 3·6 mM sodium bicarbon-
ate, 4 mM l-glutamine, 100 U/ml penicillin, 100 mg/ml
streptomycin and 0·25 mg/ml fungizone]. After incubating in
tissue culture plates (Primera; Becton-Dickinson Labware,
Franklin Lakes, NJ, USA) for 3–4 h at 37°C, floating epithelial
cells were collected by centrifugation. MTEC cells were
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seeded on a 12-mm diameter, 0·4 mm pore size polycarbon-
ate semipermeable membrane (Transwell, Corning Costar,
Cambridge, MA, USA). The cells were cultured for 5 days
with the culture medium MTEC plus, which is MTEC basic
media supplemented with 10 mg/ml insulin, 5 mg/ml trans-
ferrin, 0·1 mg/ml cholera toxin, 25 ng/ml epidermal growth
factor (Becton-Dickinson, Bedford, MA, USA), 30 mg/ml
bovine pituitary extract, 5% fetal bovine serum (FBS) and
0·01 mM retinoic acid. Media was changed every 2 days until
the transmembrane resistance (Rt) is > 1000 W cm2, as mea-
sured by an epithelial Ohm-voltmeter (World Precision
Instruments, Sarasota, FL, USA). Media was removed from
the upper chamber to establish an air–liquid interface (ALI),
and the lower chambers only were provided with fresh
MTEC/NS media, which is MTEC basic media supple-
mented with 2% Nu Serum (Becton-Dickinson) and
0·01 mm retinoic acid every 2 days.

COX-2 expression in primary MTEC

The transwell membrane of MTEC was fixed and
permeabilized. After incubating with primary anti-mouse
COX-2 (1 : 100 dilutions) and secondary antibody, the
membrane was mounted on slides in mounting media with
diamidino phenyl indole (DAPI) (Vector Laboratories).
COX-2-immunostained MTEC was imaged using the LSM
510 laser scanning confocal microscope (Carl Zeiss, Jena,
Germany).

Scanning electron microscopy

The transwell membrane of MTEC was fixed with 2·5%
glutaraldehyde and processed and visualized on a Hitachi
S-3000 N microscope (Tokyo, Japan).

Allergen sensitization protocol

Mice were injected intraperitoneally with 0·1 ml (10 mg) of
ovalbumin (Sigma, St Louis, MO, USA) as shown in a pre-
vious report [4]. On days 14–15, the mice were exposed to
aerosols of 1% ovalbumin diluted in sterile phosphate-
buffered saline, using an ultrasonic nebulizer (Ultraneb 99;
DeVilbiss, Somerset, PA, USA). We performed the ovalbu-
min aerosol challenge only twice, on days 14 and 15, in order
to minimize ovalbumin-induced COX-2 induction in
epithelial cells [4]. On day 16, the mice were harvested and
analysed.

Quantification of interleukin (IL)-4, IL-5 and IL-13 in
lung tissues

Levels of cytokines in lung tissues of mice were measured
with the Bio-plex mouse cytokine kit (Bio-Rad, Hercules,
CA, USA), following the manufacturer’s instructions.

P. aeruginosa pneumonia mouse model

COTA mice weighing 20–30 g were used for this experiment.
After sedation with ketamine/xylazine, mice were treated
with intratracheal (IT) administration of P. aeruginosa
(strain PA103), as reported by our group [10]. After the
indicated times, lungs were harvested and serial dilutions of
lung homogenates were made, and 10 ml of each dilution
were plated in soy base blood agar plates (Difco, Detroit, MI,
USA). The plates were incubated at 37°C and the number of
colonies was counted.

Statistical analysis

Our statistical analyses were performed with GraphPad
InStat (GraphPad Software, San Diego, CA, USA), using an
unpaired t-test and analysis of variance (anova).

Results

Generation of transgenic mice with inducible
activation of COX-2 in airway epithelium

To generate inducible COX-2 expression using the tet-on
system, we placed murine COX-2 under the control of the
(tet-O)7-CMV promoter. To prevent basal leakiness of
transgene expression, a construct expressing a tTS under the
control of the Clara cell-specific CC10 promoter (obtained
from Dr Jack Elias, Yale University, with the permission of
Andrew Farmer, BD Clontech, Palo Alto, CA, USA) was
co-injected with (tet-O)7-COX-2 to generate double trans-
genic mice [11]. Unbound tTS interacts with tet-O sites and
functions as a transcriptional repressor; however, binding of
doxycline to tTS results in dissociation from DNA, allowing
rtTA binding and promoter activation [12,13]. The tTS con-
struct was co-injected with (tet-O)7-COX-2 to generate
double transgenic mice (Fig. 1a). Founder mice were identi-
fied by Southern analysis of tail DNA and confirmed by PCR
(Fig. 1b). Double transgenic mice were bred with transgenic
mice expressing rtTA under the control of the rat CC10
promoter (obtained from Dr Jeffrey Whitsett, University of
Cincinnati) to generate triple transgenic mice, designated
COTA (Fig. 1a). COTA mice from two separate founder lines
(designated 10 and 26) were developed and despite differ-
ences in the integrated copy numbers of transgenes induced
equivalent levels of COX-2 response to doxycycline treat-
ment (Fig. 2b) Both lines were used for these studies.

Inducible expression of transgene COX-2 in airway
epithelial cells

COTA mice were treated with doxycycline in drinking water
(2 g/l) for 7 days. Immunoreactive COX-2 protein was
increased in whole lung tissue of COTA mice in response to
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doxycycline treatment relative to COX-2 transgene-negative
littermates (TA mice). In the absence of doxycycline,
the background expression of COX-2 was comparable to
those in transgene-negative littermates (Fig. 2a,b). However,
COX-1, a protein that is expressed constitutively, was not
changed by doxycycline treatment (Fig. 2b). To assess the
cellular localization of doxycycline-induced COX-2 protein,
we performed immunohistochemistry for COX-2 on lung
sections from doxycycline-untreated and -treated COTA
mice and control littermates (TA mice). After 7 days of doxy-
cycline treatment, COX-2 expression was clearly visible in
airway epithelium in the proximal and distal airways in
COTA mice, but not in lung tissue from the two control
groups (Fig. 2c).

Overproduction of prostaglandins in lung by elevation
of COX-2 levels in airway epithelial cells

Next, we measured the enzymatic products of COX-2 in lung
homogenate. Figure 3 demonstrates increased production of
prostaglandins in the lung following doxycycline treatment.
There was no statistical difference between wild-type mice
treated with doxy and COTA mice without doxycycline in
the level of prostaglandins in lung tissue. However, the lung
homogenate from doxycycline-treated COTA mice con-
tained a three- to sevenfold increase in prostaglandin E2

(PGE2) (121 � 19 versus 36 � 27 ng/g), prostaglandin D2

(PGD2) (74 � 13 versus 11 � 7 ng/g), thromboxane B2

(TXB2) (34 � 5 versus 10 � 7 ng/g) and 6-Keto prostaglan-
din F2a (PGF2a) (219 � 24 versus 46 � 25 ng/g) compared to
untreated COTA mice (Fig. 3). The prostaglandin profile of
BAL fluid was similar to that of the lung tissue. Specifically,
PGE2 (1·02 � 0·49 versus 0·073 � 0·047) and PGD2

(0·91 � 0·47 versus 0·064 � 0·044 ng/g) were elevated
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significantly in COTA mice treated with doxycycline com-
pared to COTA without doxy. However, TXB2 was also
increased in BAL fluid, even though it was elevated insignifi-
cantly in lung tissue. In contrast, although increased in lung
tissue, 6-keto-PGF1a and PGF2a were not increased in the
BAL fluid of COTA mice that were treated with doxycycline.

PGE2 is a major product of COX-2 induction in
primary bronchial epithelial cells

The different profiles of prostaglandin products determined
in lung homogenate and BAL fluid prompted us which pros-
tanoid products of COX-2 were produced specifically by
airway epithelial cells. We cultured primary MTEC in tran-
swell double chambers. To differentiate them into highly
differentiated airway epithelium we treated the cells with
retinoic acid, a differentiating agent, in air–liquid interface
conditions. These cultured MTEC cells were then treated
with or without doxycycline (0·5 mg/ml) in culture media.
The scanning electron microscopy images showed a well-
differentiated ciliated and microciliated epithelial monolayer
(Fig. 4a). Aliquots of the culture supernatant were taken
sequentially from day 1 to day 3 and analysed for PGE2 and
PGD2 by liquid chromatography and mass spectrometry.

Immunoreactive COX-2 protein was induced by doxy-
cyline treatment in MTEC cells from COTA mice but not
in wild-type controls or without doxycyline treatment
(Fig. 4c). Because PGE2 and PGD2 were the major prostag-
landins detected in BAL fluid, we measured them in culture
supernatant from MTEC cells. From day 1 after doxycycline,
the PGE2 levels began to increase (1·01 versus 0·68 ng/ml)
and peaked at day 2 (2·08 versus 1·02 ng/ml). However, PGD2

levels were consistently very low-level at the beginning, pro-
viding no evidence of induction (Fig. 4c). The transwell
membrane was cut and used for immunofluorescent staining
to determine the distribution and intracellular location of
COX-2. As the CC10 promoter was used to drive expression
of COX-2 we also determined the distribution of CC10
protein staining. As expected, immunofluorescent staining
suggested that the pattern of CC10 positive cells was patchy
and that the protein was mostly cytoplasmic (Fig. 4b). The
distribution of the COX-2 transgene, in terms of the cell
population expressing detectable protein, was similar to that
of CC10 protein. However, in contrast to CC10 protein that
is expressed homogeneously in cytoplasm, the COX-2
protein is localized to the nuclear membrane and perinuclear
region, as has been described by others for endogenous
COX-2 protein [14].

Elevated production of prostaglandins in the airway
epithelium during a sensitization period increases
IL-4 production

Next, we examined the phenotype of COTA mice in
an ovalbumin-sensitized allergic airway disease model.

Doxycycline was administrated in the drinking water 7 days
prior to an intraperitoneal injection of ovalbumin. Doxycy-
cline treatment was then maintained throughout the experi-
mental protocol. Mice were challenged with ovalbumin on
two separate days (days 14 and 15) because this is prior to the
time when endogenous epithelial COX-2 gene expression
occurs in response to an aerosolized ovalbumin challenge
(Fig. 5a). PGE2 level was measured in BAL fluid on day 16.
PGE2 was elevated in COTA plus doxy group relative to
controls (0·247 � 0·206 and 0·032 � 0·030 ng/ml) (Fig. 5b),
although levels were much less than after 7 days of doxycy-
cline treatment. As shown in Fig. 5c, there was no significant
difference in total serum IgE levels between the groups.
Cytokine concentrations were measured in whole lung
homogenates on day 16. There was an increase in IL-4 level
in doxy-treated COTA, compared to untreated COTA mice
and doxy-treated TA (77·26 � 7·79 versus 58·06 � 7·96 and
52·30 � 14·39, P < 0·05). However, there was no difference
in IL-5 and IL-13 levels in both groups (Fig. 5d). We did not
detect differences in IL-4, IL-5 or IL-13 concentrations in
lung when treatment with doxycycline occurred exclusively
during the challenging stage (from day 9 to day 16) (data not
shown).

Overproduction of airway prostaglandins impairs
bacterial clearance from the lung

Others have shown that prostanoids can modulate immune
and inflammatory responses [15,16]. PGE2, in particular, has
an immunosuppressive effect on the phagocytic capacity of
alveolar macrophages [17]. We tested the phenotype of
COTA mice in a P. aeruginosa-induced pneumonia model.
To determine whether overexpression of COX-2 in airway
epithelial cells alters bacterial clearance after P. aeruginosa
infection, both wild-type and COTA mice were treated with
doxycycline in the drinking water (2 g/l) for 7 days, a con-
centration that is not expected to be bactericidal for
P. aeruginosa [18]. On day 7 the mice were given an intratra-
cheal bacterial inoculation. Twenty-hour h after the inocu-
lation, we measured bacterial colony counts from the lung.
There was significant impairment of bacterial clearance
in COTA mice (Fig. 6b) compared to wild-type mice
[75·8 � 11·5 versus 10·5 � 3·0 ¥ 103 colony-forming units
(CFU)/lung]. No difference in the total cell and differential
count of BAL fluid was detected (data not shown).

Discussion

COX-2 gene expression is increased in the airway epithelium
in both asthma and pneumonia models of mice [4,19,20].
Although some studies suggest that epithelial cell expression
of COX-2 and production of eicosanoids contributes to the
regulation of immune-inflammatory effector responses
using in vitro cell line models [20–22], the role of COX-2
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production by intact airway epithelium has not been defined
in biologically relevant animal models. In spite of the limi-
tation of the artificial overexpression system, which might
differ from physiological activation, to our knowledge this
is the first report of cell-specific overexpression of COX-2
enzyme using an inducible COX-2 transgenic animal model.
Previous studies have examined COX-2 inhibition in animal
models using selective or non-selective COX inhibitors or
COX-2 gene knock-out mice. While these models have pro-
vided interesting data, the modulation of COX-2 expression
is not targeted specifically to the airway epithelial cells and,
thus, they have not defined the role of COX-2 in this specific
cell type in lung disease. We have developed transgenic mice
that express COX-2 under the regulation of the epithelial
cell-specific CC10 promoter in response to treatment with
doxycycline. This model overcomes many of the inherent
limitations in constitutive overexpression or knock-out
models such as activation of compensatory mechanisms,
developmental alteration in fetal life and substrate depletion
[11].

In addition to COX expression, the availability of arachi-
donic acid is a determining factor for prostaglandin produc-
tion [23]. We found that there was significant decreased
prostaglandin production when we overexpressed COX-2
for 4 weeks, compared to 1-week doxycycline treatment
(data not shown).
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In this study, we found that primary MTEC that overex-
press COX-2 in response to treatment with doxycyline
produce PGE2 almost exclusively. This is consistent with
other reports which find that COX-2 and microsomal PGE
synthase are induced simultaneously in certain inflamma-
tory conditions [24]. Our studies in the COTA mice,
however, show that both PGE2 and PGD2 are major com-
ponents in BAL fluid. This suggests that PGD2 is produced
by other cell types in the lungs [25]. One possible source
for PGD2 are macrophages which can produce PGD2

through induction of haematogenous or lipocalin PGD
synthase (H- or L-PGDS). PGE2 has also been shown to
induce COX-2 expression in other cell types by directly
inducing COX-2 gene expression or modulating mRNA
stability [25–27]. PGE2 binds its EP receptors and increases
intracellular c-AMP level, which results in increased COX-2
expression that is mediated through a functionally active
cAMP response element (CRE) binding site in the COX-2
promoter. Therefore, one mechanism by which the elevated
production of PGD2 in the BAL fluid of induced COTA
mice occurs may be that the airway epithelial cells produce
PGE2 that binds to receptors on macrophages and stimu-
lates them to produce PGD2.

Airway epithelium has an important role in homeostasis
by regulating the composition of the airway surface liquid
and the airway response to injury [28]. Prostanoids are
secreted locally, where they communicate with other cell
types in the microenvironment of the airway [8,26]. By rec-
ognition of airborne allergen and pathogens, epithelial cells
are capable of COX-2 gene expression and production of
biologically active prostanoids into the airspace. In this
study, we show that airway epithelial cells produce PGE2 by
induction of COX-2, which results subsequently in alteration
of the allergic and innate immune phenotype. By interaction
with other immune cells through prostanoid production,
airway epithelial COX-2 polarizes the immune response
toward a Th2-type phenotype, suggesting that epithelial
COX-2 plays an important role in determining the direction
of the immune response in the airspace milieu. In previous
studies, inhibition of COX-2 with indomethacin during the
allergen sensitization stage resulted in an increase in IL-4
protein levels in lung [4]. We used the opposite approach, the
overexpression of COX-2 in the airway, and discovered para-
doxically that IL-4 levels were also increased. One possible
explanation for this difference is that indomethacin is a
potent ligand for the DP-2 (also called CRTH2) receptor that
mediates the effects of PGD2 [29]. It is possible that
indomethacin activates the DP-2 receptor and generates IL-4
in a COX-2-independent manner. We suggest that PGE2 pro-
duction by airway epithelial cells stimulated production
of PGD2 by macrophages and this, in turn, mediates the
production of IL-4 and the subsequent TH2-type allergic
inflammation.

There is dispute regarding the role of PGE2 in inflamma-
tion because of discrepancies between in vitro and in vivo
studies [30]. In vitro studies show that PGE2 promotes
antigen stimulated mast cell degranulation and inhibits
IL-12 production by macrophages [31,32], which leads to
Th2 types of immune response. However, in vivo data
suggest the opposite direction of immune response. PGE2

inhibits ovalbumin-induced airway inflammation and sup-
presses T cell proliferation, which is an anti-asthmatic prop-
erty [33]. The complexity of the role of PGE2 is due probably
to its multiple epithelial receptors and multiple cells types
that are involved. Most of the major cells that are involved in
inflammation, including T and B lymphocytes and dendritic
cells, have four epithelial receptors. In addition, structural
cells may also be involved in regulation of immune and
inflammatory process. However, our study shows that epi-
thelial COX-2 plays an important role in determining the
immunological response to both allergic and pathogenic
challenge of the airspace.

Prostanoids have emerged as potent modulators of innate
immunity [34]. It has been shown that PGE2 inhibits the
production of cytokines such as tumour necrosis factor
(TNF)-a in macrophages through the EP4 receptor [35].
PGE2 also suppresses anti-microbial activity of alveolar
macrophages via the EP2 receptor [17]. Our data suggest that
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epithelial cells are the source of endogenous PGE2 and that
COX-2 activation in epithelial cells suppresses the bacterial
clearance of P. aeruginosa. This finding supports the emerg-
ing hypothesis that the function of alveolar macrophages is
regulated negatively by PGE2 in the airspace [36,37].

Further studies are required to clarify the role of non-
epithelial cell-derived prostanoids in the pathophysiology
of airway diseases, but our data indicate that airway epi-
thelial cells produce PGE2 exclusively, which mediates a
shift of the immunological balance in favour of a Th2

response that counterbalances the inhibition of bactericidal
activity.
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