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ABSTRACT

We calculate posterior probabilities for candidate genes as a function of genomic location. Posterior
probabilities for quantitative trait loci (QTL) presence in a small interval are calculated using a Bayesian
model-selection approach based on the Bayesian information criterion (BIC) and used to combine QTL
colocation information with sequence-specific evidence, e.g., from differential expression and/or asso-
ciation studies. Our method takes into account uncertainty in estimation of number and locations of QTL
and estimated map position. Posterior probabilities for QTL presence were calculated for simulated data
with n ¼ 100, 300, and 1200 QTL progeny and compared with interval mapping and composite-interval
mapping. Candidate genes that mapped to QTL regions had substantially larger posterior probabilities.
Among candidates with a given Bayes factor, those that map near a QTL are more promising for further
investigation with association studies and functional testing or for use in marker-aided selection. The BIC is
shown to correspond very closely to Bayes factors for linear models with a nearly noninformative Zellner
prior for the simulated QTL data with n $ 100. It is shown how to modify the BIC to use a subjective prior for
the QTL effects.

Aquantitative trait locus (QTL) is a location or small
region in the genome associated with variation in

a quantitative (i.e., continuously variable) trait. QTL are
mapped by statistical analysis of marker–trait associa-
tions within a QTL mapping family or pedigree. The ac-
curacy of QTL-mapping location estimates is typically of
the order of tens of centimorgans, considerably narrow-
ing down the location of possible functional loci, but
not enough for brute force sequencing to locate genes.
Hence there is the need to combine QTL mapping with
other evidence. In this article we combine evidence for
candidate polymorphisms with QTL-mapping data, using
the posterior probabilities for the candidate polymor-
phisms as priors for the QTL analysis.

Evidence for candidate polymorphisms can be obtained
from various sources: e.g., from assays of differential ex-
pression between tissue types or between genotypes using
microarrays, from homology with genes in other species
where there is evidence for effects on the corresponding
trait, from genes mapping to a QTL region in another
species, from polymorphisms in genes coding for pro-
teins in a biosynthetic pathway, from an association study,
or from a combination of these sources.

Quantifying the evidence from all of these possible
sources would be a large undertaking, with many evalua-

tions particular to specific cases. To limit the scope of
this article we assume candidate genes are given, and the
evidence is quantified in the form of posterior proba-
bilities and/or Bayes factors. Candidates could also be
selected using QTL data (e.g., in a genome-scan ap-
proach), in which case the method of this article would
not apply unless further independent QTL data were
available to assess the QTL colocation.

Information from these sources often represents only
weak or moderately strong evidence; e.g., �4000 candi-
date polymorphisms were differentially expressed for wood
density (S. Cato, personal communication). Since prior
odds for a random candidate gene are low (e.g., 1/3000
if there are 30,000 genes and 10 affecting the trait), fur-
ther evidence is needed to justify the expense of func-
tional testing, and to most effectively select candidates
for testing, or for marker-aided selection applications.

In this article we quantify the additional evidence for
a candidate gene from QTL colocation: this is based on
the estimated map location of the candidate and QTL
regions identified using independent data from a QTL-
mapping pedigree. Our approach requires Bayesian
posterior probabilities for a QTL to be present in a small
genomic interval. To motivate the approach we first dis-
cuss possible alternative QTL-mapping approaches, both
Bayesian and non-Bayesian.

Non-Bayesian QTL mapping: A candidate gene is of-
ten considered to colocate with a QTL if the estimated
candidate gene locus falls within a 95% confidence
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interval for QTL location. Various methods have been
used to estimate confidence intervals for QTL location:
the region around a peak where the interval-mapping
LOD score (Lander and Botstein 1989) drops by less
than a certain number, a method based on the sampling
variation in estimated QTL location under bootstrap
resampling (Visscher et al. 1996), and a method using
the empirical formula of Darvasi and Soller (1997).

All of these methods have shortcomings. What LOD
drop-off to use in a given situation is not clear and the
graph of LOD scores may not even be unimodal due to
artificial peaks in the likelihood ratio between markers.
Bootstrap methods have been reported as giving differ-
ent answers and inexact confidence-interval coverage
(Bennewitz et al. 2002). Manichaikul et al. (2006)
found that, when marker density is not high, bootstrap
confidence intervals based on maximum-likelihood esti-
mates of QTL location can be unstable due to the strong
tendency of the maximum-likelihood estimate to occur
at a marker, while Bayesian credible intervals exhibited
stable coverage on the same simulated data. The Darvasi

and Soller (1997) estimate (Equation 42 below) is based
on the size of QTL effects. Unless power is high to detect
the true size of effect, selection bias and sampling error
in estimates of QTL effects will result in large errors in
confidence-interval widths.

A more fundamental limitation of all the confidence-
interval methods is that they condition on the existence
of a single QTL in a region. For example, the interval-
mapping LOD score is, up to an unknown constant,
approximately the log-posterior distribution of QTL
location assuming existence of a single QTL in a region
(Sen and Churchill 2001); hence it cannot be used to
infer the number of QTL. As we shall see, results can be
misleading if there are two QTL when one is assumed or
vice versa.

To limit the scope of this article we compare only the
Darvasi and Soller confidence intervals with posterior
probabilities from Bayesian model selection.

Bayesian QTL mapping: The main advantage of the
Bayesian approach in this context is that the required
probabilities can be obtained directly, using a Bayesian
model selection approach, where multiple models are
considered according to their probabilities. In Bayesian
model selection approaches (reviewed by Sillanpää and
Corander 2002), inference is based on the total pos-
terior probability of models satisfying a given property,
and estimation is based on model averaging, averaging
over estimates of effects from each model, weighted ac-
cording to the posterior probability for models. Ball

(2001) used a Bayesian model selection approach for
QTL mapping where each model is a linear regression
model for the trait as a function of a fixed set of markers,
and approximate posterior probabilities for models were
calculated using a modified Bayesian information crite-
rion (BIC) (previously used by Broman 1997 and Broman

and Speed 2002 to select a single model).

This approach can be used to infer the genetic ar-
chitecture: for example, the posterior probability that
there are two QTL on a chromosome is the sum of
probabilities for models with two selected markers on
that chromosome (Ball 2001; Yandell et al. 2002). In-
teractions (dominance and epistasis) can be allowed for
simply by specifying the appropriate prior probabilities
for interaction terms (Ball 2001; Bogdan et al. 2004).

The BIC is easily and rapidly calculated from standard
regression model statistics, but is based on an asymp-
totic approximation. Alternatives include MCMC meth-
ods and analytical calculations. Posterior probabilities
for individual models can be obtained in closed form if
the Zellner priors are used (Smith and Kohn 1996; Sen

and Churchill 2001). In fact, using the BIC is ap-
proximately equivalent to using the Bayes factors cal-
culated using the Zellner prior with prior information
equivalent to a single sample point ½c¼ n in (18) below�.
Hence closed-form calculations can be used as a check
on the accuracy of the BIC approximation.

Interval mapping and composite-interval mapping
likelihood-ratio statistics are for comparing a model
with a single QTL vs. the null model, corresponding to a
null hypotheses of no QTL anywhere. These methods
test for the presence of a linked QTL but we need a test for
a QTL at a specific location. To quantify the evidence for
a polymorphism at locus x, we define a Bayes factor,
BQ(x), as the limiting case of the Bayes factor for testing
the hypothesis of a QTL in a small interval (x, x 1 dx) vs.
no QTL in the small interval. The possibility of QTL at
other locations, possibly on the same chromosome, is
allowed for in our null hypothesis. The Bayes factor,
BQ(x), is combined with prior probability and Bayes
factor for a candidate gene to obtain an expression for
the posterior probability for a candidate polymorphism
at x to be functional. The posterior probability is then
integrated over x to incorporate uncertainty in map
position.

The rest of this article is structured as follows. The
methods section contains five parts: (1) showing how to
incorporate QTL colocation given posterior probabilities
for QTL presence, (2) computing posterior probabilities
for QTL presence using the Bayesian model-selection
approach from Ball (2001), (3) introducing the Zellner
priors and describing how closed-form calculations with
these priors can be used to check on the accuracy of the
BIC, (4) describing the data simulation, and (5) show-
ing how to incorporate subjective prior information on
the sizes of QTL effects into the BIC. In the results

section a worked example is given on the basis of a pub-
lished candidate gene in Eucalyptus spp. colocating with
simulated QTL data: effects of QTL colocation are dem-
onstrated for three simulated QTL data sets with dif-
ferent sample sizes, 12 chromosomes with 0 or 1 QTL or
with two QTL in coupling or repulsion; and the BIC is
compared to closed-form calculations of the log Bayes
factors with Zellner priors on the coefficients.
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METHODS

Incorporating QTL colocation information: It follows
from Bayes’ theorem that the prior odds for a hypothesis
are multiplied by the Bayes factor to give the posterior
odds. Without QTL colocation information the poste-
rior odds for a candidate gene are:

pc

1� pc
¼ Bc 3

pc

1� pc
; ð1Þ

where pc¼ Pr(H1 j yc) is the posterior probability for the
candidate to represent a functional trait locus, and Bc is
the Bayes factor representing the strength of evidence
for H1 over H0 in the data for the candidate gene, de-
noted by yc.

Now suppose we have independent data, denoted by yq,
from a QTL mapping pedigree. It follows easily from Bayes’
theorem that, when analyzing multiple independent data
sets, the posterior for the first data set can be used as the
prior for the second data set, giving the same posterior as if
the combined data were analyzed jointly. Thus we can use
the posterior from the candidate gene data, yc, as prior
information for the analysis of the QTL data, yq.

Note that, almost by definition, a candidate poly-
morphism at location x is a functional locus if, and only
if, there is a QTL at x.

To combine candidate gene and QTL colocation
evidence, we first consider the posterior for QTL in a
small interval, I, in the absence of candidate gene in-
formation, then by comparing prior and posterior prob-
abilities obtain the strength of evidence BQ(I) for a QTL
in I, and then combine this with evidence from the can-
didate gene data, giving posterior probabilities of H1 for
any given I containing the candidate.

Let pQ(x) be defined by

pQðxÞ ¼ lim
dx/0

Prðd Q : Q is a QTL and Q 2 ðx; x 1 dxÞÞ=dx;
ð2Þ

where probabilities are posterior probabilities given yq.
Let pQ(x) be defined similarly but with respect to the
prior distribution. We refer to pQ(x) as the probability
intensity for QTL presence, i.e., the probability of find-
ing a QTL in (x, x 1 dx) per unit change in x. Note that
pQ(x) is not the probability density for QTL location,
and

Ð
pQðxÞdx 6¼ 1: a probability density for QTL loca-

tion entails the assumption that there is exactly 1 QTL
within a region. Here the number of QTL is unknown,
and we allow for the possibility of 0, 1, or multiple QTL.

Let pQ(I ), pQ(I ) be the prior and posterior proba-
bilities for a QTL to be present in a small interval I.
Ignoring yc, the Bayes factor for a QTL to be located in
I is given by

BQðI Þ ¼
pQðI Þ

1� pQðI Þ
3

1� pQðI Þ
pQðI Þ

ð3Þ

¼ pQðI Þ
pQðI Þ

1 OðjI jÞ; ð4Þ

where jIj denotes the width of the interval I. The approx-
imation in (3) is good for small I since 1� pQðI Þ ¼
1 1 Oð j I j Þ and 1� pQðI Þ ¼ 1 1 Oð j I j Þ. In the limit as
j I j/0, we obtain

BQðxÞ ¼
pQðxÞ
pQðxÞ

: ð5Þ

To incorporate QTL colocation information, we re-
place the prior odds in (3) by the posterior odds from
(1) and solve for the posterior odds, obtaining

pcqI

1� pcqI
¼ Bc 3 BQðI Þ3

pc

1� pc
; ð6Þ

where pcqI ¼ Pr(H1 j yc, yq, cand 2 I ) is the posterior
probability that the candidate represents a functional
polymorphism, given the candidate is in I. Solving for
pcqI,

pcqI ¼
BQðI ÞBcpc

1� pc 1 BQðI ÞBcpc
: ð7Þ

To allow for uncertainty in the estimated map posi-
tion we average over disjoint intervals, I, covering the
region, RC, of possible locations for the candidate gene,
according to their posterior probabilities, and let the
size of the intervals tend to zero. We obtain

PrðH1 j yc; yq; ymÞ
¼ lim
j I j/0

X
I

PrðH1 j yc; yq; cand 2 I ÞPrðcand 2 I j ymÞ

¼
ð

RC

BQðxÞBcpc

1� pc 1 BQðxÞBcpc
f ðx j ymÞdx; ð8Þ

where f(x j ym) denotes the posterior density of map po-
sition x for the candidate gene, given linkage map data
ym. In practice, the standard error of estimated map
position is usually on the order of several centimorgans,
so the region of integration, RC, need only be over a
region of �20 cM (approximately three standard errors
each side of the estimated location).

We have shown how to obtain the posterior probability
for a candidate gene, given the posterior QTL intensity
pQ(x) and corresponding Bayes factor BQ(x). Estima-
tion of these functions is covered next.

Posterior probabilities for QTL: We require probabil-
ities for QTL to be located in any given genomic inter-
val. These are obtained using Bayesian model selection
(Ball 2001). Each model is a linear regression of the
trait on a set of selected markers, representing a possible
QTL configuration, with QTL at the selected marker
loci. In reality QTL will lie between markers; however, a
QTL between two markers is well represented by a com-
bination of models with one or more markers selected.
We use prior probabilities per marker proportional to
the width of the vicinity of the marker. With this prior,
the probability, over all models, that a marker is selected
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can be interpreted as the probability that a QTL is in the
vicinity of the marker, i.e., closer to that marker than to
any other.

Let X denote the model matrix of all marker co-
variates, and let Mg be a model where g is a indicator
vector of zeros and ones with the ones indicating the
subset of selected variables for a model. If the prior
probability for the number of QTL is Poisson(lQ) per
genome, and all genomic loci are equiprobable, then
the prior probability for marker Mi is

pi ¼ 1� exp � jV ðMiÞ j
G

lQ

� �

� jV ðMiÞ j
G

lQ ; ð9Þ

and the prior forMg is

pðgÞ ¼
Y
fi:gi¼1g

pi 3
Y
fi:gi¼0g

ð1� piÞ; ð10Þ

where V(Mi) denotes the vicinity of marker Mi defined
as the genomic interval of loci closer to Mi than any
other marker, jV(Mi)j is the width of V(Mi), and G is the
genome length. The approximation in (9) is accurate
provided each marker interval is a small proportion of
the genome.

Recall that the BIC for a linear model with p variables
is given by

BIC ¼ n logð1� R2Þ1 p log n; ð11Þ

where R2 is the coefficient of determination for the
model (Raftery 1995; Ball 2001).

Combining evidence from the BIC with prior proba-
bilities for models, it follows that the posterior proba-
bility for modelMg is given by

PrðMg j yqÞ} expð�BICg=2Þ3 pðgÞ; ð12Þ

where the constant of proportionality in (12) is chosen
so that the total probability for all models adds up to 1
(Ball 2001).

The marginal posterior probability, g(Mi jyc), for a QTL
to be in the vicinity of a marker Mi is the sum of posterior
probabilities of all possible models where Mi is selected:

g ðMi j yqÞ ¼
X
fg:gi¼1g

PrðMg j yqÞ: ð13Þ

This probability is shared between all points in V(Mi).
If, as in interval mapping, we assume there is a single
QTL locus within a region, we obtain a probability den-
sity for QTL presence over V(Mi). For simplicity, and to
avoid this assumption, we assume a uniform distribution
for QTL intensity over V(Mi). The probability intensity,
pQ(x), for QTL presence at genomic location x is then
given by

pQðxÞ ¼
g ðMi j yqÞ
jV ðMiÞ j

for x 2 V ðMiÞ: ð14Þ

For a genomic interval, I, the probability for a QTL to be
located within I is given by integration:

pQðI Þ ¼ PrðQTL 2 I Þ ¼
ð

x2I
pQðxÞdx: ð15Þ

Note that g(Mi jyq) is the posterior probability of one or
more QTL in V(Mi). If g(Mi j yq) is large, there is a non-
negligible possibility of two or more QTL in V(Mi).
Within V(Mi) there is only 1 marker, so the data are not
expected to be informative on the number of QTL in
excess of 1. Therefore, conditional on the existence of 1
QTL the posterior number of further QTL should fol-
low the prior distribution with rate li ¼ �log(1 � pi).
We obtain

pQðxÞ ¼
g ðMi j yqÞ
jV ðMiÞ j

expð�liÞ 1 1 2li 1 3l2
i 1 . . .

� �
ð16Þ

¼ g ðMi j yqÞ
jV ðMiÞ j

1 1 pi 1 Oðp2
i Þ

� �
: ð17Þ

These higher-order approximations can be used in place
of (14) if desired.

Analytical calculations and Zellner priors: Smith and
Kohn (1996) use Zellner priors of the form

bg � N ð0; cs2ðX 9gXgÞ�1Þ ð18Þ

for the selected coefficients {bj:gj ¼ 1}, point null priors
for the unselected coefficients {bj:gj¼ 0}, and an inverse
gamma prior for s2, where Xg is the matrix of columns of
X corresponding to the selected coefficients. With these
priors, marginal probabilities of the data, f ðyq jMgÞ, and
hence the Bayes factors can be obtained in closed form.
(See also Sen and Churchill 2001 for a generalization.)

The major influence on Bayes factors is the amount of
information in the prior on the parameter(s) being tested.
The parameter c in (18) should be chosen to match the
variance of bg to prior expectations. In particular c ¼ n
in (18) is a prior with information equivalent to a single
data point, i.e., a unit information prior.

With a unit information prior, marginal probabilities
of the data, and hence Bayes factors, are given in terms
of the BIC asymptotically to within a factor (1 1 O(n�1/2))
(Kass and Wasserman 1995). For a single model, M, the
marginal probability of the data is

f ðy jM Þ ¼ expð�BIC=2Þ3 ð1 1 Oðn�1=2ÞÞ; ð19Þ

and the Bayes factor, B12, for comparing M1, M2 is

B12 ¼
f ðy jM2Þ
f ðy jM1Þ

¼ expð�ðBIC2=2� BIC1=2ÞÞ
¼ B12 3 ð1 1 Oðn�1=2ÞÞ; ð20Þ

where BIC1, BIC2 are the respective BIC values.
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We use Bayes factors, with c¼ n in the Zellner prior, as
a check on the accuracy of the BIC in the example be-
low. An alternative, more computationally intensive, ap-
proach is to run an MCMC sampler for each of the linear
models to estimate the marginal probabilities needed to
calculate Bayes factors (see, e.g., Yi et al. 2003).

Data simulation: To show comparisons with inter-
val mapping (IM) (Lander and Botstein 1989) and
composite-interval mapping (CIM) ( Jansen and Stam

1994; Zeng 1993, 1994), data were simulated using QTL
Cartographer version 1.17 (Basten et al. 1994, 2004).
Data were simulated for a genome with 12 chromosomes
of length 300 cM each for a total genome length of G ¼
3600 cM, with markers located every 20 cM. The number
and size of QTL effects were simulated with an average
number of 10 additive QTL, total QTL heritability 35%
(by which we mean the total variance of QTL is 35% of
the within-family variance), and QTL sizes distributed
with the default Gamma(2, 2) distribution. Backcross
QTL mapping families with n ¼ 100, 300, and 1200
progeny were simulated and analyzed in separate runs
with the same QTL and map configuration. Composite-
interval mapping analyses (QTL Cartographer model 6)
used the default values for window size (10 cM) and
number of background markers (five). This means that
for each test locus, five control markers are selected as
covariates to control for possible QTL at other locations,
and the control markers were selected from all geno-
typed markers except those within 10 cM of the test locus.

The QTL effects simulated by QTL Cartographer were
all positive in sign, corresponding to QTL in coupling,
where there are more than one QTL on a chromosome.
To make the data slightly more interesting, the QTL on
chromosome 4 was replaced with two midsized QTL in
repulsion. The total QTL heritability was inadvertently
increased slightly but we continue to work with the nom-
inal value of 35%. Individual QTL locations, effects, and
heritabilities are shown in Table 1. QTL locations are
given by chromosome, marker number for the left flank-
ing marker, and recombination distances rL and rR to
the left and right flanking markers, respectively. The val-

ues bi are the QTL effects. QTL Cartographer uses the
parameterization where

yi ¼ m 1
X

j

xij bj 1 ei ; ð21Þ

and xij ¼ 1 (resp. xij ¼ 0) if the ith progeny has jth QTL
genotypes QQ (resp. Qq). With this parameterization the
ith QTL variance is b2

i =4.
Priors for QTL effects: We give adjustments to the

BIC for subjective priors for QTL effects with lower vari-
ance. It is natural to specify the prior variance, s2

b , for
the QTL effects as a multiple of the trait genetic vari-
ance, s2

G,

cbbi � N ð0;s2
b Þ; where s2

b ¼ K s2
G; ð22Þ

where the constant cb is chosen so that the QTL vari-
ance for a single QTL is E((cbbi)2) ¼ s2

b . For the QTL
Cartographer parameterization, the QTL variance is
b2

i =4 so we use cb ¼ 1
2. Use of cb in this way avoids depen-

dence on the parameterization. We refer to this prior
as the independence prior, since the effects bi are a priori,
independent.

Recall that the QTL Cartographer parameterization
uses effects QQ 4bi , Qq40 for the ith QTL. For the
following argument we use the parameterization

yi ¼ m 1
X

j

xij bj 1 ei ; ð23Þ

where xij ¼ 1
2 (resp. xij ¼ �1

2) if the ith progeny has jth
QTL genotypes QQ (resp. Qq). With this parameteriza-
tion the ith QTL variance is still b2

i =4, and for unlinked
markers the columns of X are uncorrelated and hence
approximately orthogonal for large sample sizes. The
Zellner prior is unchanged, because the Zellner prior is
invariant to linear transformations of the parameter
(i.e., if we replace b by b* ¼ Cb and X by X* ¼ XC�1, the
transformed prior for b* is the Zellner prior with X re-
placed by X*).

Since we are considering a prior distribution, rather
than a particular sample, we take expected values over
possible samples, obtaining a choice of c with expected
values of QTL variances agreeing with those of the inde-
pendence prior (22). The expected values will approx-
imate estimates based on averages over rows of X for
large sample sizes. For unlinked QTL, we choose c in the
Zellner prior (18) so that the Zellner prior has the same
expected QTL genetic variances for each individual
QTL as the independence prior with the desired value
of K in (22). In the general case the Zellner prior will
have the same total expected QTL variances, i.e., variance
of the second term in (23), for each set of linked QTL
as the independence prior with the chosen value of K.

For unlinked QTL the QTL variances in the Zellner
prior can be simply computed from the diagonal elements
of X9X. The QTL variances are the diagonal elements of

TABLE 1

QTL heritabilities and map positions

i Chromosome Marker rL rR bi h2
Q (%)

1 3 9 0.1081 0.0724 1.3601 12.0
2 4 5 0.0747 0.1060 0.7221 3.4
3 4 7 0.0246 0.1475 �0.8634 4.8
4 5 6 0.0660 0.1139 0.6685 2.9
5 5 8 0.1012 0.0798 0.7715 3.8
6 6 12 0.0104 0.1577 0.8634 4.8
7 9 14 0.0021 0.1634 0.4485 1.3
8 10 2 0.1182 0.0610 0.3485 0.8
9 11 11 0.0621 0.1173 0.3993 1.0
10 12 15 0.1598 0.0074 0.4976 1.6
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c(X9X)�1s2. For X corresponding to a set of unlinked
QTL the columns of X are orthogonal, and the diag-
onals of (X9X)�1 are the inverses of the diagonals of X9X.
With the parameterization (23), the diagonals of X9X are
n/4. It follows that

s2
b ¼ varðcbbiÞ ¼

1

4
varðbiÞ ¼

1

4
3

4c

n
s2 ¼ cs2=n: ð24Þ

For sets of mutually linked QTL the diagonals of
(X9X)�1 will be smaller than the inverses of the diagonals
of X9X. For this case we give a more general derivation
independent of the parameterization. The genetic var-
iance due to QTL is the variance of the second term in
(23),

VgðX Þ ¼ var
X

j

xij bj

 !

¼ X ðcðX 9X Þ�1s2ÞX 9

¼ cX ðX 9X Þ�1X 9s2; ð25Þ

which is an n 3 n variance–covariance matrix for sam-
ples. The genetic variance is either approximately the
average diagonal element from a large sample or the ex-
pected value of any diagonal element.

First, consider the case of a single QTL. For a single
QTL the matrix X has only 1 column, and i, j entry of
X(X9X)�1X9 is

VgðX Þij ¼ cs2 xixjP
k x2

k

with EðVgðX ÞijÞ ¼ cs2=n

if i ¼ j ; ð26Þ

i.e., the expected QTL variance is cs2/n, which agrees
with (24). This does not depend on any of the xi so is the
same for all QTL. Therefore, with k independent QTL
loci, the total QTL genetic variance is k times this value;
i.e.,

EðVg ðX ÞiiÞ ¼ kcs2=n: ð27Þ

In the general case we can choose the transformation
C corresponding to the Gram–Schmidt orthogonaliza-
tion procedure, reducing the columns of X to orthog-
onality. It follows that (27) also applies in the general
case. Q.E.D.

The prior variance for any k QTL from the indepen-
dence prior is ks2

b ¼ kKs2
G. Equating this to the value for

the Zellner prior gives

kK s2
G ¼ kcs2=n ð28Þ

so that

c ¼ ns2
b

s2 ¼
nK s2

G

s2 ¼ nK
h2

1� h2: ð29Þ

Equation 29 assumes that all of the genetic variance is
accounted for by QTL. If there is prior information on
the proportion of variance from nonadditive, epistatic,

and polygenic components this can be allowed for by
choosing a smaller value of K in (22).

The marginal probability of the data for a linear
modelM is given by

f ðy jMÞ} RSS�n=2 1

1 1 c

� �p=2

; ð30Þ

where c is as in Equation 18, RSS denotes the residual
sum of squares after fitting the model, n is the number
of sample points, p is the number of explanatory variables
in the model, and the proportionality constant is inde-
pendent of the model matrix X (cf. Sen and Churchill

2001, Appendix C, where a there corresponds to 1/c
here). Taking logs and multiplying by�2 gives the equi-
valent value for the BIC,

BIC � n logð1� R2Þ1 p logc; ð31Þ

where we have used log(RSS) ¼ log(1 � R 2) 1

log(var(y)) ¼ log(1 � R 2) 1 const., c � 1 1 c, and
BIC ¼ �2 log f ðy jMÞ up to an additive constant. The
constant is chosen in (31) so that BIC ¼ 0 for the null
model with intercept alone (p¼ 0 and R 2¼ 0). Posterior
probabilities are unaffected by the choice of constant,
because of the normalization of total probability to 1
when probabilities are calculated from (12).

To adjust the BIC for the prior for QTL effects cor-
responding to c in (18) replace p log n by p log c, or,
equivalently, add p log(c/n) to the BIC criterion. Ex-
pressed in terms of K and h2, this becomes

BICK ¼ n logð1� R2Þ1 p log n 1 p log K
h2

1� h2

� �
:

ð32Þ

Broman and Speed (2002) use the adjusted criterion

BICd ¼ n logð1� R2Þ1 dp log n: ð33Þ

Using (32) is equivalent to setting

d ¼ 1 1
logðK ðh2=ð1� h2ÞÞÞ

log n
ð34Þ

in (33). For example, with K¼ 1
10, n¼ 1200, and h2¼ 0.35

we obtain

c ¼ nK
h2

1� h2 ¼ 0:0538n ¼ 64:6; ð35Þ

and d ¼ 0.59.

RESULTS

Worked example: Thummaet al. (2005) studied associ-
ations between SNPs and haplotypes in a candidate gene
Cinnamoyl CoA reductase. Putative associations between
an SNP marker, SNP21, and microfibril angle (MFA) in
a Eucalyptus nitens association-mapping population and
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between markers SNP18 and SNP120 in the same gene
and MFA in Eucalyptus families (used as validation pop-
ulations) were reported.

On the basis of the reported sample sizes, allele fre-
quencies, and percentage of variance explained, Bayes
factors for the candidates were calculated using the
method of Spiegelhalter and Smith for one-way ANOVA
models (Spiegelhalter and Smith 1982; Ball 2007).
Results are summarized in Table 2.

To illustrate the QTL colocation calculations suppose
the candidate SNP21 (with Bayes factor Bc ¼ 98.4) is on
chromosome 3 with map position 170 cM, estimated
with a normal posterior distribution with standard error
10 cM, and the QTL data available are the simulated
QTL data with n ¼ 300 as described above.

We assume prior probability pc ¼ 1/50,000, corre-
sponding to a prior expectation of 10 SNPs in 500,000
covering the genome, to be closest to one of 10 func-
tional loci affecting the trait. Without using QTL infor-
mation the posterior probability was 1.96 3 10�3 ½solve
pc/(1 � pc) ¼ Bc 3 pc/(1 � pc) for pc; cf. Ball 2007,
Table 8.9].

Chromosome 3 had one probable QTL located near
marker 10, which had a posterior probability of 0.923.
Table 3 shows calculations of quantities needed to eval-
uate the posterior probabilities after allowing for QTL
colocation.

Letting x 2 V(Mi),

pQðxÞ ¼
g ðMi j yqÞ
jV ðMiÞ�

ð36Þ

pQðxÞ ¼
pQðV ðMiÞÞ
jV ðMiÞ�

ð37Þ

since the within-vicinity probabilities are assumed to be
uniform, so

BQðxÞ ¼
pQðxÞ
pQðxÞ

¼ g ðMi j yqÞ
pQðV ðMiÞÞ

:

ð38Þ

For example, for marker 10 at 180 cM we have g(Mi j yq)¼
0.923 (Table 5, ‘‘Total(%)’’ entry for marker 10 with n¼
300), so BQ(x) ¼ 0.923/0.0556 ¼ 16.6.

It remains to integrate over the probability density for
map location, which is the normal density with mean
170 cM and standard deviation 10 cM; i.e.,

f ðx j ymÞ ¼
1ffiffi

ð
p

2p 3 102Þ
expð�ðx � 170Þ2=ð2 3 102ÞÞ:

ð39Þ

Letting

I ða; bÞ ¼
ðb

a
f ðx j ymÞdx ð40Þ

the integral is given by

I ¼
1

100
½0:0106I ð130; 150Þ1 0:3143I ð150; 170Þ1 3:1662I ð170; 190Þ1 0:0142I ð190; 210Þ�

¼ 0:017; ð41Þ

TABLE 2

Statistics for markers with ‘‘significant’’ associations with MFA from BALL (2007)

Population n Marker Frequency % var P B

E. nitens association population 290 SNP21 0.31 4.6 0.00023 98.4
E. nitens family 287 SNP18 0.5 0.45 0.02 1.5
E. globulus family 148 SNP120 0.5 0.69 0.04 1.1

Reprinted with permission from Ball (2007), Table 8.8, p. 152.

TABLE 3

Calculation of QTL colocation probabilities for candidate polymorphism SNP21, assumed to be located at 170
cM on chromosome 3, colocating with QTL from the simulated QTL mapping family with n ¼ 300 progeny

Marker Mi

i ¼ 8 i ¼ 9 i ¼ 10 i ¼ 11

Position (cM) 140 160 180 200
jV(Mi)j 20 20 20 20
pQ(V(Mi)) 0.06 0.06 0.06 0.06
g(Mi j yq) 0.003 0.089 0.923 0.004
BQ(x) 0.054 1.60 16.6 0.072
BQ(x)Bc 5.3 157.6 1634.8 6.71
100 3 BQ(x)Bcpc/(1 � pc 1 BQ(x)Bcpc) 0.0106 0.3143 3.1662 0.0142

pc ¼ 1/50,000, Bc ¼ 98.4.
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where the coefficients of I(a, b) terms in (41) are from
the last row of Table 3.

Due to its colocation with the QTL on chromosome 3,
the posterior probability for the candidate gene SNP21
has increased 8.5-fold to 0.017, which is still not high.
Probabilities would increase further if the map location
was known more precisely or the posterior probability for
the QTL was higher. For example, if map position was
known exactly to be 180 cM the posterior probability
would rise to 0.032, representing a 16-fold increase in
probability due to QTL colocation. Larger increases would
require more accurate estimation of candidate map posi-
tion and more accurate estimates of QTL position.

Note that in Thumma et al. (2005), the association was
considered ‘‘validated’’ by associations in the E. nitens
and E. globulus families (i.e., QTL data) with markers
SNP18 and SNP128 (P ¼ 0.02 and 0.04, respectively, in
Table 2). This does not constitute validation at the level
of resolution of an association study, but does represent
evidence of colocation with a possible QTL. However,
the Bayes factors of 1.5 and 1.1, respectively, are too
small to make a significant difference.

Simulation results: Except where otherwise stated all
Bayesian analyses for the simulated data use a prior prob-
ability per marker based on an average number of 10
QTL per genome, and the standard BIC (equivalent to
using c ¼ n in the Zellner prior for QTL effects) is used
to estimate posterior probabilities for models.

The posterior probability intensity for QTL presence,
pQ(x), is plotted against map position in Figure 1. Each
chromosome is plotted in a separate graph. Shown
with the heading for each graph are the QTL herita-
bilities (percentage of phenotypic variation) and mar-
ginal probabilities for model sizes 0, 1, and 2 (p0, p1, and
p2). Log-likelihood ratios for interval mapping and
composite-interval mapping are shown for comparison.
The interval-mapping curves are high for a much wider
region about the QTL than pQ(x) while the composite-
interval-mapping curves are high for a slightly wider re-
gion about the QTL than pQ(x) at this sample size. The
curves are step functions because the posterior prob-
ability for models with the ith marker, Mi, selected is
shared equally among genomic locations in V(Mi) (Equa-
tion 14).

Figure 1.—Posterior probability density pQ(x) for QTL presence. Data were simulated for 12 chromosomes with genome length
G ¼ 3600 cM, n ¼ 1200 progeny, and 10 QTL with QTL heritabilities as shown. For each chromosome, marginal probabilities for
models of size 0, 1, 2 QTL are p0, p1, p2, respectively. QTL locations are denoted with an asterisk. Likelihood ratios for interval
mapping (– – –) and composite interval mapping (� � �) are shown for comparison.
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The probability, p0, for model size 0 is ,0.001 for chro-
mosomes 3, 5, 6, 9, and 12, representing strong evidence
for one or more QTL. These chromosomes had maxi-
mum log-likelihood-ratio (LR) statistics .20 except for
chromosome 4 with two QTL in repulsion, where the
QTL at 87 cM is not detected by interval mapping or
composite-interval mapping (LR , 10), and the com-
posite-interval mapping peak is broader and centered to
the left of the peak in pQ(x). The two QTL in repulsion
are clearly separated with a low value of pQ(x) for the
intervening marker, and posterior probability for model
size 2 was high (p2¼ 0.961), representing good evidence
for two QTL. For chromosome 3, with one QTL, and chro-
mosome 5 with two QTL in coupling, there was strong
evidence for one or more QTL (p0 , 0.001), but either
one- or two-QTL models were compatible with the data:
p1¼ 0.451, p2¼ 0.530 for chromosome 3, and p1¼ 0.562,
p2 ¼ 0.412 for chromosome 5. For chromosome 3 the
two-QTL model probability is dominated by QTL at the
two flanking markers (Table 5). This represents either
one or two QTL to within the resolution of the marker
map.

For chromosome 11, with one QTL with h2
Q ¼ 1%,

there was weak evidence for a QTL (p0 ¼ 0.12) or LR ¼
10 and17 for IM and CIM.

For chromosome 12, with one QTL with h2
Q ¼ 1.6%,

there was strong evidence for a QTL (p0 , 0.001), but
one ‘‘fake’’ QTL at the left-hand end was ‘‘detected’’ by
IM and CIM with likelihood ratios .10. The posterior
probability for model size 2, p2 ¼ 0.744, was approxi-
mately three times greater than p1¼ 0.229, representing
weak evidence for two QTL.

For chromosomes 1, 2, 7, and 8, where there was no
QTL, the posterior probability for model size 0 was not
low (0.654–0.966), as would be expected where there are
no QTL.

To show why we use pQ(x) rather than confidence in-
tervals, we illustrate the pitfalls in using a popular method
for estimation of confidence intervals for QTL location.
Table 4 shows estimated and actual heritabilities and
confidence-interval widths calculated using the empir-
ical formula of Darvasi and Soller (1997),

w ¼ 3000

mNd2; ð42Þ

where w is the confidence interval width for a QTL es-
timated from a progeny of size N. The QTL is assumed
to have an allele substitution effect d, and m ¼ 1 for a
backcross, and m ¼ 2 for an F2. We have shown all dis-
tinguishable peaks down to LRmax ¼ 4.5, not just those
over a demanding threshold. Confidence interval widths
are w, based on the true QTL effect sizes, and ŵ based on
QTL effect sizes estimated from the same data. Note
there are some large differences between w and ŵ due to
the QTL effects being under- or overestimated. Note
also for chromosome 5, where there are two QTL but
only one detected, we have ŵ ¼ 8:2, compared to w ¼
20.9 and w¼ 15.8 for each of the two QTL and together
spanning a 62-cM region. This will happen whenever
two QTL in coupling are detected as a single QTL. For
chromosome 4, one of the QTL had an LRmax of only 5.0
and its heritability was underestimated by 10-fold. To-
gether these confidence intervals span a region of 160
cM, compared with two regions of combined size 29 cM,
when the true QTL effect sizes were used. This hap-
pened because the effects of the two QTL were under-
estimated, which happened because the two QTL were
in repulsion. For chromosome 3, the estimated C.I.
width was only�5 cM, which is less than our intermarker
spacings. This suggests we could do better in this case by
using the Darvasi and Soller formula or using virtual
markers to subdivide the region. However, bearing in

TABLE 4

Heritabilities and confidence-interval widths for putative QTL from interval mapping

Chromosome LRmax x x̂ h2
Q (%) ĥ2

Qð%Þ w ŵ

3 103.3 172.0 172.0 12.0 10.0 4.6 5.5
4 5.0 88.3 78.0 3.4 0.3 17.7 160.0
4 18.1 122.9 122.0 4.8 1.6 12.4 39.6
5 107.3 2.9 20.9
5 81.1 144.0 7.1 8.2
5 151.2 3.8 15.8
6 65.3 221.2 226.0 4.8 6.1 12.4 9.6
9 26.7 260.3 254.0 1.3 2.5 47.5 23.9
10 4.5 33.2 22.0 0.8 0.4 77.5 160.3
11 10.2 206.9 190.0 1.0 1.0 61.9 62.3
12 13.1 4.0 0.0 1.2 51.3
12 25.4 299.1 298.0 1.6 2.2 38.4 28.3

LRmax, the maximum log-likelihood for a peak; x and x̂, the true QTL position and its estimate; h2
Q (%) and

ĥ2
Qð%Þ, the QTL heritability as a percentage of phenotypic variance and its estimate; w and ŵ, QTL confidence

interval widths based on the true and estimated QTL effects, calculated using the method of Darvasi and
Soller (1997) (Equation 42). Cells are left blank where a QTL did not exist corresponding to a peak or where
a there was no peak corresponding to a QTL.
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mind the results for chromosomes 4 and 5, caution is
needed because we cannot rule out multiple QTL
within the interval from 160 to 180 cM (the combined
marker vicinities). If there were two QTL, e.g., at 167 and
173 cM with about half the variance each, their com-
bined Darvasi and Soller confidence intervals would
span a region of $20 cM. We conclude that we cannot
rely on confidence intervals for QTL location, consid-
ering QTL location separately, but need to consider the
joint probability distributions for QTL existence, QTL
effects, and QTL location, as in our approach.

Output from our method consists of a set of models
with posterior probabilities and summary statistics, such
as the marginal probability for each marker (total prob-
ability of all models with the marker selected), and mar-
ginal probabilities for model size (total probability of

all models with the given size). These are shown for the
top 10 markers for chromosomes 3 and 5 in Tables 5
and 6.

Top 10 models for chromosome 3: For chromosome
3, the top 10 models for each sample size are shown in
Table 5. The first column is model number, in order of
decreasing probability. The second column gives model
size, k, while the next 16 columns show which markers
are selected. The final 3 columns show the R2 statistic,
posterior probability per model, and cumulative sum of
posterior probabilities for models. For example, for n¼
300, model 1 with posterior probability 0.864 has marker
10 selected, model 2 with posterior probability 0.071 has
marker 9 selected, and model 3 with posterior proba-
bility 0.01. Model 3 (model size k¼ 2) has higher R2 than
models 1 and 2 but lower posterior probability because

TABLE 5

Top 10 models for chromosome 3

Marker

Model k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 R 2 Postprob Cumprob

n ¼ 100
1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12.5 0.448 0.448
2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 11.2 0.214 0.662
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.094 0.756
4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 7.7 0.030 0.786
5 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 17.8 0.028 0.814
6 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 17.4 0.022 0.836
7 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 15.9 0.019 0.855
8 2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 15.6 0.015 0.870
9 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 15.2 0.013 0.883
10 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 14.9 0.010 0.893
Total (%) 0.4 0.7 1.2 2.5 1.5 0.5 0.5 2.6 31.2 55.0 3.9 0.5 0.7 0.6 3.6 6.3

n ¼ 300
1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8.1 0.864 0.864
2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 6.6 0.071 0.935
3 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 9.0 0.012 0.947
4 2 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 8.7 0.007 0.955
5 2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 8.3 0.004 0.958
6 2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 8.2 0.004 0.962
7 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 8.2 0.004 0.966
8 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8.2 0.003 0.969
9 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 8.1 0.003 0.972
10 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 8.1 0.003 0.975
Total (%) 0.2 0.4 0.3 0.3 0.3 0.4 0.3 0.3 8.9 92.3 0.4 0.4 0.9 0.4 0.3 0.2

n ¼ 1200
1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8.7 0.451 0.451
2 2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 9.6 0.274 0.726
3 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 9.6 0.242 0.968
4 2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 8.9 0.002 0.970
5 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 9.9 0.002 0.973
6 3 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 9.8 0.002 0.974
7 3 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 9.8 0.002 0.976
8 3 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 9.8 0.001 0.977
9 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 8.8 0.001 0.979
10 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 8.8 0.001 0.980
Total (%) 0.1 0.3 0.2 0.2 0.2 0.2 0.3 28.6 25.1 100.0 0.2 0.2 0.2 0.5 0.2 0.1

Postprob, posterior probability; Cumprob, cumulative sum of posterior probabilities.
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of the penalty term in the BIC and because the prior
probability per marker is ,0.5.

For n ¼ 1200, the top three models accounted for
97% of the probability, and marker 10 (at 180 cM) was
selected in each of the top 10 models. In fact, marker 10
was selected in every model with nonnegligible proba-
bility, with a marginal probability of very close to 100%.
Markers 8 and 9 had marginal probabilities of 28.6 and
25.1%, respectively. For n ¼ 1200, the null model (not
shown) had posterior probability ,0.001, representing
strong evidence for a QTL.

At smaller sample sizes there was, naturally, more var-
iability. For n¼ 300, the top three models accounted for
95% of the posterior probability. Marker 9 and/or 10
was selected in the top three models. For n¼ 100, model

3, with model size k ¼ 0 had posterior probability (p0 ¼
0.09), representing weak to moderate evidence for a
QTL, although markers 9 and 10 had the highest mar-
ginal probabilities (31.2 and 55.0%, respectively), with
4% probability for marker 11.

For n ¼ 300, the highest-probability single model
(model 1) with marker 10 selected had a posterior prob-
ability of 0.864. The same model had the highest pos-
terior probability for n ¼ 100 and 1200 but with lower
posterior probability of 0.45. This has also resulted in
less posterior variance of QTL location for n ¼ 300, as
is evident from the marginal probabilities for markers
(Total % rows in Table 5). At first sight this seems coun-
terintuitive, since as sample size increases the QTL location
should be more accurately estimated, and the true model

TABLE 6

Top 10 models for chromosome 5

Marker

Model k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 R2 Postprob Cumprob

n ¼ 100
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.488 0.488
2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8.2 0.202 0.690
3 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6.3 0.073 0.764
4 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5.3 0.043 0.807
5 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 5.2 0.042 0.849
6 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4.7 0.033 0.882
7 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4.2 0.025 0.906
8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3.2 0.015 0.921
9 2 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 11.8 0.009 0.930
10 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 11.5 0.008 0.937
Total (%) 0.3 0.6 0.4 0.5 0.6 3.2 24.0 3.6 4.9 8.9 5.7 0.8 0.5 2.0 0.4 0.2

n ¼ 300
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 9.1 0.626 0.626
2 2 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 11.4 0.102 0.728
3 2 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 11.0 0.054 0.782
4 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 10.9 0.043 0.826
5 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 7.3 0.037 0.862
6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 7.2 0.028 0.891
7 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 10.2 0.014 0.905
8 2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 10.1 0.012 0.917
9 2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 10.1 0.011 0.928
10 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 9.8 0.008 0.936
Total (%) 0.1 0.5 1.4 0.8 1.3 6.6 18.5 2.1 86.3 11.7 0.5 0.4 0.2 0.5 0.3 0.1

n ¼ 1200
1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 7.6 0.562 0.562
2 2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 8.4 0.159 0.720
3 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 8.4 0.145 0.865
4 2 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 8.3 0.070 0.935
5 2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 8.1 0.021 0.957
6 3 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 8.9 0.006 0.963
7 3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 8.9 0.006 0.970
8 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 7.8 0.004 0.973
9 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 7.7 0.002 0.975
10 2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 7.7 0.002 0.977
Total (%) 0.1 0.2 0.2 0.2 0.2 17.3 22.9 92.7 10.7 0.3 0.4 0.2 0.2 0.7 0.2 0.1

Postprob, posterior probability; Cumprob, cumulative sum of posterior probabilities.
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should be selected with probability asymptotically ap-
proaching 1. However, here we are not in the asymptotic
situation—sample sizes are not large enough to select a
single best model, nor is model 1 the true model, since
the true QTL location is intermediate between markers
9 and 10. The probabilities 0.864 and 0.45 are inter-
mediate probabilities, and the differences between them
can easily occur by chance, e.g., as a result of fewer re-
combinations between the QTL and marker 10 for n ¼
300 than for the other two sample sizes.

Top 10 models for chromosome 5: For chromosome
5, the top 10 models for each sample size are shown in
Table 6. For n ¼ 1200, the top 3 models accounted for
86% of the probability. As was the case for chromosome
3, the probability for model size 0 was ,0.001, corre-
sponding to strong evidence for one or more QTL on
this chromosome, and models of size 1 and 2 shared the
probability approximately equally. Unlike chromosome
3, the probability for models of size 2 was not concen-
trated at adjacent markers.

For n¼ 1200, markers 6–9 had marginal probabilities
.1%, corresponding to a region of 80 cM for the double
QTL. For n ¼ 300 and 100 this region expanded to
120 cM.

Posterior probabilities for candidate gene polymor-
phisms: Candidate gene polymorphisms were not sim-
ulated; rather, we consider hypothetical candidate gene
polymorphisms with various values of Bc, at various ge-
nomic locations. To illustrate the method we plot the
posterior probabilities for the candidates after incorpo-
rating QTL colocation information from the simulated
QTL data, as a function of genomic location. Posterior
probabilities for the candidate genes are calculated us-
ing Equation 8. A standard error of 3 cM (as would be
obtained with a mapping population of size 100 and
marker spacing of 20 cM) for estimated map location of
candidate genes was assumed.

Figure 2 is a plot of posterior probabilities for can-
didate gene polymorphisms vs. estimated map position
on chromosomes 2, 4, 5, and 11. There are separate
curves corresponding to candidate polymorphisms with
Bayes factors Bc ¼ 20, Bc ¼ 100, and Bc ¼ 400. The pos-
terior probability curves are ‘‘wavy,’’ because the inte-
grand in (8) is the piecewise constant function BQ(x)Bcpc/
(1� pc 1 BQ(x)Bcpc) multiplied by the density f(x j ym)
of map location, which has the effect of smoothing the
piecewise constant function. If the map location was
known exactly the curves would look similar to the step
functions in Figure 1.

Figure 3 similarly shows posterior probabilities for can-
didate polymorphisms on chromosome 3 for various
sample sizes.

Accuracy of the BIC: The Bayes factors correspond-
ing to model probabilities estimated using the BIC are
compared with the closed-form expressions for Bayes
factors with the Zellner prior ½Zellner 1986; c ¼ n in
(18)� in Figure 4 for n¼ 100, 300, and 1200. Differences,

indicated by deviations from the diagonals, are almost
imperceptible, indicating good agreement.

Subjective priors for QTL effects: Figure 4 shows
that the estimates of Bayes factors, and hence posterior
probabilities based on the BIC, are very good approx-
imations to the values with c ¼ n in Equation 18. How-
ever, c ¼ n in (18) corresponds to a prior variance of
s2

b ¼ s2 for QTL that can be greater than the genetic
variance. This is conservative, since QTL variances are
generally only a fraction of the genetic variance, and the
heritability is often approximately known.

Posterior probabilities for QTL presence for two priors
are shown for chromosome 11 in Figure 5. Probabilities
are calculated with the default prior with K¼ 1.86 (d¼ 1)
and the subjective prior with K ¼ 1

10 (d ¼ 0.59), corre-
sponding to an average QTL variance of s2

G/10.
The probabilities for QTL presence at long distances

from QTL loci have increased approximately twofold,
but are still less than the posterior odds from the candi-
date gene data alone.

DISCUSSION

We have shown how to calculate posterior probabil-
ities for candidate gene polymorphisms by combining
sequence-specific evidence for candidate genes with QTL
colocation information. Our method takes into account
uncertainty in number and locations of QTL on each
chromosome and uncertainty in estimated map posi-
tion. For candidate genes that map to QTL regions, this
can result in substantially larger posterior probabilities.
Where a number of candidate genes are available, among
candidates with given Bayes factor Bc those that map
near a QTL are most promising for functional testing.

QTL colocation is often specified as a candidate gene
falling within a 95% confidence interval. Confidence
intervals are formed by selecting a peak in the interval-
mapping likelihood, assumed to represent a QTL. If
QTL effects are known, or assumed (as in an experimen-
tal design situation) or estimated from independent data,
unbiased confidence intervals can be obtained using
the simple formula of Darvasi and Soller (1997). How-
ever, QTL effects are seldom estimated from independent
data, and estimates for significant effects are subject to
selection bias. For example, only 2 of 20 QTL-mapping
experiments in forest trees, reviewed by Sewell and
Neale (2000), used an independent verification pop-
ulation. Estimates of QTL effects free of selection bias
can be obtained in the Bayesian model-selection ap-
proach (Ball 2001), but in this approach we do not
need confidence intervals for QTL location, since we
calculate posterior distributions. The confidence inter-
vals for QTL location also assume the genetic architecture
is known. We have seen that results can vary consider-
ably if there are two QTL when one is assumed or if two
QTL are in repulsion. Hence there is the need to jointly
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consider the number and locations of QTL, and size of
their effects, as in our approach.

Bayes factors and posterior probabilities for QTL
presence in a small interval were calculated on the basis
of the output of QTL analysis using Bayesian model
selection on the set of linear regression models with sets
of selected markers as variables. As in Ball (2001), pos-
terior probabilities for models were obtained using the

BIC. Comparison with closed-form expressions for Bayes
factors for comparing pairs of models with Zellner priors
showed that the BIC approximation was very good for
the sample sizes considered (n $ 100 QTL-mapping
progeny).

Why not just use Bayes factors? In principle, the BIC is
not needed—if using Zellner priors we could use the
closed-form expressions for marginal probabilities of

Figure 2.—Posterior probabilities for candidate gene polymorphisms by estimated map position for n ¼ 1200 QTL progeny.
Values are shown for (a) chromosome 2, (b) chromosome 4, (c) chromosome 5, and (d) chromosome 11. Each line shows pos-
terior probabilities as a function of estimated map position for a given Bayes factor Bc, for Bc ¼ 1, 20, 100, 400, representing
sequence-specific evidence for a candidate polymorphism. Results assume prior probability per candidate 1/3000 and standard
deviation of 3 cM for map position estimates.
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the data, and from these compute Bayes factors for pairs
of models, and hence compute posterior probabilities
directly without using the BIC. As we have seen, the ad-
justed BIC is essentially equivalent to probabilities from
the Zellner prior for reasonably large QTL-mapping

sample sizes. The BIC is used mainly for convenience
and compatibility with existing software—it is easily com-
puted from standard linear model software output, e.g.,
leaps and regsubsets in R and Splus, and is used in the
bicreg S function (Raftery 1995; Raftery et al. 1997)

Figure 3.—Posterior probabilities for candidate gene polymorphisms by estimated map position for chromosome 3. Values are
shown for (a) n ¼ 100, (b) n ¼ 300, and (c) n ¼ 1200 QTL progeny. Each line shows posterior probabilities as a function of
estimated map position for a given Bayes factor Bc, for Bc¼ 1, 20, 100, 400, representing sequence-specific evidence for a candidate
polymorphism. Results assume prior probability per candidate 1/3000 and standard deviation of 3 cM for map position estimates.
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for Bayesian model selection in linear models using the
BIC. Moreover, the Zellner prior is not a natural subjec-
tive prior, with prior covariance between linked markers
similar to the likelihood and with prior variance pro-
portional to s2—we do not necessarily recommend its
use in any given situation.

The Bayes factor does not depend on the prior prob-
ability per marker but does depend on the prior dis-
tribution of the parameter(s) being tested. Broman and
Speed (2002) introduced the extra penalty factor d in
the BIC and recommended d ¼ 2, 3, possibly allowing
for asymptotics and, in the frequentist paradigm, multi-
ple comparisons. We have seen here that when we allow
for prior probabilities per marker, d ¼ 1 corresponds to
a good generally useable, but conservative, default prior
for QTL effects, with information approximately equiv-
alent to one sample point. Where there is lower prior
variance for QTL effects, higher Bayes factors and pos-

terior probabilities will be obtained, so it is worth using
this prior information if available.

We have shown how to modify the BIC to enable
specification of a subjective prior for QTL effects with
prior variance for QTL effects specified as a multiple of
the within-family genetic variance, corresponding to d ,

1, e.g., d¼ 0.59, corresponding to average QTL variances
of one-tenth of the genetic variance for the simulated
data set. Even lower values could be used if, for example,
preliminary QTL studies have been carried out, so that
remaining undetected QTL are likely to be small. How-
ever, comparison between d¼ 1 and d¼ 0.59 did not show
a major difference—with the main apparent difference
being larger posterior probabilities for candidates lo-
cated farther from the QTL position: in this case the sen-
sitivity to prior variance was not high. This is apparently
paradoxical, because one would ‘‘like’’ posterior prob-
abilities to be higher at the QTL and lower far from the

Figure 4.—Accuracy of the BIC approxima-
tion. The logarithm of Bayes factors calculated
from the BIC is plotted against the logarithm
of Bayes factors calculated using the closed-form
expression from Smith and Kohn (1996) with
the Zellner prior ½c ¼ n in (18)� for n ¼ 100, n ¼
300, and n ¼ 1200 QTL progeny. Differences be-
tween the two Bayes factors are shown as deviations
from the diagonal lines.

Figure 5.—Posterior probabilities for candi-
date gene polymorphisms by estimated map posi-
tion for chromosome 11. Values are shown for (a)
d ¼ 1, corresponding to a prior with c ¼ n in (18)
or a prior with QTL variance of s2

b ¼ s2, with in-
formation equivalent to half a sample point, and
(b) d¼ 0.59, corresponding to c ¼ 1

10nh2=ð1� h2Þ
in (18) or a prior with QTL variance of 1

10s2
G.
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QTL. However, using a more informative prior for the
parameter being tested raises the Bayes factors for all
loci, at least where the evidence from the QTL mapping
is in favor of a QTL (B . 1). Nevertheless, the subjective
prior is still recommended, as giving a more ‘‘correct’’
posterior where prior information is available.

In the worked example, an 8.5-fold increase in pos-
terior odds for the candidate was obtained, due to QTL
colocation. The posterior probability for a QTL in the
vicinity of marker 10 was 0.923, which is already fairly
high; increasing it to, e.g., 0.999 would yield only modest
increases in posterior odds for the candidate. Larger in-
creases are possible given more accurate candidate map
locations and QTL locations. This would require both
larger QTL-mapping sample sizes and more dense marker
spacings. For example, if the marker spacing was 0.2 cM,
the candidate was accurately mapped to marker 10, and
the posterior probability for a QTL in the vicinity of marker
10 was 0.9, the posterior probability for the candidate
would rise to 0.48, representing a 243-fold increase in
probability due to QTL colocation.

In spite of a Bayes factor of 98.4 and a further 8.5-fold
increase in odds due to QTL colocation, the posterior
probabilities for the candidate were still not high. This is
because we have used low prior probabilities. Thumma

et al. (2005) tested 25 SNP markers within the candidate
gene and gave P-values adjusted for the number of tests.
For this to be relevant amounts to a tacit prior assumption
that at least one real effect is present within the gene
with high probability. (Here, as is common in other ex-
amples, the frequentist analysis also uses prior infor-
mation, albeit poorly quantified and nontransparently.)
However, we see no reason why the gene should directly
affect the trait in question (MFA); hence we have used
low prior odds appropriate for a random candidate. The
number of loci tested, or that might be tested, affects the
P-values, but does not govern the posterior probabilities—
hence our assertion: QTL and association mapping are
model-selection problems, not multiple-testing problems.

The posterior probabilities for QTL presence were
compared to interval mapping and composite-interval
mapping. The composite-interval mapping curves were
qualitatively similar to the posterior probabilities, in that,
where evidence for a QTL was strong, the composite-
interval mapping curves were high in a region similar
to or slightly wider than the region with high posterior
probability for a QTL, while interval-mapping curves were
high for a substantially wider region. This is not surpris-
ing since our approach tests for a QTL within a small
region vs. the null hypothesis of no QTL in that region,
but for possible QTL anywhere else, while interval map-
ping tests for a QTL at a location vs. no QTL anywhere.
Composite-interval mapping attempts to allow for possi-
ble QTL elsewhere by conditioning on a set of auxiliary
marker genotypes. If there is an auxiliary marker be-
tween the location being tested and another QTL, then
the effect of the other QTL will be absorbed by the

auxiliary marker. (Conditional on the auxiliary marker
genotype, the genotypes for the marker being tested are
independent of the QTL genotype.) Where there are
two or more reasonably close QTL on a chromosome,
composite-interval mapping may not choose a suitable
auxiliary marker. For example, the two QTL on chro-
mosome 4 in our simulated data were not resolved by
composite-interval mapping. The effectiveness, or oth-
erwise, of composite-interval mapping hinges on the
choice of auxiliary markers to condition on—auxiliary
markers can absorb the effect of the QTL being tested
as well as other QTL, and estimating coefficients for the
auxiliary markers can add error, as well as reduce resi-
dual variation. The optimal choice of number and loca-
tion of auxiliary markers depends on unknown locations
and magnitudes of QTL effects; hence mixed results for
CIM are reported by Broman and Speed (2002). Bayesian
model selection does, optimally, in a coherent mathe-
matical framework, based on interpretable prior distri-
butions, what composite-interval mapping attempts to
do in an ad hoc way with arbitrary choices.

In our simulated data, chromosome 4 had two QTL
in repulsion. For n ¼ 1200 QTL progeny, these were
strongly detected and well separated by the Bayesian
model-selection method but not by composite-interval
mapping or interval mapping. It is important to detect
QTL pairs in repulsion—QTL in repulsion represent an
important source of latent variation, particularly for
traits of undomesticated species that have been subject
to stabilizing selection, which could be exploited by fu-
ture selection or QTL mapping. We note that the QTL
effects simulated by QTL Cartographer (Basten et al.
1994, 2004) were all positive in sign, whereas in many
cases there would be a number of QTL pairs in repul-
sion. This means that many QTL Cartographer-based
simulations may be optimistic.

As in QTL Cartographer, the within-family variation
was assumed to be fully accounted for by QTL. In prac-
tice, nonadditive, epistatic, and polygenic components
may reduce the proportion of genetic variance due to
QTL. Prior information on these terms can be allowed
for if known; otherwise the prior variance for QTL ef-
fects will be slightly larger. This is conservative, since Bayes
factors reduce when there is weaker prior information
for the size of effects being tested.

In our method, probabilities pQ(x) are piecewise con-
stant in the vicinity of the nearest marker. This is not a
major problem; however, if desired, the probabilities
(14, 15) can be smoothed by applying a kernel smoother
and renormalizing, so that the probability integral for
each chromosome or linkage group is unchanged. Or,
missing marker data can be estimated by multiple impu-
tation (Ball 2001). This was intended for markers where
marker genotypes were missing for some individuals, but
can also be used for ‘‘virtual markers’’ with all data miss-
ing (cf. Sen and Churchill 2001). One or more virtual
markers can be placed between each pair of actual markers,
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to obtain intermediate probabilities and hence smooth
the graph of posterior probabilities. This is potentially
useful if most of the posterior probability for a QTL is
concentrated around a single marker. There is, however,
a limit to the benefit of adding virtual markers—a single
QTL located between two markers is well represented by
one QTL at each of two adjacent flanking markers with
posterior probabilities for each marker reflecting the re-
lative proximity of the QTL to each of the flanking mark-
ers. To distinguish between these two possible genetic
architectures requires more actual markers.

Sen and Churchill (2001) use closed-form expressions
for marginal probabilities for linear models to estimate
a joint posterior probability density for QTL locations
for a set of QTL. In their Figure 2 and Appendix D they
note the log posterior densities for QTL location and
the LOD scores calculated using the EM algorithm were
very similar. This is surprising, since we have seen that
the interval-mapping likelihood ratios give excessively
wide intervals around QTL. In fact, it is an error to
estimate QTL location from probabilities of models with
a fixed number of QTL. Their log posterior density and
LOD scores are similar because, when restricting to a fixed
number of QTL, the BIC is the same as the log likelihood
or LOD score up to a constant, and the sample sizes are
such that the BIC gives good approximations to marginal
probabilities for models. Their posterior density for QTL
location is not the same as pQ(x), since they assume a
fixed number of QTL per chromosome. We have seen
that the number of QTL on a linkage group may not be
unequivocally determined (e.g., Figure 1, chromosomes
5 and 12); hence there is the need to incorporate model
uncertainty in both the number and the locations of QTL.
When considering models of different size we often see
that models of size 2 (e.g., Table 2, n ¼ 1200) dominate
models of size 1 except for the model with only the marker
closest to the QTL selected, resulting in a sharper drop-
off in pQ(x) than the LOD score. In other words, when
testing for a QTL at a given location one has to allow for
possible QTL at other locations, which entails models of
size 2 or more.

There are various possible experimental strategies for
gene discovery combining, for example, information from
association studies and QTL-mapping studies. Depend-
ing on sample size and size of QTL effects, most QTL-
mapping studies have a resolution of tens of centimorgans
for QTL location (Tables 5 and 6 and discussion). Pre-
liminary results for genome scans (Ball 2007) suggest
that not only is QTL-mapping information useful, but
prior to association studies it is more efficient to do an
even larger QTL-mapping study than most QTL-mapping
studies (e.g., with n ¼ 3000 QTL-mapping progeny
for small QTL effects). For candidate genes, graphs of
posterior probability for different sample sizes (cf. Fig-
ure 4) could be used to find the optimal design; however,
in the absence of a theoretical power calculation, many
replicate simulations are needed.
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