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ABSTRACT

The distribution of fitness effects of new mutations (DFE) is important for addressing several questions
in genetics, including the nature of quantitative variation and the evolutionary fate of small populations.
Properties of the DFE can be inferred by comparing the distributions of the frequencies of segregating
nucleotide polymorphisms at selected and neutral sites in a population sample, but demographic changes
alter the spectrum of allele frequencies at both neutral and selected sites, so can bias estimates of the DFE
if not accounted for. We have developed a maximum-likelihood approach, based on the expected allele-
frequency distribution generated by transition matrix methods, to estimate parameters of the DFE while
simultaneously estimating parameters of a demographic model that allows a population size change at
some time in the past. We tested the method using simulations and found that it accurately recovers
simulated parameter values, even if the simulated demography differs substantially from that assumed in
our analysis. We use our method to estimate parameters of the DFE for amino acid-changing mutations in
humans and Drosophila melanogaster. For a model of unconditionally deleterious mutations, with effects
sampled from a gamma distribution, the mean estimate for the distribution shape parameter is �0.2 for
human populations, which implies that the DFE is strongly leptokurtic. For Drosophila populations, we
estimate that the shape parameter is �0.35. Differences in the shape of the distribution and the mean
selection coefficient between humans and Drosophila result in significantly more strongly deleterious
mutations in Drosophila than in humans, and, conversely, nearly neutral mutations are significantly less
frequent.

THE distribution of fitness effects of new mutations
(DFE) specifies the probability of a new mutation

having a given fitness effect. This distribution is there-
fore of interest for several questions in genetics. The
DFE is an important determinant of the amount and
nature of genetic variation for fitness and other quan-
titative traits (Eyre-Walker et al. 2006; Eyre-Walker

and Keightley 2007). For example, if quantitative
genetic variation is maintained by a balance between
mutation and selection and there is substantial var-
iation in the effects of mutations, most of the variance is
likely to be contributed by mutations segregating at low
frequencies. This is relevant to the nature of complex
genetic disease variation in humans, since the genetic
mapping of rare alleles subject to strong negative selec-
tion is expected to be difficult (Reich and Lander 2001).
The DFE is also of critical importance in determining
how quickly fitness is expected to change due to an ac-
cumulation of new deleterious mutations (Bataillon

2000). This may be important for designing optimal

strategies to conserve species or populations that have
small effective population sizes (Lande 1995). The
maximum rate at which fitness can decline is deter-
mined by the product of the mutation rate per genome
and the mean mutational effect. If, however, there is
substantial variation in the fitness effects of mutations,
and some mutations are very strongly deleterious, then
selection may be effective against the most damaging
mutations, even in quite small populations (Schultz

and Lynch 1997). Finally, the DFE is potentially impor-
tant for several evolutionary questions, including the
evolution of sex and recombination (Butcher 1995;
Peck et al. 1997), the stability of the molecular clock
(Ohta 1977; Eyre-Walker et al. 2006), and the extent
to which linkage retards selection response (Keightley

and Hill 1987).
A number of different methods have been developed

to estimate the DFE from DNA sequence data (Nielsen

and Yang 2003; Piganeau and Eyre-Walker 2003;
Yampolsky et al. 2005; Eyre-Walker et al. 2006; Loewe

et al. 2006). For the most part, these use summaries of
the data to infer the distribution and thus discard
potentially valuable information. One exception is the
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method proposed by Eyre-Walker et al. (2006), which
attempts to infer the DFE from the distribution of al-
lele frequencies in a sample of sequences, a distribution
that is usually referred to as the site-frequency spec-
trum (SFS). However, any method that uses the SFS for
inference about selection needs to consider population
demography, because this can affect the SFS in similar
ways to selection. For example, population expansion
leads to a skew toward rare alleles, whereas population
contraction has the opposite effect. Eyre-Walker et al.
(2006) suggest an approximate method by which many
of the effects of demography can be accounted for.
However, their method tends to overestimate the mean
strength of selection if there has been population size
expansion. It is clearly desirable to account for demo-
graphic change by estimating parameters of a demo-
graphic model along with the DFE. Williamson et al.
(2005) have made a step in this direction by developing
a method by which the ‘‘mean’’ strength of selection can
be inferred within a model in which the population is
allowed to go through an instantaneous population size
increase or decrease. A. Boyko (personal communica-
tion) has recently extended this approach to simulta-
neously infer the DFE under the demographic model
used by Williamson et al. (2005). Here, we develop a
method that is similar to that of A. Boyko; we infer both
the DFE and the demography of the population from
the DNA sequence data. However, our method poten-
tially has some advantages. The inference of demography
is simultaneous, whereas A. Boyko infers the demogra-
phy and then the distribution of effects under the as-
sumption that the demographic model is correct. By
inferring all parameters simultaneously using all the
available information in the data we expect to derive
more realistic confidence intervals, since the error in
the demographic model is incorporated into the esti-
mate of the error in the DFE. We also infer confidence
limits on our parameter estimates by bootstrapping in
an attempt to account for nonindependence between
linked sites. We apply our new method to polymorphism
data from humans and Drosophila melanogaster.

MATERIALS AND METHODS

Model: The frequency distribution of segregating alleles at
nucleotide sites in the genome of a diploid population of size
N1 is assumed to be at an equilibrium between mutation,
selection, and drift. All sites are assumed to be unlinked and
have the same mutation rate, and mutations are assumed to be
sufficiently rare that no more than two alleles segregate at a
given site. A class of selected sites is subject to new deleterious
mutations, and the fitnesses of the wild-type, heterozygote,
and mutant homozygote genotypes are 1, 1 � s/2, and 1 � s,
respectively. Different mutations have independent s, which
are assumed to be drawn from a gamma distribution with
shape parameter b and scale a. We assume a gamma dis-
tribution, since it can take a wide variety of shapes and only has
two parameters. These include distributions ranging from
highly leptokurtic if b / 0 to a platykurtic form that becomes

a spike at the distribution’s mean (b/a) if b / ‘ and includes
the exponential distribution (b¼ 1). We assume that there is a
class of neutral sites at which mutant alleles have no effect on
fitness. The equilibrium population of size N1 experiences a
step change in size (upward or downward) to size N2, and the
population remains at this size for t2 generations, at which
point the frequencies of alleles at a number of selected and
neutral sites in the genome are surveyed in a sample of
individuals.

Generation of the expected allele frequency vector: The
computation of the likelihood of the polymorphism SFS is
based on an allele-frequency vector (AFV), v(s), which is a
scaled, weighted sum of two vectors, w(s) and x(s), containing
the expected numbers of mutations segregating at the time of
sampling in different frequency classes attributable to muta-
tions that occur before and after the change of population
size, respectively. These vectors were generated by transition
matrix methods using a Fisher–Wright transition matrix,
M, which specifies stochastic change in the allele-frequency
distribution. The elements of M are:

mjk ¼
2N
k

� �
ðq 1 DqÞkð1� q � DqÞ2N�k ð0 # j ; k # 2N Þ;

ð1Þ
where q ¼ j/2N, and

Dq ¼ �sqð1� qÞ
2ð1� sqÞ ðs # 1Þ: ð2Þ

The elements of M specify the probability that a mutation
present in j of the 2N chromosomes is present in k of 2N
chromosomes in the next generation. Using this transition
matrix it is possible to derive the AFV in the following manner.

We start by considering the contribution of mutations to the
AFV that occur after the change in population size. Let f(t2) be
a row vector of dimension 2N2 whose elements f(t)i (0 # i #
2N2) are the probabilities that the population has an allele
frequency i/2N2 t2 generations after the occurrence of a new
mutation. For example, at t2 ¼ 0 f(0)1 ¼ 1, and all the other
elements are zero. The vector f(t2) at generation t2 (t2 . 0) is
obtained by iterating

fðt2Þ ¼ fðt2 � 1ÞM; ð3Þ

where M has dimension 2N2 3 2N2. f(t2) gives the AFV for a
single mutation t2 generations after it occurred. However, the
SFS for a real population would contain a sample of mutations
that had occurred at times in the past up to and including
generation t2. The cumulative frequency vector x(s), contain-
ing the sum of contributions from mutations that occurred t2,
t2 � 1, . . . , 0 generations ago, is

xðsÞ ¼
Xt

i¼0

fðiÞ: ð4Þ

The gamma distribution of mutational effects can poten-
tially have a long tail with a substantial part of the density .1.
As Ns increases the contribution of a new mutation is expected
to decrease. We therefore modeled the contributions of
mutations for s . 1 by setting x(s)1 to 2/s and all other ele-
ments to zero, so that the mean allele frequency was pro-
portional to the expectation at mutation–selection balance.

To compute w(s) (the vector containing the contribution
from mutations that occur before the change in popula-
tion size), we first computed a vector, u(s), containing the
relative numbers of mutations in different frequency classes at
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mutation–selection–drift equilibrium in a population of size
N1. This could be obtained by transition matrix iteration using
Equation 4 for large t2 (i.e., t2 ? N1), but a faster method is to
obtain this sum from

uðsÞ ¼ vectorð1; ðI�QÞ�1Þ; ð5Þ

(Kemeny and Snell 1960), where vector(i, matrix) is the
operation that extracts the vector corresponding to column i
of the matrix, Q is the square submatrix of M of dimension
2N1 � 1, defined by qij ¼ mij for 1 # i, j # 2N1 � 1, and I is the
identity matrix. To generate the vector w(s), specifying the
numbers of alleles segregating at different frequencies sub-
sequent to the operation of selection and drift (but not muta-
tion) in a population of size N2, we apply a transition matrix
with dimensions 2N1 3 2N2 to u(s) for one generation fol-
lowed by iteration with a square transition matrix of dimension
2N2 for t � 1 generations.

Let the vector v9(s) be the sum of w(s) and x(s), weighted by
N1 and N2, respectively, which are proportional to the numbers
of mutations occurring per generation in the populations
before and after the change of population size; i.e.,

v9ðsÞ ¼ N1wðsÞ1 N2xðsÞ: ð6Þ

Note that v9(s) specifies relative numbers of mutations that
segregate in the population, whereas we require a vector of
allele frequencies that includes the frequency of sites at which
mutations have been eliminated by selection or that have not
experienced a mutation. Elements of this probability vector
v(s) were therefore obtained by scaling v9(s) as

vðsÞi ¼ v9ðsÞi=
X2N�1

j¼1

v9ð0Þj ði ¼ 1::2N2 � 1Þ; ð7Þ

where the subscripts refer to the element of a vector. This
scaling implies that

P2N�1
i¼1 vð0Þi ¼ 1, whereas

P2N�1
i¼1 vðsÞi , 1

for s , 0. The difference between the scaled density for s ¼ 0
and the scaled density for s , 0 is due to mutations that have
become selectively eliminated, so

vðsÞ0 ¼ 1�
X2N�1

i¼1

vðsÞi : ð8Þ

To account for sites that are invariant due to never having
experienced a mutation, we introduced an additional param-
eter in the model, f0. The frequency of this nonsegregating
class was estimated by dividing elements of v(s)i by 1 � f0 (for
i ¼ 0 to 2N2 � 1) and incrementing v(s)0 by f0.

Computation of likelihood: The SFS data for nonsynon-
ymous and silent sites consist of vectors p(N) and p(S) of
numbers of sites p(N)i and p(S)i containing i (0 # i , nT)
derived alleles in a sample of nT alleles from the population.
For simulated data the derived (i.e., mutant) allele is known.
However, it is not possible to know this with certainty for real
data. One possibility is to infer the derived allele by parsimony
using an outgroup species, but this introduces bias because
parsimony assignments can be inaccurate even when two
species are quite closely related and this will tend to lead to
an excess of common variants. We therefore folded the SFS
data vectors and v(s) as follows:

pi ¼ pi 1 pnT�i ðfor 0 # i # nT=2Þ ð9Þ
vðsÞi ¼ vðsÞi 1 vðsÞ2N�i ðfor 1 # i # 2N =2Þ ð10Þ

Simulation results suggest there is relatively little information
lost by using the folded vector.

For a given selection coefficient, s, the probability of ob-
serving i derived alleles is obtained from the sum of probabil-
ities, weighted by the elements of the AFV v(s)j, over all
possible frequencies of mutant alleles ( j/2N2) in the popula-
tion (0 # j , 2N2), under the assumption that i is binomially
distributed. For the sites assumed to be under selection, this
sum was integrated numerically over the distribution of
mutation selection coefficients f(s), which in our case is a
gamma distribution. For unfolded distributions, the log
likelihood of the data corresponding to the sites assumed to
be under selection was

logL¼
XnT�1

i¼0

pðN Þi log

ð‘

0

X2N2�1

j¼0

vðsÞj bði jnT ; j=2N2Þf ðs ja;bÞds

 !
:

ð11Þ

where b(i j n, p) is the binomial probability function for i
derived alleles in a sample of n alleles with the probability of
occurrence p. Similarly, the log likelihood with folded distri-
butions (assuming odd numbers of alleles) was

log L ¼
XnT =2

i¼0

pðN Þi log

ð‘

0

XN2

j¼0

vðsÞj ðbði j nT ; j=2N2Þ1 bðnT � i j nT ; j=2N2ÞÞf ðs ja;bÞds

 !
:

ð12Þ
The log likelihood for the silent-site data (p(S)) was computed
from Equation 11 or 12 for a point value s ¼ 0, omitting the
integration. The overall log likelihood was the sum of log
likelihoods for the selected and neutrally evolving sites.

Algorithm for maximization of likelihood: Likelihood was
evaluated for fixed population sizes N1. The variable param-
eters estimated in the model were N2, t2, f0, a, and b. To speed
up the likelihood calculations, the expected gene frequency
vectors (EGFs) w(s) and x(s) were precomputed. The gener-
ation of these vectors can be expensive in computing resour-
ces, the time required being approximately proportional to
t2N 2

2 : Computing time for maximization of likelihood is not a
serious issue for N2 up to 1000. Most evaluations were done for
N1 ¼ 20 or N1 ¼ 100. EGFs for values of N2 were generated
from 2 to 2000 in steps increasing by 5% or 1, whichever was
the higher. Values of t2 went from 1 to 5000, again in steps
increasing by 5%. The numerical integration procedure used
250 s points in four ranges with an increasing density of points
close to s¼ 0; results of likelihood evaluations that used 125 of
these points were almost identical to those that used the full
250 points (data not shown). For a fixed value of N2, the
downhill simplex method (Nelder and Mead 1965; Press

et al. 1992) was used to find a local maximum likelihood (ML),
and a search over N2 was carried out to find the value closest to
the global ML. The variable t2 is discrete, whereas the simplex
algorithm requires continuous values, so the likelihood
calculations used EGFs for noninteger values of t2 that were
generated by linear interpolation for each element. To
compute confidence intervals, we ranked parameter estimates
obtained from 200 bootstrap data sets, resampled with re-
placement over loci. Confidence limits obtained from profile
likelihoods using values corresponding to drops in natural log
L of 2 units from ML estimates were in good agreement with
these (data not shown).

Simulations: The performance of the method was checked
by analyzing simulated data sets, generated by transition
matrix methods, as described above. All variable parameters
described above were estimated. The simulated data were
either generated assuming a two-epoch model, as assumed by
the analysis, or a three-epoch model, which violates the assum-
ptions of the analysis. Both scenarios involved a steady-state
population of size N1, followed by a change in population size
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to N2 for t2 generations. In the three-epoch model, there was a
further step change in population size to N3 individuals for t3
generations. Allele frequencies were sampled in proportion to
their probabilities in the AFV, and then numbers of individuals
containing the mutant allele were sampled from a binomial
distribution. These analyses were carried out using unfolded
distributions (Equation 11); results are similar if folded dis-
tributions are used in the analysis (data not shown). Checks
were also carried out using a full Monte Carlo simulation, in
which the fates of freely recombining mutations were tracked
in populations of initial size N1 parents, which changed to N2

parents for t2 generations. Results from these simulations agreed
closely with simulated parameter values (data not shown).

Data: Human nucleotide sequences were downloaded from
the Environmental Genome Project (EGP) website (University
of Washington, Seattle; http://egp.gs.washington.edu; January
2007; Livingston et al. 2004) and from the Program for
Genomic Applications (PGA) website (NHLBI SeattleSNPs,
Seattle; http://pga.gs.washington.edu; February 2007). Alleles
of African and European origin were analyzed separately. For
these data sets, intronic bases, with the exception of bases
corresponding to sites known to be involved in splicing (the
first 6 and last 16 bases of each intron) served as the neutrally
evolving standard. The frequency of CpG dinucleotides varies
dramatically between coding and nocoding DNA in mammals,
leading to differences in mutation rates due to the hypermu-
table nature of these sites (Kondrashov et al. 2006). We
therefore restricted our analysis to those sites that are not part
of a CpG dinucleotide. The two data sets are not random
collections of genes, and there are substantial differences
between them in diversity at intronic and especially non-
synonymous sites (Table 1). This could reflect different mean
strengths of selection on the two sets of genes.

D. melanogaster nucleotide sequences described in Shapiro

et al. (2007) were kindly provided by Joshua Shapiro. The
African data set consists of nucleotide sequences that origi-
nated in Zimbabwe (10 alleles) and Botswana and Zambia
(2 alleles each). The alleles originating in Zimbabwe were
analyzed separately; this data set is therefore a subset of the
African data set. Non-African alleles (6) are from diverse
regions worldwide, but not from Africa. For the Drosophila
data sets, fourfold degenerate sites served as the neutral
standard. In cases where .2 alleles segregate at a site, the
derived allele frequency was taken as the sum of the frequen-
cies of the rarest alleles.

In both humans and Drosophila, the DFE was fitted to
zerofold degenerate sites. In all data sets, the numbers of
alleles sampled at a given nucleotide site vary, but the likeli-
hood calculations are speeded up considerably if each site has
the same number of alleles. We therefore disregarded sites
with less than a minimum acceptable number of alleles (nmin),
so that we disregarded�5% of segregating sites. If the number

of alleles at a site exceeded nmin, we sampled nmin alleles
without replacement. Table 1 gives some details of each data
set analyzed.

RESULTS

Simulations: To evaluate the performance of the
inference method, we checked whether estimated par-
ameter values matched simulations under a range of
scenarios. The transition matrix approach makes it
possible to infer the AFV for a population of a particular
size that has been subject to past expansion or contrac-
tion. It is important to note that the true population size
from which the data were sampled is not known and
cannot be inferred without additional information
about the mutation rate (u). However, population ge-
netic theory suggests that the dynamics should scale
with Neu and Nes. Hence, if we arbitrarily choose a value
of N1, the inferred values of N2E(s) ¼ N2b/a and b

should be unbiased estimates of their true values. To
investigate this we simulated data under one value of N1

and used different values of N1 to estimate the param-
eters. For cases in which the simulated data included a
single phase of population expansion or contraction (so
conformed to the analysis model), results suggest that
the method recovers mean simulated values for the
mutational distribution parameters with little bias in
most cases (Table 2). Two cases in which bias arises were
noted. First, under population contraction, analysis
with small N1 (i.e., 20), implying even smaller N2 gives
downwardly biased estimates of b and upwardly biased
estimates of N2E(s), particularly if the simulated distri-
bution is leptokurtic. This suggests that large N1 should
be used if population contraction is apparent. Second,
for simulations involving platykurtic distributions (b ¼
5), some replicates gave b-estimates considerably larger
than the value simulated (i.e., implying that the ML-
estimated distribution approaches equal effects, b /
‘); these outliers can therefore lead to upwardly biased
mean estimates of b in these cases. However, most ana-
lyses from DNA sequence data suggest the DFE is fairly
leptokurtic, so this should not arise in practice.

We also simulated data that depart from the assump-
tions of the analysis method by incorporating two-step

TABLE 1

Polymorphism data sets analyzed

Species Population Data set
No.
loci

No. alleles
analyzed

Intronic/
fourfold sites

Proportion
segregating

Zerofold
sites

Proportion
segregating

H. sapiens Africa PGA 288 38 3,675,233 0.0035 241,794 0.0014
Europe 38 0.0021 0.0092
Africa EGP 221 42 3,326,733 0.0033 196,133 0.0011
Europe 34 0.0018 0.0067

D. melanogaster Africa Shapiro et al. (2007) 418 12 32,837 0.040 137,796 0.0036
Zimbabwe 8 34,209 0.035 143,139 0.0029
Non-Africa 6 37,234 0.027 154,136 0.0024
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changes in population size. Results from simulations of
mild or severe bottlenecks or accelerating population
expansion suggest that the method is quite robust to
such departures, and parameter values are recovered
from the SFS data with little bias (Table 3).

Humans: As expected, the demographic models that
best fit the African and European polymorphism data
differ markedly (Table 4) (Adams and Hudson 2004;
Marth et al. 2004; Garrigan and Hammer 2006).
Frequencies of polymorphisms in the European data
sets are consistent with a modest recent population
contraction. In the case of the European EGP data set,
however, the fit of this model is only marginally better
than a constant population, whereas the PGA data
set gives strong evidence of population contraction
(Table 4). These somewhat contrasting results may
reflect limitations of the simple two-epoch model that
we have fitted. For example, a population bottleneck

followed by an expansion is consistent with the recent
history of European populations (Adams and Hudson

2004; Marth et al. 2004). Notably, the EGP genes are
substantially less polymorphic than the PGA ones (Table
1), implying that their local effective population size is
lower, on average. The European EGP SFS may there-
fore be more strongly affected by a recent population
expansion. In the case of the African data sets, the best-
fitting models give increasing likelihood as N2 increases
for a given N1 while t/N2 remains constant at �2.5, and
E(s) and b remain approximately constant. We found
that this behavior can also be produced in simulations if
there is a strong population expansion far in the past
(i.e., several N generations ago; supplemental Figure 1
at http://www.genetics.org/supplemental/). In these
cases, the data do not seem to contain information that
makes it possible to disentangle the magnitude of the
population expansion and the time at which it occurred.

TABLE 2

Simulation results: simulated data conform to the analysis model

Mean parameter estimates (SD)

Simulated b Simulated N2E(s) N1 assumed b N2E(s)

a. Constant population
0.2 5 20 0.19 (0.054) 5.0 (1.45)

100 0.21 (0.057) 4.6 (1.14)
1 20 0.84 (0.18) 5.6 (1.03)

100 0.88 (0.63) 5.7 (0.85)
5 20 5.5 (2.19) 5.2 (0.72)

100 6.0 (2.33) 4.6 (0.20)

b. Twofold population contraction
0.2 10 20 0.11 (0.022) 138 (186)

100 0.23 (0.035) 8.4 (2.34)
1 20 0.93 (0.47) 18.5 (5.28)

100 0.93 (0.080) 11.1 (0.98)
5 20 3.3 (0.94) 15.7 (2.93)

100 5.6 (2.01) 12.4 (2.26)

c. Twofold population expansion
0.2 10 20 0.22 (0.066) 8.9 (3.57)

100 0.22 (0.076) 11.0 (7.15)
1 20 1.0 (0.18) 9.7 (1.95)

100 1.0 (0.22) 9.3 (1.52)
5 20 5.3 (1.19) 9.6 (0.98)

100 5.6 (1.43) 9.0 (0.63)

d. Fourfold population expansion
0.2 20 20 0.18 (0.018) 17.2 (1.4)

100 0.18 (0.016) 23.4 (4.8)
1 20 1.1 (0.12) 19.3 (2.0)

100 1.2 (0.13) 17.0 (1.4)
5 20 7.2 (2.35) 21.7 (3.5)

100 9.4 (4.10) 20.5 (3.0)

Replicate data sets were generated by Monte Carlo simulation for three values of b and E(s) ¼ 0.1 under four
demographic models: (a) N1¼ 50, N2¼ 50; (b) N1¼ 200, N2¼ 100; (c) N1¼ 50, N2¼ 100; and (d) N1¼ 50, N2¼
200. Other parameter values were t2¼ 200 and f0¼ 0.95. The data sets consisted of 40 alleles sampled for 10,000
neutral sites and 2000 selected sites. Each data set was analyzed separately assuming two different N1’s (20 and
100), and estimates of N2, t, b, E(s), and f0 were obtained. There were five replicates for b ¼ 1 and b ¼ 5 and 10
replicates for b ¼ 0.2.
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For the African data sets, models with populations that
have changed in size fit the data better than constant-
population models, and the differences in log likeli-
hood are large (Table 4).

To check the fit of the model to the data, we calculated
expected SFSs for neutral and selected sites on the basis of
the maximum-likelihood estimates (MLEs) of the param-

eters of the model. The observed and expected SFSs
(plotted in Figure 1 for the neutral data) suggest that the
fit is very good in all cases. For the human data sets, the
proportion of variance (r2) of the observed SFS explained
by the expected SFS exceeds 96% in all cases.

The human polymorphism data sets give fairly con-
sistent estimates for the shape parameter of the gamma

TABLE 4

Estimates of demographic parameters for humans and Drosophila

Species Population Data set N2/N1 t/N2 Log L

Homo sapiens Africa PGA a 2.7 130
Europe 0.67 1.4 46
Africa EGP a 2.1 242
Europe 0.89 1.2 0.8

D. melanogaster Africa Shapiro et al. (2007) 20 2.4 16
Zimbabwe 4.9 1.5 18
Non-Africa 7.2 1.7 9.9

Log L is the difference in log likelihood between the models that allow/do not allow a population size
change. The initial population size, N1, was 20 for Drosophila and African humans; for European humans
N1 was 100.

a Likelihood increases toward a plateau as N2 increases for a given N1; the parameter values reported were for
N2 ¼ 1000.

TABLE 3

Simulation results: simulated data violate assumptions of the analysis model

Mean parameter estimates (SD)

Simulated b Simulated N3E(s) N1 assumed b N3E(s)

a. Mild bottleneck followed by population expansion
0.2 10 20 0.20 (0.057) 15.2 (14.6)

100 0.20 (0.058) 15.0 (14.8)
1 20 1.16 (0.31) 9.8 (3.13)

100 1.17 (0.31) 9.7 (2.97)
5 20 5.4 (1.14) 9.8 (0.64)

100 5.6 (1.56) 11.6 (2.60)

b. Severe bottleneck followed by population expansion
0.2 10 20 0.25 (0.083) 8.2 (3.12)

100 0.27 (0.091) 7.7 (3.05)
1 20 1.08 (0.28) 9.7 (2.71)

100 1.11 (0.31) 9.7 (2.43)
5 20 5.6 (2.40) 9.6 (0.69)

100 6.4 (3.25) 9.3 (0.67)

c. Two phases of accelerating population expansion
0.2 10 20 0.22 (0.081) 10.6 (7.61)

100 0.24 (0.10) 10.3 (8.52)
1 20 1.1 (0.22) 10.1 (1.84)

100 1.2 (0.31) 9.4 (1.83)
5 20 5.6 (2.00) 9.7 (0.88)

100 7.0 (3.09) 9.2 (0.99)

Replicate data sets were generated by Monte Carlo simulation for three values of b and E(s) ¼ 0.1 under
demographic models involving three epochs that violated the assumptions of the model simulated: (a) N1 ¼
100, N2 ¼ 25, N3 ¼ 100, t2 ¼ 5, t3 ¼ 100; (b) N1 ¼ 100, N2 ¼ 10, N3 ¼ 100, t2 ¼ 10, t3 ¼ 100; and (c) N1 ¼ 25,
N2 ¼ 50, N3 ¼ 100, t2 ¼ 100, t3 ¼ 100. The parameter f0 ¼ 0.95. The data sets consisted of 40 alleles sampled
for 10,000 neutral sites and 2000 selected sites. Each data set was analyzed separately assuming two different
N1’s (20 and 100), and estimates of N2, t, b, E(s), and f0 were obtained. There were 5 replicates for b ¼ 1 and
b ¼ 5 and 10 replicates for b ¼ 0.2.
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distribution, b, of �0.2 (Table 5), implying that the dis-
tribution of fitness effects of new mutations is strongly
leptokurtic. Estimates for NeE(s), the mean selective
effect of a new mutation, are quite large and consistently
larger in the African than in the European populations.
Presumably, this difference at least partly reflects a
difference between the populations’ long-term effective
sizes (Tenesa et al. 2007). In general NeE(s) is rather
imprecisely estimated. This may be caused by the lack of
information coming from strongly deleterious muta-
tions, since these are very rarely present in a sample of
DNA sequences. However, the proportions of mutations
in different effects classes are estimated with somewhat

higher confidence (Table 6). Approximately 30% of
amino acid-changing mutations behave as nearly neu-
tral (i.e., Nes , 1), but there is quite a conspicuous dif-
ference between the EGP and the PGA data sets. There
is also an indication that there is a higher proportion of
strongly selected mutations with effects Nes .100 in
Africans than in Europeans.

Estimates for b tend to be larger and N2E(s) smaller if
CpG sites are included (data not shown). This arises
because hypermutable CpGs are considerably less fre-
quent in introns (the assumed neutrally evolving
standard) than in nonsynonymous sites (the sites
assumed to be under selection), so the average mutation

Figure 1.—Site-frequency spec-
tra for the intronic data of human
populations compared to expec-
tation generated under the assum-
ption of MLE parameter values.

TABLE 5

Estimates of mean selective effect and distribution shape parameter for deleterious mutations
in humans and Drosophila

Species Population Data set NeE(s) (95% C.I.) b (95% C.I.)

H. sapiens Africa PGA 5,300 (160, /‘) 0.10 (0.01, 0.19)
Europe 51 (16, /‘) 0.19 (0.04, 0.32)
Africa EGP 2,500 (180, /‘) 0.15 (0.02, 0.25)
Europe 61 (16, 4.8 3 105) 0.29 (0.08, 0.54)

D. melanogaster Africa Shapiro et al. (2007) 1,800 (520, 25,000) 0.38 (0.26, 0.49)
Zimbabwe 9,800 (700, /‘) 0.30 (0.15, 0.49)
Non-Africa 14,000 (290, /‘) 0.27 (0.04, 0.59)
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rate per site is relatively lower in introns compared to
nonsynonymous sites, if CpG sites are included. This
leads to relatively fewer nonsegregating intronic sites
and thus to the appearance of weaker selection under
the equal mutation rates model assumed. The results for
non-CpG sites are the more relevant, however, since we
assume that all sites mutate at the same rate. A more
powerful method for dealing with this difference in the
mutation rate might be to estimate separate f0 param-
eters for CpG and non-CpG sites.

D. melanogaster : The polymorphism-frequency spec-
tra suggest that there has been a population expansion
in all populations (Table 4). This is consistent with what
has previously been inferred for African D. melanogaster
populations (Li and Stephan 2006; Stephan and
Li 2007). As with human populations, non-African
D. melanogaster seems to have gone through a bottleneck
followed by a population expansion (Li and Stephan

2006), and the present analysis may be picking up the
population expansion signal from the SFS. Estimates of
b (Table 5) tend to be higher than those seen in human
populations, and several are significantly higher at the
5% level (Table 7). This implies that the distribution of
selective effects may be less leptokurtic in Drosophila
than in humans. Mean Nes is imprecisely estimated for
all data sets, presumably for the same reasons as
mentioned above for humans. However, the splitting
of the distribution of mutation effects into ranges
(Table 6) shows that there are far fewer nearly neutral
mutations (Nes , 1) in Drosophila than in human
populations (P , 0.01 for all comparisons; Table 7) and
that there are many more strongly deleterious muta-
tions (Nes . 100) (P , 0.05 for all comparisons; Table
7). As with the human data, the fit of the SFSs to their
expectations is excellent (r2 . 0.97; Figure 2).

DISCUSSION

There are several interesting contrasts between the
results from the different data sets. First, the distribu-
tions of effects of amino acid-changing mutations
are strongly leptokurtic in humans and Drosophila.

However, estimates for the gamma distribution shape
parameter suggest that the distribution may be sub-
stantially less leptokurtic in Drosophila than in humans.
It is unknown what biological factors could cause this
difference in the shape of the distribution. Second, the
mean effect of an amino acid substitution is imprecisely
estimated in all data sets, in spite of the large number of
genes sequenced. This lack of power probably reflects
the relatively low numbers of alleles sequenced and the
inability to ascertain the frequency of rare, strongly
deleterious polymorphisms that have a major impact on
the tail of the distribution of mutational effects. How-
ever, point estimates for NeE(s) for humans suggest
substantially lower values for European than for African
populations, presumably due to recent bottlenecks that
affected Europeans (Marth et al. 2004; Garrigan and
Hammer 2006). Third, although imprecisely estimated,
point estimates for NeE(s) are similar in African humans
and Drosophila. This is surprising, given that previous
estimates for the effective population size, obtained by
combining nucleotide diversity and between-species
divergence, differ by about two orders of magnitude

TABLE 6

Proportions of mutations with effects in different Nes ranges in humans and Drosophila

Nes range (95% C.I.)

Species Population Data set 0–1 1–10 10–100 .100

H. sapiens Africa PGA 0.34(0.26, 0.43) 0.09(0.01, 0.16) 0.12(0.01, 0.25) 0.45(0.28, 0.59)
Europe 0.37(0.29, 0.46) 0.20(0.04, 0.31) 0.27(0.04, 0.35) 0.15(0.02, 0.45)
Africa EGP 0.24(0.18, 0.33) 0.10(0.02, 0.16) 0.15(0.02, 0.28) 0.51(0.33, 0.67)
Europe 0.23(0.15, 0.33) 0.22(0.06, 0.33) 0.36(0.07, 0.48) 0.19(0.01, 0.54)

D. melanogaster Africa Shapiro et al. (2007) 0.05(0.03, 0.06) 0.06(0.05, 0.08) 0.15(0.08, 0.23) 0.74(0.65, 0.81)
Zimbabwe 0.05(0.03, 0.07) 0.05(0.03, 0.07) 0.10(0.04, 0.21) 0.80(0.69, 0.87)
Non-Africa 0.06(0.03, 0.09) 0.05(0.01, 0.09) 0.09(0.01, 0.30) 0.79(0.55, 0.89)

TABLE 7

Tests of significance of differences in properties of the DFE
between Drosophila and humans

Drosophila data set

Human data set Africa Zimbabwe Non-Africa

Africa PGA 0, 0, 0 0.02, 0, 0 0.05, 0, 0.01
Europe PGA 0.03, 0, 0 0.13, 0, 0 0.19, 0, 0.01
Africa EGP 0.01, 0, 0.01 0.06, 0, 0 0.12, 0, 0.02
Europe EGP 0.18, 0, 0 0.39, 0, 0 0.44, 0, 0.01

Numbers in each cell are the proportions of pairs of human/
Drosophila bootstrap samples (of 200) in which (a) b(human)
� b(Drosophila) . 0, (b) the proportion of mutations with
NE(s) in the range 0–1 (human)� the proportion of mutations
with NeE(s) in the range 0–1 (Drosophila) , 0, and (c) the pro-
portion of mutations with NeE(s) . 100 (human)� the propor-
tion of mutations with NeE(s) . 100 (Drosophila) . 0. P-values
in thetextareobtainedbydoubling thevalues in thetable, since
the values above refer to one-sided tests.
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between these species (Eyre-Walker et al. 2002), which
suggests that E(s) differs considerably between Dro-
sophila and humans. However, the confidence intervals
on our estimates do not allow us to discern whether
there is a real difference between the two species. It is
also possible that Ne in Drosophila has been over-
estimated because the mutation rate per base pair may
have been underestimated (Haag-Liautard et al.
2007). Finally, there are far fewer effectively neutral
amino acid-changing mutations in Drosophila than in
humans. In addition, mutations of very strong effect (Ns
. 100) are more frequent in Drosophila.

Our results are broadly concordant with previous
analyses. Eyre-Walker et al. (2006) inferred the DFE for
humans using other data from the Environmental
Genome Project not used here. By assuming a gamma
distribution they estimated that b ¼ 0.23 and Ns ¼ 850,
which are similar to the values estimated here. This is
remarkable given that different sets of genes were
analyzed and Eyre-Walker et al. (2006) used only an
approximate correction for demography. We also com-
pared our results with those obtained by applying the
method of Eyre-Walker et al. (2006) to our current
data sets (supplemental Table 1 at http://www.genetics.
org/supplemental/). In general, similar parameter
estimates are obtained, although estimates of b tend
to be slightly higher using the current method. Our re-
sults are also similar to those of Yampolsky et al. (2005)
who estimated the distribution using a more heuristic
approach. In Drosophila, Loewe et al. (2006) have

estimated the DFE by different methods; their point
estimates for b are 0.30 and 0.56, and for NeE(s) they are
2200 and 41,000, which are similar to our values even
though they were obtained using a different set of genes
in different species. However, their confidence intervals
are even larger than ours.

Methods have been previously developed to infer the
distribution of effects of mutations from DNA sequence
data (Piganeau and Eyre-Walker 2003; Nielsen and
Yang 2003; Sawyer et al. 2003; Eyre-Walker et al. 2006;
Loewe et al. 2006), but none have attempted to estimate
selection and demographic parameters together. From
a statistical point of view, this is desirable because un-
certainty concerning population demography should
be taken into account when making inferences about
the mutational parameters, and this is particularly im-
portant if the relative amount of neutral-site data is
small, as is the case for synonymous sites. Furthermore,
information from the SFS of the selected sites affects the
demographic parameter estimates. Previous work has
shown that it is important to correct for demographic
changes that alter the SFS (Bustamante et al. 2003;
Eyre-Walker et al. 2006). For example, if a constant-
population model is fitted to the African Drosophila
data, the estimate for b is 0.52 (instead of 0.38 for an
expanding population, Table 5) and NeE(s) is 5 3 106

(instead of 1800). Furthermore, under the constant-
population model, the proportion of mutations in-
ferred to have effects in the range 10 , Ns , 100 is
markedly higher than that under population expan-

Figure 2.—Site-frequency spectra for
the synonymous-site data of Drosophila
populations compared to expectation gen-
erated under the assumption of MLE pa-
rameter values.
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sion. As expected, if ML estimates of the demographic
model parameters obtained from the neutral site data
are treated as fixed, estimates of confidence limits on
the mutational parameters become somewhat narrower
(results not shown).

The method introduced here has several limitations.
First, the choice of sites at which neutral evolution is
assumed to occur can be problematical. In mammals,
intronic sequences, excluding those sequences involved
in splicing, evolve only marginally more slowly than tran-
sposable-element remnants (Gaffney and Keightley

2006), so are a reasonable choice as a neutral standard.
In contrast, synonymous sites evolve more slowly than
introns or transposable-element remnants and seem to
be under some form of purifying selection (Chamary

et al. 2006). The situation is more difficult in Drosophila,
because selection on all categories of noncoding DNA
seems to be common (Andolfatto 2005; Halligan

and Keightley 2006). For example, weak purifying
selection at synonymous sites could generate the nega-
tive Tajima’s D values seen in African D. melanogaster
(Shapiro et al. 2007). It is generally thought that
selection is no longer operating on synonymous codon
use in D. melanogaster (Akashi 1996; McVeanand Vieira

2001). However, to investigate the potential effects of
selection on synonymous codon use and its influence on
our estimates, we fitted a constant-population model
that includes a parameter for selection (of the same
magnitude) on all synonymous sites. We found that this
model fits only slightly worse than a population-expan-
sion model with no selection on synonymous sites. For
example, the difference in log L is 1.3 and the ML
estimate for the strength of selection on synonymous
sites is Ns ¼ 0.8 for the African Drosophila data. This is
similar to the strength of selection inferred, for exam-
ple, in D. simulans (McVean and Vieira 2001). Al-
though this model fits almost as well as the population
size-change model, parameter estimates for nonsynon-
ymous mutational effects are somewhat different; e.g.,
for Africa, b¼ 0.51 and NE(s)¼ 540, as opposed to 0.38
and 1800. It was not feasible to estimate both selection
on synonymous sites and a demographic change affect-
ing all sites, because selection and population expan-
sion or contraction can affect the SFS in similar ways, so
the model becomes overparameterized.

A second limitation concerns the simple model of
selection. Additive mutational effects have been as-
sumed, but if recessive mutations are common, then
selection against the heterozygote would be overesti-
mated if alleles reached high enough frequencies to
give an appreciable chance of the homozygote appear-
ing. Furthermore, it is possible that the SFS for recessive
mutations is qualitatively different from that for semi-
dominant mutations. Unfortunately, there is no obvious
way of estimating dominance of mutations from the SFS.
The high frequency of weakly deleterious mutations in
the best-fitting models, particularly in humans, suggests

that slightly advantageous mutations should also be
considered, but this would involve the fitting of at least
one additional parameter, and it is unclear if the
data contain information that could be used to estimate
it. Advantageous mutations of large effect have little
impact on the SFS, because they spend little time
segregating, so it is reasonable to ignore their contribu-
tion to the SFS. Clearly, if there are large numbers of
sites linked to alleles subject to some form of balancing
selection, the results would be biased because such sites
contribute to intermediate frequencies of the SFS.

Finally, the method is somewhat limited by the
demographic scenarios that have been modeled. The
step change in population size does not, for example,
model the bottleneck followed by expansion that ap-
pears to have affected European human populations
(Adams and Hudson 2004; Marth et al. 2004; Garrigan

and Hammer 2006). A constantly expanding population
might also fit African polymorphism data better than a
single-step change. Incorporating these models is possi-
ble in principle, but would require the estimation of at
least one additional parameter in each case and a con-
siderable increase in the computational complexity and
computing time of the method.

We thank Josh Shapiro for providing a data set of Drosophila
nucleotide sequences and John Welch, Brian Charlesworth, Dan
Halligan, Ian White, and Bill Hill for helpful comments and
suggestions.
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