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Medulloblastoma (MB) is the most common malignant brain tumor in children. It arises in the
cerebellum and has been associated with a variety of genetic alterations, including genes in the
Sonic hedgehog (Shh), Notch and Wnt signaling pathways. This study focuses on the Shh
pathway, which is activated in a subset of MBs [1] [2] [3]. In this pathway, Shh binds to the
receptor, Patched (PTCH), which liberates the Smoothened (SMO) protein, allowing GLI and
MYCN transcription factors to turn on target genes, including, in a negative feedback loop,
PTCH itself. Mutations in the PTCH gene are observed in 10-20% of sporadic MBs and are
associated with a familial predisposition to MB, known as Gorlin’s syndrome [4]. Additional
Shh pathway activating mutations have been identified in SMO and Suppressor of Fused
(SUFU) genes. Yet these mutations account for less than 25% of tumors that show Shh pathway
activation [2]. The purpose of the current study was to begin exploring epigenetic mechanisms
by which the Shh pathway could be activated.

Methylation of tumor suppressor genes is increasingly recognized as a causative mechanism
in tumorigenesis [5]. In MB, hypermethylation has been consistently identified in several
genes, including, but not limited to RASSF1A, a multi-faceted tumor-suppressor [6], Caspase
8 (CASP8), whose disruption alters apoptosis and tissue homeostasis [7] and Hypermethylated
in cancer 1 (HIC1) [8], a target of p53 (see [9] for detailed review). Notably, additional studies
on CASP8 and HIC1 [10] have also revealed methylation in control samples (either adult or
fetal cerebellum), illustrating the importance of using appropriate tissue matched samples for
comparison in methylation studies. Moreover, none of these genes display a clear role in the
molecular pathogenesis of MB. Hypermethylation has been identified in regulatory
components of activating pathways such as Wnt, a pathway strongly associated with
tumorigenesis in other cancers [11]. The present study is motivated by the hypothesis that
methylation of the PTCH1 promoter is causative in some MB cases.

We focused on PTCH1 for several reasons: 1) PTCH1 is a negative regulator of the Shh
pathway. Thus, constrained transcription or translation of this gene would activate Shh activity.
2) Several MB cases display elevated GLI expression and concordant low PTCH1 expression,
suggesting a loss of PTCH1 inhibition. 3) In a mouse model of MB in which one allele of
PTCH1 was genetically disabled along with the p53 gene, the remaining allele was naturally
silenced by methylation [12]. These findings and the overall scarcity of established
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determinants of MB raise the possibility that methylation of the PTCH1 gene contributes to
the generation and/or maintenance of MB.

The current investigation was designed to identify MB samples in which the promoter of the
PTCH1 gene was methylated. This was carried out by identifying patient samples in which
expression of indicators of Shh pathway activity, GLI1 and MYCN were elevated but
PTCH1 expression remained low and subsequently analyzing these candidate samples by
bisulfite PCR and DNA sequencing. The samples tested consisted of 21 primary pediatric MBs.
MYCN was analyzed because recent studies showed that it is downstream of Shh and necessary
for MB formation [13] [14]. GLI1 and PTCH are the gold standard for Shh pathway targets
[15] [16]. Expression of these genes was determined in all samples by real-time polymerase
chain reaction (RT-PCR). As seen in Table 1, expression analysis revealed that, when compared
to unaffected pediatric cerebellum controls, the majority of MB samples showed elevated
expression of MYCN (20 of 21, 95%). A subset of these samples exhibited concordant elevated
GLI1 expression (6 of 21, 29%). Four MBs with elevated GLI1 exhibited little or no PTCH1
expression. The samples with low PTCH1 and elevated GLI1 and MYCN were analyzed for
PTCH1 promoter methylation.

Identification of methylated bases in the PTCH1 promoter was carried out by the bisulfite
conversion method and PCR. Bisulfite modification and sequencing was chosen because of its
ability to discern between individually methylated and unmethylated cytosine residues and
directly compare across samples. To ensure the most likely regions of methylation were
captured, the promoter was divided into 7 contiguous regions, starting 983 bases upstream of
the PTCH1-1B transcription start site and ending 530 bases into Exon 1B. There are four
PTCH1 transcript variants (1, 1A, 1B, and 1C) which differ in their first exon and each have
distinct promoters [17] [18]. The promoter for variant 1B was chosen to analyze in detail for
this study by virtue of its robust response to Shh and capacity for strong long-term suppression
of Shh signaling in contrast to other variants. The analyzed regions surrounding Exon 1B also
encompass a CpG island, one of the hallmarks of tumor-associated methylation hotspots
[11]. Primers specific for amplifying bisulfite converted genomic DNA were used to amplify
each region. In order to avoid bias for methylated or unmethylated DNA, all primers lack CpG
cytosines, except in unavoidable cases. In such cases, a mixture of pyrimidines or purines was
used in place of cytosine in forward or reverse primers, respectively. Four MB samples (MB-6,
MB-7, MB-8, MB-11) were used as template for this method based on their low PTCH1 mRNA
expression and evidence of Shh pathway activity. Five unaffected pediatric cerebellum samples
were used as negative controls. As a positive control, we used enzymatically methylated DNA
purchased from Millipore. Amplified DNA from each region specific sample was TA-cloned
into the pCR4-TOPO vector. Five colonies were picked from each clone in order to ensure
consistency for each sample. Plasmid DNA was extracted and directly sequenced for all picked
colonies.

The results of sequencing analysis suggest there is no methylation present in the promoter
immediately upstream of PTCH1-1B in either tumor or control samples. As seen in Figure 1,
the tumor samples across all regions exhibited near zero methylated cytosines at any of the
CpG sites (<1%) (open boxes). Similarly, cerebellum control samples displayed no methylation
in the proximal promoter (0%). Artificially methylated DNA contained methylcytosines at
CpG sites in all amplified regions (closed boxes), confirming that bisulfite sequencing was
successful. A small proportion of regions were not amplifiable for some samples (unboxed).

The data presented here indicate that despite near absent PTCH1 mRNA expression and robust
Shh signaling in a subset of primary human MBs, there is no difference in methylation profiles
between MB and unaffected cerebellum samples. Furthermore, there appears to be little if any
methylation in either group. Contrary to our hypothesis, this suggests that promoter methylation
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does not contribute to low PTCH1 mRNA levels in the cases examined. A recent study found
that the PTCH1 promoter was methylated in ovarian tumors, but not in basocellular carcinomas,
implying differential PTCH1 methylation as a contributing factor in tumorigenesis, depending
on tumor type [19]. While we cannot rule out that rare cases of human MB are caused by
PTCH1 promoter methylation, the complete absence of methylation in all four samples with
elevated GLI1 and low PTCH1 argues against this as a common mechanism. Given that
expression analysis of PTCH1 was performed in a region of the gene common to all transcript
variants, we also cannot rule out the possibility of alternate or distal promoter methylation,
although methylation silencing occurs most often within the immediate flanking region of the
start site, particularly for genes with CpG islands in this region [20]. Exon 1B has 70% GC
content in the CpG island encompassed in this study [21] and the most robust response to Shh
signaling, re-iterating its pertinence as a strong candidate for initial investigation of PTCH1
methylation. Future studies may focus on methylation of Exon 1C, which also contains a CpG
island and is sufficient to repress Shh pathway activity [18].

Further investigation into epigenetic control of MB remains important. Other than
chromosomal abnormalities, genetic alterations in MB remain ill defined and the causative
nature of the majority of cases, elusive. It remains possible that genes other than Patched which
negatively regulate the Shh pathway, including NUMB [22], SUFU [23] and GSK3b [24] are
methylated in a subset of MB. Importantly, these genes are becoming increasingly relevant in
our understanding of multiple types of cancer. Identification of methylated genes which
regulate pathways common to many cancers may prove to be key prognostic indicators and
therapeutic targets in the near future.
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Figure 1. Methylation profile of the Patched-1 proximal promoter
Genomic DNA was extracted from primary MB and pediatric cerebellum samples and treated
with sodium bisulfite. Treated samples were PCR amplified with primers specific to contiguous
regions of the proximal human PTCH1-1B promoter. Amplified PCR products were cloned
into the pCR4-TOPO vector (Invitrogen, Carlsbad, California). Multiple colonies were
sequenced for each PCR product. Methylation analysis was carried out using BiQ Analyzer
software [25]. The sample CpG+ was bilsulfite converted CpGenome Universal Methylated
DNA (Millipore, Billerica, MA). Shown are all CpG dinucleotides present in each amplified
region, excluding primers (represented by boxes). Filled boxes represent methylated cytosines
and unfilled boxes represent unmethylated cytosines. No boxes represent regions where
amplification was unachievable with the current primers. CpG dinucleotides were considered
methylated if 3 or greater colonies of 5 at each site were called methylated by BiQ Analyzer.
Shown are representative colonies.
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Table 1
Shh pathway target gene expression
Total RNA was extracted from primary human MBs or unaffected pediatric cerebellum. cDNA derived from the RNA
was amplified by RT-PCR with taqman primers and probes (Applied Biosystems, Foster City, CA) specific to human
MYCN, GLI1 and PTCH1. 18s ribosomal RNA gene was concurrently amplified for internal normalization. Expression
in MB samples was compared to average control cerebellum (CBLM) expression. Four of 21 samples exhibit increased
MYCN and GLI1 in addition to low PTCH1 expression.

Expression level

Sample MYCN GLI1 PTCH1

MB-8 HIGH HIGH NONE
MB-7 HIGH HIGH NONE
MB-6 HIGH HIGH NONE
MB-11 MEDIUM LOW NONE
MB-2 HIGH HIGH MEDIUM
MB-4 HIGH NONE LOW
MB-3 HIGH NONE LOW
MB-1 HIGH NONE NONE
MB-9 HIGH NONE NONE
MB-17 HIGH NONE NONE
MB-14 HIGH NONE NONE
MB-13 HIGH NONE NONE
MB-18 HIGH NONE NONE
MB-10 MEDIUM NONE NONE
MB-16 MEDIUM NONE NONE
MB-22 LOW NONE NONE
MB-21 LOW NONE NONE
MB-12 LOW NONE NONE
MB-15 LOW NONE NONE
MB-20 NONE NONE NONE
MB-19 NONE NONE NONE

Legend
Fold Δ vs. CBLM

HIGH >10.0
MEDIUM 3.8-10.0

LOW 1.7-3.8
NONE <1.7
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