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Abstract
A fast integral expression for computing the nearfield pressure is derived for axisymmetric radiators.
This method replaces the sum of contributions from concentric annuli with an exact double integral
that converges much faster than methods that evaluate the Rayleigh-Sommerfeld integral or the
generalized King integral. Expressions are derived for plane circular pistons using both continuous
wave and pulsed excitations. Several commonly used apodization schemes for the surface velocity
distribution are considered, including polynomial functions and a “smooth piston” function. The
effect of different apodization functions on the spectral content of the wave field is explored.
Quantitative error and time comparisons between the new method, the Rayleigh-Sommerfeld
integral, and the generalized King integral are discussed. At all error levels considered, the annular
superposition method achieves a speed-up of at least a factor of 4 relative to the point-source method
and a factor of 3 relative to the generalized King integral without increasing the computational
complexity.

I. INTRODUCTION
Many radiators in biomedical ultrasonics, SONAR, and nondestructive testing have a spatially
varying particle velocity on the piston surface. This variation in surface velocity, or
apodization, significantly alters the beam pattern compared to a radiator with uniform velocity.
In order to accurately model pressures generated by these transducers, this apodization must
be considered.1,2 Although a formal solution to this problem is given by the Rayleigh-
Sommerfeld diffraction integral3 or the King integral,4 these solutions can be poorly behaved
numerically, especially near the source. In the case of the King integral, the integrand is
singular, which leads to slow convergence relative to other integral expressions. Therefore,
many specialized solutions have been developed to handle piston radiators, including series
solutions in terms of spherical wave functions,5-7 single-integral expressions based on the
impulse response,8-10 and transient single-integral expressions.11 Recent series approaches
have considered circular sources in finite baffles12 and resilient disks13 with nonuniform
surface velocity distributions.

To overcome the difficulties associated with the Rayleigh-Sommerfeld and generalized King
integrals, an axisymmetric solution to the piston radiator problem is derived. Based on the fast
nearfield method (FNM) for radiators with uniform surface velocity,14-16 the proposed
annular superposition method calculates the pressure fields generated by apertures where the
surface velocity is a function of the radial variable. As an extension of the FNM expression
derived in Ref. 14, this annular superposition method has a numerically well-behaved integrand
that rapidly converges within the nearfield region of the radiator. Unlike the impulse response
or Schoch solutions, the resulting annular superposition integral is defined by a single
expression that describes the pressure throughout the entire computational domain.
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After classical solutions to the apodized piston problem are reviewed, the method based on the
annular superposition integral is derived subject to an arbitrary axisymmetric surface velocity
distribution. This new method is applied to the “smooth piston” model and polynomial
apodization functions. In addition, the method is generalized to the case of transient excitations.
Example fields are computed and the spectral content of apodized wave fields are examined.
Transient wave fields are also presented. An error analysis and comparison of the annular
superposition method to the standard point-source approach is performed. The results show
that the annular superposition integral achieves a speed-up by a factor of 4 relative to the
Rayleigh-Sommerfeld integral at all error levels considered.

II. NEARFIELD CALCULATIONS FOR A CIRCULAR PISTON
Before the annular superposition integral is derived, two classical solutions to the baffled piston
problem are reviewed: the Rayleigh-Sommerfeld and King integrals. Both the Rayleigh-
Sommerfeld and the generalized King integral will be quantitatively compared to the proposed
method.

A circular aperture with radius a, located in the x−y plane, radiates into a homogeneous acoustic
half-space with constant density ρ and sound speed c. Initially, the excitation is assumed to be
single frequency with angular frequency ω. The velocity distribution is assumed symmetric
with respect to the angle θ lying in the x−y plane, allowing all apodization and phasing
information to be encoded in an aperture function q(σ), where σ is radial distance. Figure 1
displays the geometry and notation used in the subsequent derivation. Since any realistic
transducer has finite extent, q(σ) is assumed to be zero outside the interval [0,a].

A. Rayleigh-Sommerfeld integral
The Rayleigh-Sommerfeld diffraction integral, evaluated with the point-source approach,3 is
a standard method for evaluating pressure fields generated by acoustic radiators. The Rayleigh-
Sommerfeld integral analytically sums spherical wave contributions from each point on the
aperture. In cylindrical coordinates, the Rayleigh-Sommerfeld integral is given by

p̂(r, z; ω) = jkρc
π ∫0aσq(σ)∫0π e− jkR(ψ,σ)

R(ψ, σ) dψdσ (1)

with R(ψ, σ) = z 2 + σ 2 + r 2 − 2rσ cosψ. Through the cylindrical symmetry of R(ψ,σ), the
integrand of Eq. (1) evaluated for ψ ∈ [0,π] is replicated for ψ ∈ [π,2π], so the limits of
integration are reduced to [0,π]. Note that Eq. (1) possesses a 1/R singularity.

B. Generalized King integral
The generalized King integral utilizes the spectral form of the Green's function to represent
the pressure generated by an axisymmetric radiator as a single integral. However, the domain
of integration is infinite and the integrand is weakly singular at the wavenumber k. In cylindrical
coordinates, the King integral is given by

p̂(r, z; ω) = ρω∫0∞ exp( − jz k 2 − α2)
k 2 − α2

q
~
(α)J0(rα)αdα, (2)

where q̃(α) is the Hankel transform of the apodization function q(σ) and Jn(z) is the Bessel
function of the first kind of order n. In the case of the uniform piston, q̃(α) is proportional to
aJ1(αa)/α, reducing Eq. (2) to the classical King integral [see Eq. (7) in Ref. 1]. Unlike the 1/
R singularity present in Eq. (1), Eq. (2) contains a weak singularity at α=k.17 Numerically, the
integral is decomposed into two integrals ranging from [0,k) and (k, ∞) and a trigonometric
and hyperbolic substitution is performed on each integral, respectively. The integration from

Kelly and McGough Page 2

J Acoust Soc Am. Author manuscript; available in PMC 2008 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[0,k) represents the propagating spectrum, whereas the integration from (k, ∞) represents the
evanescent spectrum.

C. Annular superposition integral
The single-frequency pressure p̂a(r, z; ω) generated by a circular piston a with spatially uniform
velocity v0 is given by the FNM14

p̂a(r, z; ω) =
ρcav0

π ∫0π r cosψ − a

r 2 + a2 − 2ar cosψ

× (e− jk r 2+a2+z 2−2ar cosψ − e− jkz)dψ,

(3)

where ρc is the characteristic acoustic impedance of the (homogeneous) medium, v0 is the
piston velocity, and (r,z) are the observation coordinates in cylindrical coordinates. As
suggested in Ref. 10, the pressure field p̂(r, z; ω) associated with the aperture function q(σ) can
be synthesized by decomposing the circle of radius a into N concentric annuli where the ith
annulus has inner radius (i−1)σ and outer radius iσ. After defining pi = p̂iΔσ(r, z; ω) and qi=q
(iΔσ) and a uniform spacing of annuli with Δσ=a/N, then the total pressure is written as

p̂(r, z; ω) ≈ Σ
i=1

N−1
pi(qi − qi+1) + pNqN . (4)

Taking qN=0 (since the aperture function vanishes on the boundary), Eq. (4) can be written as
a Riemann sum

p̂(r, z; ω) ≈ Σ
i=1

N−1
− pi

qi+1 − qi
Δσ Δσ. (5)

Letting N→∞ and Δσ →0, the sum becomes an integral and the difference quotient becomes
a derivative, yielding

p̂(r, z; ω) = − ∫0a p̂σ(r, z; ω)q ′(σ)dσ. (6)

Inserting Eq. (3) into Eq. (6) yields the following double integral for the apodized pressure
field:

p̂(r, z; ω) = −
ρcv0
π ∫0aq ′(σ)σ∫0π r cosψ − σ

r 2 + σ 2 − 2σr cosψ

× (e− jk r 2+σ 2+z 2−2σr cosψ − e− jkz)dψdσ.

(7)

Equation (7) provides the basis for the axisymmetric superposition method. By choosing the
appropriate complex-valued aperture function q(σ), the acoustic field pressure p̂(r, z; ω) is
specified for all observation points (r,z) in the acoustic half-space. Since the derivative q′(σ)
appears in Eq. (7), the aperture function q(σ) must be at least weakly differentiable.

Physically, Eqs. (6) and (7) state that the total pressure generated by an apodized radiator
consists of contributions from concentric annuli with uniform velocity. Note that Eq. (6) is
valid for any pressure uniform pressure expression p̂σ(r, z; ω), such as the impulse response
integral.8 However, other single-integral solutions are defined piecewise over the
computational domain, making the integration over σ intractable. The single integral expression
developed for the fast nearfield method14 is ideal for those calculations due to rapid
convergence in the nearfield region.
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D. Pulsed circular radiator
The expression in Eq. (7) is also amenable to time-domain calculations of transient pressures
generated by apodized circular pistons. The velocity distribution is assumed to be separable in
radial coordinate σ and time t such that u(σ,t)=v(t)q(σ). For a pulse v(t) with a spectrum given
by v̂(ω), the transient pressure field is recovered by weighting Eq. (7) by the pulse spectrum
v̂(ω) and inverse Fourier transforming. These operations yield

p(r, z; t) = − ρc
π ∫0aq ′(σ)σ∫0π r cosψ − a

r 2 + σ 2 − 2σr cosψ
× (v(t − τ1) − v(t − τ2))dψdσ,

(8)

where the delay times τ1 and τ2 are defined by
τ1 = r 2 + z 2 + σ 2 − 2rσ cosψ ∕ c, (9a)

τ2 = z ∕ c. (9b)

III. APERTURE FUNCTIONS
In the following, double integral expressions are derived for the following aperture functions:
uniform piston, smooth piston, and polynomial apodization. An expression for a pulsed,
apodized piston is also derived.

A. Uniform piston
Note that for spatially uniform pressure, q(σ)=H(a−σ), where H(z) is the Heaviside function.
Then the weak derivative is q′(σ)=−δ(σ−a), where δ(z) is the Dirac delta function. Inserting q
′(σ)=−δ(σ−a) into Eq. (7) yields the original expression for pressure given by Eq. (3).

B. Smooth piston
A piston model proposed in Ref. 18 provides a smooth tapering of surface particle velocity
near the surrounding baffle. This smooth piston assumes an aperture function given by

q(σ) = {1 if σ ≤ a

(1 + δ)2 − σ 2 ∕ a2

δ(2 + δ)
if a < σ ≤ a(1 + δ)

0 otherwise,

(10)

where δ>0 is a unitless parameter that specifies a continuous transition region between piston-
like motion and the rigid baffle. Note that the σ integral is evaluated over the thin semiannular
region a(1+δ) ≤ σ ≤ a, which significantly reduces the computational complexity.

C. Polynomial apodization
Previous studies of piston radiators have employed polynomial apodization functions2,19 to
model the distribution of normal particle velocity across the face of the radiator. A general
aperture function of the form

q(σ) = 1 − (σ ∕ a)n (11)

is considered for σ<a. The uniform rigid piston is recovered by letting n→∞, while linear,
quadratic, and quartic apodizations are obtained for n=1, n=2, and n=4, respectively. Evaluation
of the on-axis pressure for 0<n<∞ shows a reduction in on-axis nulls that characterize the
nearfield of circular pistons.
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IV. NUMERICAL RESULTS
Examples of continuous wave and pulsed fields are computed using the apodization and
phasing schemes described in Sec. II. All double integrals were evaluated via Gauss-Legendre
quadrature.20 Since the region of integration for each of the integral expressions is a half-disc
of radius a, the number of quadrature points for the ith ψ or θ integral is chosen as proportional
to the radial variable σi. Thus, the computational cost is reduced by roughly a factor of 2 relative
to direct application of Gauss-Legendre quadrature. The King integral, given by Eq. (2), was
evaluated using the substitutions given in Ref. 17. Both the propagating and evanescent
integrals were integrated using Gauss-Legendre quadrature with an equal number of abscissas.

A fixed computational grid and sampling frequency (in the case of transient fields) is used in
all field computations. In the following simulations, a piston of radius a=2.5λ=1.5 mm is driven
at a center frequency of 2.5 MHz in a homogeneous medium with sound speed c=1.5 mm/μs.
The scaling factor v0 in Eq. (7) is taken to be unity. A fixed computational grid with 121 samples
in the radial direction and 101 samples in the axial direction is employed, which corresponds
to λ/4 spacing. The computational grid is axially offset by λ/4 in order to facilitate comparison
to the Rayleigh-Sommerfeld integral in Sec. IV. The resulting fields are normalized with
respect to the peak pressure magnitude.

A. Smooth piston fields
Figure 2 shows the normalized pressure fields produced by the “smooth” piston model given
by Eq. (10). Figure 2(a) displays the pressure field associated with a relatively narrow transition
region of δ=0.05, whereas Fig. 2(b) displays the pressure fields associated with a wider
transition region of δ=0.30. Relative to the field in Fig. 2(a), the field in Fig. 2(b) contains less
spatial variation resulting from less variation in the apodization function q(σ). The spatial
bandwidth for each piston is quantified in Fig. 3, which displays the magnitude spectrum in
the transverse plane z=0.9375 on a normalized decibel scale. Comparing Figs. 2(a) and 2(b),
the δ=0.05 piston contains significantly more spectral information than the δ=0.3 piston due
to a shorter transition band in the normal surface velocity. This wider spectrum correlates with
the greater spatial variation depicted in Fig. 2(a).

B. Polynomial apodization
Pressure fields resulting from the polynomial apodization given by Eq. (11) are evaluated on
a fixed computational grid for n=2 and n=4. The resulting normalized pressure fields are plotted
in Fig. 4. Figure 4(a), displaying the effect of quadratic apodization, demonstrates the reduced
spatial variation of the parabolic radiator compared to a uniform rigid piston with the same
geometry (see Fig. 5 in Ref. 3). Spectral computations similar to those shown in Fig. 3
demonstrate the larger spatial bandwidth of the quartic apodization relative to the quadratic
apodization. This greater bandwidth is observed qualitatively through the noticeable
oscillations near the axial region in Fig. 4(b). These oscillations are produced by the rapid
change in the apodization function near the piston boundary at r=a.

C. Pulsed fields
The time-domain pressure for the smoothed circular piston model was computed via Eqs. (8)
and (10). The computational grid and piston parameters used in the continuous wave case were
utilized in the pulsed case. Figure 5 displays the time evolution of the pulsed pressure fields
associated with pistons having transition parameters δ=0.05 and δ=0.30. In both cases, a six-
cycle Hanning-weighted tone burst with center frequency f0=2.5 MHz models the excitation
pulse v(t). Figures 5(a) and 5(c), which show, respectively, the normalized fields at t=2.50 μs
for the δ=0.05 and δ=0.30 apodized pistons, exhibit a significant disparity between the two
fields. In particular, the δ=0.05 piston exhibits an edge wave associated with the sharp change
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in surface velocity in the source plane; the edge wave for the δ=0.30 piston is not as pronounced
due to the more gradual change in surface velocity. Figures 5(b) and 5(d) display the normalized
fields at t=5.00 μs for δ=0.05 and δ=0.30; compared to Figs. 5(a) and 5(c), the two fields in
Figs. 5(b) and 5(d) are very similar, indicating that the effects of spatial apodization are filtered
out by space after a short propagation distance.

V. ERROR ANALYSIS
A. Reference field

The reference field was generated by applying a 20 000 point Gauss quadrature to the
generalized King integral using quadratic apodization.4 This integration scheme resulted in a
reference field that converged within 10−6 of machine precision.

B. Error metric
The spatial distribution of error is computed via the following metric:

η(r, z) =
| p̂(r, z; ω) − p̂ref(r, z; ω) |

maxr,z | p̂ref(r, z; ω) | . (12)

The peak error is then determined by taking the maximum of Eq. (12).

C. Error and time comparison
The annular superposition method, the point source method, and the generalized King integral
were implemented in the C programming language and executed on a 3.0 GHz Pentium IV
processor running RED HAT LINUX. The Bessel functions in the integrand of Eq. (2) were evaluated
with the GNU Scientific Library.21 The annular superposition method, the point source
method, and the generalized King integral subject to quadratic apodization are evaluated with
varying numbers of quadrature points, and the computation times recorded at specified error
levels. The resulting error and time analysis is summarized in Fig. 6. Figure 6(a) displays the
number of quadrature points required to achieve a peak specified error, while Fig. 6(b) displays
the associated computation times required for a specified error. Figures 6(a) and 6(b)
demonstrate that the present superposition method converges significantly faster with respect
to the point source approach and generalized King integral within the metric given by Eq. (12).
For instance, at 10% peak specified error, the annular superposition method requires 20
quadrature points, while the point-source method requires 70 quadrature points and the
generalized King integral requires 56 quadrature points. Comparing the computation times in
Fig. 6(b), the superposition method requires 0.0486 s while the point-source method requires
0.1946 s at the 10% peak error level. Hence, the annular superposition method achieves a speed-
up of a factor of 4 at the 10% error level. Although the generalized King integral requires less
quadrature points than point-source to achieve 10% maximum error, the computation time
associated with Eq. (2) is about twice as long relative to point-source calculations (0.3851 s vs
0.1946 s) due to evaluations of special functions.

Similar speed-ups are observed at other specified peak error levels, with the speed-up
increasing as the peak error decreases. At 1% peak error, the new method achieves a speed-up
factor of 4.4 relative to the point-source approach and a speed-up factor of 3.7 relative to the
generalized King integral.

VI. DISCUSSION
The farfield approximation is commonly employed to simplify cw and pulsed calculations of
baffled radiators.22 Although the computational complexity of a problem is reduced by making
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this approximation, unacceptable error may be introduced if employed too close to the nearfield
region. In the following, the farfield approximation applied to a parabolic radiator is analyzed.

The farfield directivity pattern for a parabolic radiator, obtained from the Hankel transform of
Eq. (11) using n=2, is given by

D(θ) =
2J2(ka sin θ)

k 2 sin2 θ
, (13)

where the angle θ=sin−1(r/z). The farfield pressure field is then proportional to Eq. (13)
multiplied by the free-space Green's function. The error due to the farfield approximation was
then computed relative to the exact nearfield pressure. On-axis, the farfield error is less than
10% for all values of z>3.7a2/λ, where a2/λ is the farfield transition distance. The farfield error
on-axis is less than 1% for all values of z>11.8a2/λ.

The farfield approximation introduces greater error for the uniform piston. The farfield error
is less than 10% for all values of z>4.9a2/λ, while the error is less than 1% for all values of
z> 15.7a2/λ. In all cases examined, the farfield error at a fixed axial location z is less for the
parabolic radiator than the uniform radiator. Thus, the apodization of the piston reduces the
effective size of the nearfield by reducing the spectral content of the wave field.

VII. CONCLUSION
A new analytical integral expression for the wave fields generated by axisymmetric radiators
mounted in a rigid baffle has been derived. Integral expressions are derived for several common
apodization models, including apodized transient excitations. The effect of apodization on the
resulting wave field has been examined for both cw and transient excitations. Compared to the
classical Rayleigh-Sommerfeld integral, this new approach converges faster with respect to
the number of quadrature points by at least a factor of 4. A similar speed-up relative to the
generalized King integral is observed. Unlike the generalized King integral, the annular
superposition integral does not require the evaluation of special mathematical functions over
an infinite range of integration. In short, the new method combines the ease of implementation
of the point-source method with a more rapid convergence within the nearfield region of the
radiator.
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FIG. 1.
Coordinate axis used in the derivation. A piston of radius a is excited by a radially varying
particle velocity specified by an aperture function q(σ), where σ is the radial position on the
piston. The radiator is surrounded by an infinite rigid baffle in the z=0 plane. The angle ψ and
relative distance R(ψ,σ) correspond to the notation used in Eq. (1).

Kelly and McGough Page 9

J Acoust Soc Am. Author manuscript; available in PMC 2008 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 2.
Normalized pressure fields generated by “smooth” pistons modeled by Eq. (10). (a) The
pressure produced by a piston with radius a=2.5λ with transition parameter δ=0.05, which
closely resembles the field produced by a uniform piston. (b) The field generated by a piston
with the same radius and δ=0.30.
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FIG. 3.
Normalized magnitude spectrum of the “smooth piston” pressure fields displayed in Fig. 2. In
each panel, the nearfield pressure is calculated in a transverse plane at z=0.9375 mm via Eq.
(10) followed by a two-dimensional Fourier transform. (a) The magnitude spectrum, displayed
on a normalized decibel scale, for a smooth piston with δ=0.05. (b) The spectrum for a smooth
piston with δ=0.30. Panel (b) contains significantly less spectral information than (a) due to
the wider transition band.
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FIG. 4.
Reference pressure fields for polynomial apodization given by Eq. (11). (a) The effect of
quadratic apodization (n=2). (b) Quartic apodization (n=4).
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FIG. 5.
Pulsed fields generated by smooth pistons with the same parameters used in Fig. 2. The time
evolution for smooth pistons with δ=0.3 and δ=0.05 are compared. (a) and (b) Normalized
pressure fields corresponding to δ=0.05 at t=2.50 μs and t=5.00 μs, respectively. (c) and (d)
Normalized pressure fields corresponding to δ=0.30 at t=2.50 μs and t=5.00 μs, respectively.
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FIG. 6.
Number of Gauss abscissas vs specified peak error (a) and computation time vs specified peak
error (b) for the annular superposition method, the Rayleigh-Sommerfeld integral, and the
generalized King integral applied to a parabolic radiator. The annular superposition method
achieves 10% peak error with the application of 20 abscissas, the Rayleigh-Sommerfeld
approach requires 70 abscissas, and the generalized King integral requires 56 abscissas. Since
the computation times are similar for each integral evaluated with the same number of
abscissas, (b) demonstrates the present method's speed advantage compared to the Rayleigh-
Sommerfeld approach and the generalized King integral at all error levels considered.
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