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Chitin synthesis was studied in both yeast and hyphae of the dimorphic fungus
Candida albicans. Incorporation of N-acetyl-D-[1-3H]glucosamine ([3H]GluNAc)
into an acid-alkali-insoluble fraction was 10 times greater in hyphal-phase cells.
A crude preparation of chitin synthetase was obtained from sonically treated
protoplasts of both forms of Candida. Enzyme activity, which was determined by
using ["4C]UDP-GLuNAc as a substrate, was exclusively associated with the
80,000 x g pellet from sonically treated protoplasts of both forms. It was deter-
mined that enzyme activity (nanomoles of ['4C]UDP-GluNAc incorporated per
milligram of protein) was approximately 2 times greater in hyphae versus yeast
cells. Enzyme activity in both yeast and hyphae increased six- to sevenfold when
the enzyme preparations were preincubated with trypsin. A vacuolar fraction,
obtained from yeast cells but not from hyphae, stimulated enzyme activity when
incubated with either yeast or hyphal enzyme preparations. Membrane fractions
from protoplasts coated with [3H]concanavalin A before disruption were isolated
by Renografin density gradient centrifugation. Chitin synthetase activity was
preferentially associated with the concanavalin A-labeled fraction, suggesting that
the enzyme was located on the plasma membrane. In addition, enzyme activity in
protoplasts treated with cold glutaraldehyde before disruption was significantly
greater than in protoplasts that were sonically disrupted and then treated with
cold glutaraldehyde, indicating that the enzyme resides on the inner side of the
plasma membrane.

Differentiation from yeast to hyphal growth
by dimorphic fungi is accompanied by significant
changes in the chemical composition of the
newly formned cell wall. For instance, with His-
toplasma capsulatum Darling and Blastomyces
dermatitidis Gilchrist and Stokes, mycelial-
phase cell walls have less chitin, higher propor-
tions of mannose, and a lower content of ethyl-
enediamine-soluble material than yeast-phase
cells (8). In Candida albicans (Robin) Ber-
khout, Chattaway et al. (7) have shown that an
alkali-insoluble fraction from mycelial-phase
cells contained 3 times as much chitin as that
from yeast-phase cells. Other quantitative dif-
ferences in protein and carbohydrate compo-
nents in alkali-soluble fractions were observed.
The regulation of these events, especially chi-

tin synthesis, in dimorphic fungi has not been
characterized. In the yeast Saccharomyces cer-
evisiae (Hansen) Meyen, regulation of chitin
synthesis has been described in an elegant series
of experiments by Cabib et al. (3-6) and by
Duran et al. (9). In that system, chitin synthe-
tase zymogen is attached to the yeast plasma

membrane and is activated by a protease con-
tained in a vacuolar fraction from S. cerevisiae.
This compartmentalization of enzyme and acti-
vating factor (protease) may account for the
localized activation of the zymogen at the site of
primary septum formation in budding cells. A
third component of the system, a heat-stable
protein found in the cytosol, acts as an inhibitor
of the activating factor and may function as a
regulatory factor by inactivating the vacuolar
protease that spills into the cytoplasm.
The purpose of this study was to characterize

chitin synthetase from both yeast and hyphal
forms of C. albicans. We have found similarities
to the S. cerevisiae system described by Cabib
(3-6) although chitin formation and enzyme ac-
tivity are much greater in hyphae.

MATERIALS AND METHODS
Cultivation of organism. The isolate of C. albi-

cans used in this study has been described previously
(13). Cloned stock cultures, which were transferred
monthly, were grown at 37°C and maintained at 4°C
on brain heart infusion slants. The inoculum for all
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experiments was obtained in the following manner: C.
albicans was grown at 37°C for 18 h on brain heart
infusion agar plates. Yeast cells were collected in 0.9%
saline (wt/vol), centrifuged (3,000 x g, 4°C), washed
twice, and then harvested and suspended in 0.9% sa-

line. Approximately 0.5 g (wet weight) of yeast or

hyphae (mycelium) was obtained by culturing the
organism in either Sabouraud-dextrose broth (yeast)
or a synthetic medium (hyphae) consisting of 0.01 M
glucose, 0.02 M (NH4)2S04, 9.0 mM KH2PO4, 0.2 mM
MgSO4, 0.7 mM MgCl2, 250 ,ug of biotin per liter, 10%
rabbit serum (vol/vol), and deionized water. Cultures
were grown in 70 ml of medium at 37°C in shake
culture (150 rpm) for approximately 4 h to obtain the
desired wet weight. After incubation, all cultures were
centrifuged, washed twice with saline, and suspended
in saline.
Uptake and incorporation of [3H]G1uNAc. Hy-

phal and yeast suspensions (20 mg [dry weight]/10 ml
of saline) were incubated with 55 MCi of N-acetyl-D-
[1-3H]glucosamine ([3H]GluNAc; specific activity, 5
Ci/mmol, New England Nuclear Corp.) at 37°C in
shake culture (O to 30 min). To measure uptake, du-
plicate cell suspensions (0.5 ml) were removed at des-
ignated time intervals and collected on glass fiber
filters (Whatman GF/A) presoaked with cold GluNAc.
For incorporation studies, duplicate cell suspensions
(0.5 ml) were removed at designated times and precip-
itated on ice with cold 15% trichloroacetic acid. Sub-
sequently, all trichloroacetic acid-treated cell suspen-
sions were filtered onto glass fiber filters and washed
with 5% trichloroacetic acid and 95% ethanol. Nonspe-
cific trapping of radiolabel on filters was measured as

described previously (13).
All radioactive measurements were made in an In-

tertechnique liquid scintillation counter in a scintilla-
tion liquid of the following composition: 0.1 g of p-
bis[2-(5-phenyloxazolyl)]-benzene and 5 g of 2,5-di-
phenyloxazole dissolved in 1.0 liter of scintillation-
grade toluene.

Autoradiography. Cells were incubated with 10
MuCi of [3H]GluNAc, and, at designated time intervals,
portions were removed and the reaction was stopped
with 2 M HCI. Chitin-specific incorporation was de-
termined by the following procedure: cells (2 x 107/ml)
were digested for 90 min with 1 N HCI at 100°C. The
suspensions were washed twice with 0.9% saline, sus-

pended in saline, and then digested with 1 N KOH for
90 min at 100°C (1, 2). After a final washing, the cells

were fixed with 95% ethanol on glass cover slips and
covered with melted Ilford K-2 emulsion. The cover

slips were exposed for 10 days (4°C), developed, and
then stained with 1% Congo red. This digestion pro-
cedure was also used to quantitate incorporation of
[3H]GluNAc into acid-alkali-insoluble fractions by
yeast or hyphal cells as described in the previous
section. Other labeled cell suspensions were prepared
for autoradiography without prior digestion.

Protoplast formation. The protoplast formation
method used was that of Partridge and Drewe (12) for
C. albicans and C. tropicalis. A 0.5-g (wet weight)
portion of hyphal and yeast cells was treated for 30
min with 35 ml of 0.5 M sodium thioglycolate in 0.1 M
tris(hydroxymethyl)aminomethane (Tris) (pH 8.7),
washed with a 0.2 M phosphate-0.1 M citrate buffer

containing 1.0 M mannitol (PCM buffer, final pH 6.5),
and suspended in the PCM buffer containing snail gut
enzyme (final concentration, ca. 1,000 U of,B-glucuron-
idase per ml; Sigma Chemical Co.) for 60 min at 370C.
Protoplasts were washed and suspended in the PCM
buffer described above.

Chitin synthetase assay. Chitin synthetase was
assayed according to the method of Cabib (3). Proto-
plasts of C. albicans from hyphal and yeast forms
were sonically treated in buffer (0.05 M imidazole, 2.0
mM MgSO4, and 7.0% mannitol [pH 6.5]). The sonic
extract was then centrifuged at 80,000 x g for 30 min,
and the pellet was washed and suspended in 0.5 ml of
imidazole buffer. The supernatant obtained after sonic
oscillation was also assayed for activity.
The enzyme assay mixture contained 40 mM

MgSO4, 25 mM imidazole-chloride (pH 6.5), 45 mM
GluNAc, 0.049MM UDP-GluNAc, 0.001 ,uM ["C]UDP-
GluNAc (specific activity, 53 mCi/mmol), and variable
amounts of enzyme in a total volume of 50 to 53 dl.

In some experiments, the enzyme preparation was
preincubated with 0.6 ug of trypsin for 15 min to
determine whether activation could occur. The reac-
tion was terminated by the addition of 0.9 jig of soy-
bean trypsin inhibitor (Sigma Chemical Co.). The
chitin synthetase reaction was initiated by the addition
of substrate (["4C]UDP-GluNAc). After incubation for
various intervals up to 1 h at 30°C, the reaction was
stopped by the addition of 1 ml of 66% ethanol. The
tubes were centrifuged at 2,000 x g for 5 min. The
pellets were washed twice with 1 ml of 66% ethanol
containing 0.1 M ammonium acetate. The pellets were
then suspended in 0.4 ml of 95% ethanol, placed into
scintillation vials, and counted as described previously
except that the scintillation fluid contained 5 g of
2,5-diphenyloxazole, 3.2 g of 1,4-bis-[2-(5-phenyloxa-
zolyl)]-benzene, and 43 g of (Cabosil) thiotropic gel
(Packard Co.) dissolved in 1 liter of scintillation-grade
toluene.

Preparation of activating factor. Methods used
are similar to those described by Cabib et al. (6).
Protoplasts (0.5 g [wet wt]) were suspended in 0.5 ml
of phosphate-citrate buffer containing 10% mannitol.
The protoplasts were then placed in 35 ml of a lysis
medium (pH 6.5) containing 8% mannitol, 0.01 M
imidazole, 0.5% glucose, and 6 mM citric acid (Tris-
chloride) and incubated at 30°C in shake culture. After
30 min, 99% lysis had occurred as established by count-
ing portions of the protoplast preparation microscop-
ically with a hemacytometer. The lysate was centri-
fuged for 5 min at 4,000 x g. After centrifugation, the
pellet was suspended in 0.68 ml of a solution containing
8% mannitol, 0.05 M imidazole (pH 6.5), and 6.0 mM
citrate and homogenized with a Teflon hand homog-
enizer. The homogenate was diluted with 2.5 ml of a
solution containing 8% mannitol, 0.05M imidazole (pH
6.5), and 2.0 mM MgSO4 and centrifuged for 10 min at
12,000 x g. The pellet, which contained vacuoles of
various sizes as observed by phase-contrast micros-
copy, was suspended in 0.35 ml of a solution containing
8% mannitol and 0.05 M imidazole (pH 6.5), and 2 mM
MgSO4 was added. The vacuolar suspension was then
sonically treated for 20 s at a setting of 2 with a
Sonifier cell disruptor (Heat Systems, Plain View,
N.Y.). After centrifugation for 30 min at 80,000 x g,
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the supernatant fluid was assayed for activity as de-
scribed previously for trypsin activation, but without
the addition of the inhibitor.

Protein was measured according to the procedure
of Lowry et al. (10). Enzyme activity is expressed as
the number of nanomoles of ["4C]UDP-GluNAc incor-
porated per milligram of protein. All assays were run
in duplicate. The enzyme preparations from other
extractions showed similar activity.

Utilization of Renografin gradient. The Reno-
grafin gradient method used was that described by
Duran et al. (9). Protoplasts were obtained as de-
scribed previously and suspended in PCM buffer at a
final concentration of 1 g/ml (wet weight). To 0.5 ml
of this suspension was added 3 ml of 1.0 M mannitol
containing 0.05 M Tris-chloride (pH 7.5) and 10 mM
MgSO4, followed by 3.5 ml of the same solution, sup-
plemented with 0.5 mg/ml of concanavalin A (ConA).
After 10 min at room temperature, the protoplasts
were centrifuged for 1 min at 1,000 x g. The pellet was
carefully suspended in 6.5 ml of the solution containing
mannitol-Tris-chloride-MgSO4 and recentrifuged for
3 min at the same speed. The final pellet was sus-
pended in 8.5 ml of 10 mM Tris-chloride (pH 7.5)
containing 5 mM MgSO4, 1 mg of deoxyribonuclease
per ml, and 0.6 mM phenylmethylsulfonylfluoride.
The mixture was homogenized for 3 min at 0°C in a
Sorvall Omni-mixer, and the homogenate was incu-
bated for 15 min at 30°C. A 3-ml portion of this
solution was layered on 9-ml linear gradients of Ren-
ografin (5.8 to 50%) containing 20 mM Tris-chloride
(pH 7.5). The gradients were centrifuged for 1 h in an
SW41 rotor at 93,000 x g. An Isco model 640 density
gradient fractionator was used to collec- 0.6-ml frac-
tions from the top. Each fraction was diluted 10-fold
with 5 mM Tris-chloride (pH 7.5) containing 2 mM
MgSO4 and centrifuged for 30 min at 80,000 x g. The
pellet was suspended in the same buffer and used for
the enzyme assay. All fractions were preincubated
with 0.6 ,ug of trypsin and assayed as described previ-
ously.

[3H]ConA (20 pl; specific activity 29.0 mCi/mmol)
was added to 0.1 ml of protoplast suspension in man-
nitol-Tris-chloride-MgSO4 and incubated at room
temperature for 10 min. These protoplasts were then
washed, diluted with 2.9 ml of ConA-treated proto-
plasts, and extracted as described above.

RESULTS
Whole cell studies. The uptake and incor-

poration of [3H]GluNAc was measured in both
yeast and hyphae (mycelium) of C. albicans.
Over a 30-min incubation period, incorporation
by hyphae was over 10-fold that of yeast cells
(Fig. 1). In part, this difference is due to the
greater uptake of label by hyphae (48% greater
than yeast). Also, whereas 84% of the label taken
up by hyphae becomes incorporated after 30
min, only 11% becomes incorporated in yeast
cells. The data presented in Fig. 1 represent total
incorporation per milligram (dry weight) ofyeast
or hyphae. In other experiments, the amount of
label in acid-alkali-insoluble fractions (presum-
ably chitin) was also measured. It was deter-
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FIG. 1. Uptake and incorporation ofrH]GIuNAc
by yeast and hyphae of C. albicans.

mined that approximately 52% of trichloroacetic
acid-precipitable label was acid-alkali insoluble
in both yeast and hyphae (data not presented).
The site of chitin deposition within the cell

walls of the yeast and hyphae of C. albicans
was demonstrated by prelabeling cells with
[3H]GluNAc. Autoradiographs revealed that the
radioactivity was preferentially located at the
apex of the hyphae (Fig. 2). By contrast, the
radioactivity incorporated into yeast cells was
predominately deposited at the site of budding
in whole cells (Fig. 3).
Chitin synthetase from yeast and hy-

phae. Chitin synthetase activity was measured
in sonically treated protoplasts after centrifuga-
tion at 80,000 x g. Enzyme activity was exclu-
sively located in the 80,000 x g pellet (Table 1).
In addition, the activity of the enzyme prepara-
tion from both yeast and hyphae was six to
seven times greater when preincubated with
trypsin (0.6 ,ug) for 15 min (Table 1). Preliminary
studies had shown that this concentration of
trypsin was optimum for stimulation. It is note-
worthy that the specific activity of chitin syn-
thetase from hyphae was approximately twice
that observed with yeast cells.

Centrifugation of homogenized protoplasts of
both yeast and hyphae by means of a Renografin
density gradient revealed four primary bands
(Fig. 4 and 5). With both yeast and hyphae,
chitin synthetase activity was associated with
those bands that possessed [3H]ConA activity.
The membrane fraction that contained enzyme
activity in hyphae sedimented at a greater den-
sity than the corresponding yeast form. Recov-
ery of the enzyme and specific activity are shown
in Table 2. In both yeast and hyphae, the specific
activity of chitin synthetase was approximately
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C. albicans were tested for their stimulatory
effects. In Saccharomyces cerevisiae, vacuolar
fractions have been shown to contain an activat-

-A ing factor, which stimulates the activity of chitin
synthetase (6). By similar procedures, we sought

41 to isolate an activating factor from both the

Yeast

3x1O3 3xIO3
FIG. 2. Autoradiograph of an acid-alkali-ex-

tracted hypha showing the localization of fH]
GluNAc near the apex. Bar indicates 1.4,cm.
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trypsin on enzyme activity .4
nmol of[t'4C]UDP-G1uNAc

Fraction Form incorporated/mg ofprotein l3_ _-3
- Trypsin + Trypsin

80,000 x g pellet Yeast 0.271 1.75
Hyphae 0.474 3.32

Supernatant Yeast 0.01 0.011
Hyphae 0.001 0.001

three times that of the crude sonically treated
particles.
When protoplasts were pretreated with glu-

taraldehyde (1% final concentration), lysed, and
then assayed, enzyme activity (counts per min-
ute per milliliter) was similar to that of cells
without pretreatment (Table 3). However, ifpro-
toplasts were lysed and then treated with glu-
taraldehyde and assayed, enzyme activity was
10% of control (no glutaraldehyde).

Since trypsin increased the enzyme activity of
the sonically treated preparations, fractions of
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FIG. 5. Same as in Fig. 4 except homogenized hy-
phalprotoplasts are represented.
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TABLE 2. Specific activity of chitin synthetase
associated with fractions collected from a

Renografin density gradient
Yeast Hyphae

Fraction % 9

Recovery Sp act Recovery Sp act

Crude particles 100.0 0.614 100.0 0.913
Band 1 1.5 0.235 2.1 0.110
Band 2 0.9 0.063 4.9 0.263
Band 3 57.0 2.100 54.0 3.150
Band 4 1.6 0.176 3.9 0.612

TABLE 3. Effect ofglutaraldehyde on chitin
synthetase activitya

['4C]UDP-GluNAc incorporated
Glutaraldehyde (cpm x 104/ml)

Yeast Hyphae

None 3.040 2.866
Before lysis 2.237 1.802
After lysis 0.329 0.223

a Protoplasts of both yeast and hyphae were pre-
treated with 1% glutaraldehyde. After 30 s at 0WC, 20
volumes of 1.0M mannitol in phosphate-citrate buffer
was added. Protoplasts were centrifuged at 500 x g,
washed, and then sonically treated and assayed for
enzyme activity. Other protoplasts of yeasts and hy-
phae were sonically treated and then treated with 1%
glutaraldehyde (30 S, 0WC), diluted with 0.05 M imid-
azole containing 2 mM MgSO4, centrifuged at 80,000
x g and assayed (9).

yeast and hyphae. A vacuolar fraction was ob-
tained from protoplasts following a metabolic
lysis. These vacuoles., which varied in size when
examined by phase microscopy, possessed pro-
tease activity as determined by a hide-powder
azure assay (6). Preliminary studies indicated
that a concentration of 1.0 ,jg of protein from
yeast vacuoles per 230 ,g of enzyme gave a
maximum stimulation of enzyme activity for
both yeast and hyphae enzyme preparations
(Table 4). Higher concentrations of vacuole pro-
tein tended to decrease activity below control
(no activating factor). Vacuolar fractions, which
possessed protease activity, were also obtained
from hyphae. However, no stimulation of activ-
ity was observed when this preparation was
preincubated with either yeast or hyphae en-
zyme preparations (Table 4).

DISCUSSION
The purpose of this study was to compare and

contrast chitin synthetase in yeast and hyphae
of C. albicans. Initial studies indicated that hy-
phal incorporation of [3H]GluNAc into an acid-
alkali-insoluble fraction was 10-fold greater than
in yeast-phase cells. These data agree with those
of Chattaway et al. (7) who demonstrated

by chemical analysis that hyphae of C. albicans
contained three times as much chitin as yeast
cells. In addition, our data indicate that uptake
of [3H]GluNAc was also greater (approximately
48%) in hyphae and, whereas 84% of the label
taken up by hyphae was incorporated, only 11%
was incorporated into an acid-alkali-insoluble
fraction by yeast cells. Additionally, chitin syn-
thetase activity was approximately two times
greater in hyphae.
Autoradiography of yeast and hyphae was

performed to determine the location of chitin
deposition. With whole yeast cells, label was
preferentially located at the site of budding as
described by Cabib for S. cerevisiae (4). Acid-
alkali-digested yeast cells did not seem to retain
their cellular integrity and were, therefore, im-
possible to see under light microscopy. With
acid-alkali-treated hyphae, [3H]GluNAc was ob-
served in greatest amount at a point just below
the tip of the hyphae.
As noted with the chitin synthetase system of

S. cerevisiae described by Cabib (4-6), chitin
synthetase in C. albicans in both yeast and
hyphae is associated with particulate fractions
of sonically treated protoplasts, and specific ac-
tivity of the enzyme is increased significantly by
preincubating the enzyme preparations with
trypsin. At this time, it is difficult to say with
certainty whether or not the enzyme of C. albi-
cans exists as a zymogen since purification has
not been accomplished. As with S. cerevisiae, a
vacuolar fraction with protease activity, ob-
tained from yeast protoplasts, stimulated yeast
and hyphae chitin synthetase activity approxi-
mately 45 to 60% above control (no vacuolar
extract). However, even though the hyphal chi-
tin synthetase was stimulated by trypsin, a vac-
uolar preparation from hyphae failed to enhance
the activity of either the yeast or hyphal chitin
synthetase, although both preparations were ob-
tained under the same conditions and exhibited
protease activity as determined by a hide-pow-
der azure assay. The failure to demonstrate an
activating factor from hyphae is puzzling since
trypsin as well as yeast-activating factor en-
hanced enzyme activity from hyphae. Since chi-

TABLE 4. Effect of activating factor on chitin
synthetase activity from yeast and hyphae of

C. albicans
nmol of [14C]UDP-GluNAc incor-

Activator form: porated/mg of protein

Yeast Hyphae

None 0.271 0.474
Yeast 0.439 0.691
Hyphae 0.216 0.359
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tin synthesis (["4C]UDP-GluNAc per milligram
of protein) is much greater in hyphae, perhaps
that activating factor is more often associated
with the enzyme rather than in cell vacuoles. In
yeast, chitin deposition is synchronized with cell
division so that its activating factor is only uti-
lized during a portion ofthe cell cycle. Therefore,
yeast-activating factor could be more readily
extractable.
Treatment of protoplasts with ConA before

homogenization binds to and preserves the in-
tegrity of the plasma membrane (9). By utilizing
this fact, we were able to obtain elution profiles
from both yeast and hyphae protoplast homog-
enates in which enzyme activity coincided with
[3H]ConA activity. These data strongly indicate
that the majority of chitin synthetase was asso-
ciated with the plasma membrane. The differ-
ence in sedimentation rates of the plasma mem-
brane from yeast and hyphae is similar to the
data of Marriott (11) who described major dif-
ferences in the chemical composition of the
plasma membrane of each growth form. Our
studies on the effect of glutaraldehyde on en-
zyme activity further suggest that chitin synthe-
tase is located on the inner side of the plasma
membrane. Enzyme activity was greatly reduced
when protoplasts were treated with glutaralde-
hyde after sonic oscillation. However, when pro-
toplasts were treated with glutaraldehyde before
sonic oscillation, enzyme activity was only
slightly below control (no glutaraldehyde). Our
data are, thus, similar to those of Duran et al.
(9) for S. cerevisiae.
Comparative studies of another dimorphic

fungus, Mucor rouxii, have been carried out by
Ruiz-Herrera and Bartnicki-Garcia (14). The en-
zymes from both yeast and hyphal forms had
similar requirements for optimum activity. How-
ever, the stability of the hyphal (mycelial)-phase
enzyme at 280C was much lower than that of
the yeast-phase enzyme. Enzyme activity of hy-
phal-phase cells was virtually lost within 2 h at
280C, whereas the activity of the enzyme from
yeast cells increased dramatically with time.
These data indicated that the hyphal form of
chitin synthetase was present primarily in an
active state and that the prolonged incubation
at 28°C resulted in a rapid degradation of the
enzyme by endogenous proteolysis. Also, an ex-
ogenous acid protease did not increase the activ-
ity of the hyphal enzyme to any great extent.
The yeast-phase chitin synthetase appeared to
be zymogenic, however, based upon the increase
in activity upon prolonged incubation at 280C.

It would seem that the hyphal chitin synthetase
in C. albicans is different from that ofM. rouxii
since our studies indicate that the activity of the
enzyme is greatly stimulated by trypsin.
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