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The length growth rate of an exponentially growing population of Escherichia
coli B/r was calculated from the population length and birth length distributions.
Cell elongation took place at a constant rate that doubled at a certain length.
This change in rate was responsible for a sudden drop in the frequency of classes
of cells longer than that length. Asymmetry in cell partition was able to generate
cells both shorter and longer than the expected twofold range, but did not greatly
modify the length distribution in between.

Exponentially growing populations of Esche-
richia coli are generally considered to be formed
by cells that divide in two once in every gener-
ation time. The simplest model for the age fre-
quency distribution of such a population follows
an exponential curve as described by Powell
(10). If cell length were a linear function of cell
age, the length distribution of such an exponen-
tial population should fit an exponential curve
as well. In contrast, real distributions of cell
length are of a more complicated shape; they
show a peak with a sharp drop after it, and they
are not bound between a twofold range of
lengths. Between birth and division, cells of E.
coli elongate at a rate dependent on the mass
growth rate of the culture. Several growth laws
have been postulated for bacterial populations
following linear or exponential growth (2). As far
as elongation is concerned, it has been proposed
by Donachie et al. (4) that the rate of elongation
for a given growth rate doubles at a certain
length that is the same for all growth rates. It
has been recently postulated (1) that this in-
crease in the rate of elongation takes place by
the addition of new elongation sites when a
certain length is reached. To determine whether
elongation takes place with a constant, exponen-
tial, or stepwise growth law, we have calculated
the rate of elongation during the cell cycle by
means of a different, and in some respects more
sensitive, approach than that used by Donachie
et al. (4).
We have also devised a computer program

that allows us to simulate bacterial elongation
and division in exponentially growing popula-
tions following different growth laws and takes
into account the proportion of unequal partition
observed in natural populations (7-9). This ex-
plains some of the differences between the ob-
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served length distribution and that produced by
simple models.

MATERIALS AND METHODS
Strain and growth conditions. E. coli B/r A,

ATCC 12407, was used for all the experiments. Cul-
tures were grown at 37°C in Oxoid nutrient broth no.
2 and kept at a cell density lower than 3 x 107/ml by
dilution with prewarmed medium. For time-lapse pho-
tography, the same medium, solidified by the addition
of 1.5% agar, was aerated after melting by being passed
through a sterile Pasteur pipette; a thin smear was
placed on a glass slide that was then warmed at 37°C
before use and kept at this temperature throughout
the experiment. Generation time (T) was 20 min for
liquid cultures (as measured by doubling in particles)
and 22 min for cultures on agar slides (as estimated by
doublings in total cell length).

Synchronous cultures were obtained by the mem-
brane elution procedure of Helmstetter (6). The elu-
tion rate was fixed at 10 ml/min, and samples were
taken for 1 min.

Particle counts. Particle counts were done in a
Coulter Counter (model A).
Length measurements. Photographs of cells ob-

served under phase-contrast optics were taken with a
Zeiss Ultraphot microscope by the procedure of Don-
achie et al. (4). Samples from synchronous cultures
were first concentrated 100-fold by centrifugation and
suspension in a portion of supernatant fluid. Enlarged
projections of the negatives were measured (3).
Computer program to model cell growth. The

program to model cell growth was written in the IMP
language and was run on an ICL4/75 computer. The
culture being modeled was represented by a matrix.
Each entry in the matrix represented the number of
cells with a particular birth length that were of a
particular age. Thus, the row of the matrix that an
entry appeared in depended on its birth length, and
the column depended on its age. At each time step,
the entries corresponding to cells that divided were
removed from the matrix, and the necessary numbers
were added to the classes of newborn cells. (It was
found that dividing the age into about 100 classes and
the birth length into 150 classes gave satisfactory
results.) The dividing-cell classes and the correct new-
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born-cell classes were selected according to the growth
and division laws being used.
When outputs of the length distribution and new-

born cell length distribution were required, they could
be calculated from the matrix by using the growth law
to find the length from the birth length and age.
The length distribution settled down to a fairly

constant distribution after 5 to 10 generations, starting
from various initial distributions.

Calculation of growth rate and length distri-
butions. To calculate the growth rate and length
distributions, we wrote two computer programs that
used equation 1 below. The first program used the
observed birth length and population length distribu-
tions to calculate the growth rate; the second used the
observed birth length distributions and assumed
growth law to calculate the population length distri-
bution. In both cases, cell division was ignored, so the
calculations are only valid for lengths less than those
at which significant amounts of cell division occur.
The length distributions were considered linear be-
tween the centers of the measured classes.

RESULTS
Calculation of length growth rate from

length distribution and birth length distri-
bution. Collins and Richmond (2) found an
equation relating the growth rate [g(x)] of a cell
of length x in an exponentially growing culture
to the distribution of cell length (A), length of
newborn cells (4p) and the length of dividing cells
(O). (A, 4A, and O are actually the probability
density functions of those distributions.) This
equation is:

K .
g(x) = I) [24+(y) -+(y) -A(y)] dy (1)A(x) J

where K is the exponential growth rate constant.
This assumes that the length growth rate is a
function of the length alone and does not depend
on the age or past history of a cell. The popula-
tion must be growing exponentially with con-
stant distributions of length and age.
The distribution of length of newborn cells

was measured in samples from a membrane
eluate (Fig. 1). Cell lengths were measured in
samples from an exponential culture to obtain
its length distribution (Fig. 2a). It was apparent
from the lengths of cells with septa that very
few cells divided at a length of less than 5 ,um.
This was also shown by the lengths of newborn
cells (dividing cells must be approximately twice
as long as newborn cells). We were able to ignore
dividing cells (i.e., take 4 _ 0), therefore, and use
the measured length and cell length distribu-
tions to estimate g(x) (Fig. 2b). This gave a
growth rate that was constant at lengths be-
tween 2 ,um and 3.5 Am, doubled between about
3.5 ,um and 4.5 ,m, and was constant again at
the new value until the neglect of dividing cells
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FIG. 1. Length distribution ofapopulation ofnew-
born cells. One sample ofthe eluate from a membrane
was collected for 1 min. A portion was used to follow
the increase in particles (a) giving a synchrony index
of 1.11 by using the equation of 0. H. Scherbaum (J.
Protozool. Suppl. 6:17, 1959) for the first division. Cell
density at the time of elution was 1.5 x 10 cells per
ml. Another portion was used to measure cell length
(b); 448 cells were measured to calculate the distri-
bution. The segment between the arrows shows the
range of lengths expected for cells born at LB and
collected in the eluate during a sampling time of 1
min.

made the calculation invalid (about 5 ,um).
This calculation of the growth rate supported

models in which the growth rate doubles at a
given length (here about 4 ,um). The point at
which the rate changed corresponded to the
drop after the peak in the cell length distribu-
tion. A linear growth law would give a constant
growth rate at all lengths, and an exponential
growth law would give a straight line passing
through the origin.
To find whether knowledge of the growth rate

was sufficient to predict cell length distributions,
a model was used in which all cells were born
with length LB, grew to length 2LB, and divided
in half. For this, equation 1 became:

A(x)g(x) = K[2

-fX(Y) dy] for LB < x < 2LB (2)

this can be solved analytically for simple forms
of g(x). Figure 3 shows the solutions for the
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to the observed distribution; this is not surpris-
a ing, as the actual birth length distribution (Fig.

lb) showed a considerable spread. The result of
;5 _ . a spread in birth lengths is to flatten the theo-
/5 retical distributions. From equation 1, it can be

seen that the value of X will be smaller for
shorter cells and larger for longer cells than that
calculated on the assumption of constant birth

i. length. This flattening means that the linear and
1010 _ \ \. exponential growth laws will not produce a clear
o \ \ peak, whereas the fit of the step growth law will
5 be improved. We used equation 1 to calculate

the population length distribution expected un-
der the exponential and step growth laws when

5 _ ; \ the observed spread in birth lengths is taken
into account (Fig. 4). The birth length distribu-
tion in Fig. lb was used, and cell division was
ignored, so the calculation was not valid for

* ' . lengths greater than 5 ,Am. As expected, the
0 ., *-_ . exponential growth law did not produce a high

2 3 4 5 6 7 enough peak. The poor fit of the step growth law
cell length (pm) just after the peak probably reflected the fact

that the actual change in growth rate (Fig. 2) is
b spread over 3.5 to 4.5 ,um rather than being

abrupt at 3.5 ,um, as was considered for this
O6-_ ,calculation.

/ 1 This simple model is useful for assessing qual-
b
.. b . ~~~~~~~~~itatively the effects of different changes in the

growth law. We found that if the change in
4I . growth rate was spread over a range of lengths,

c 4-_ rather than being instantaneous, then for a range
OL, | *. similar to that of Fig. 2 (3.5 ,um to 4.5 ,um) a

CD) v *,* # . curve very similar to that in Fig. 3c was producedo ..............rW. (except that the drop from the peak was not so
_i * .......* _abrupt), so the spread seemed to be of little

Q2 ~ . o ......./12 L importance. We also investigated in this way a
variety of growth laws; one that gave a slightly

8 . . ........N :better fit for the initial peak was a model in
which the growth rate changed to 1.5 times its
previous value rather than doubling (data not

c I shown).
2 3 4 5 6 Asymmetric division. The deficiencies in

cell length (,um) the simple models that we have considered up
to now suggested that any adequate model that

FIG. 2. Rate of cell elongation during the cell cycle.
The distribution of length in newborn cells shown in aims at predicting the cell length distribution
Tig. 1, the actual length distribution of an exponen- must have mechanisms to produce a spread in
tial culture shown in (a), and equation 1 (see text) birth lengths. (As a consequence, it would also
were used to calculate the rate of elongation (b) for produce a tail of larger cells.) We thought that
each cell length. Symbols: 0, values obtained consid- asymmetric division could be one such mecha-
ering the whole distribution in Fig. I as newborn nism; when cells with a septum were examined,
cells; A, values obtained assuming that cells longer there were many in which the portions on either
than 6.5 ,um were not newborn and therefore were side of the septum were of different lengths.
excluded from the calculation; , rate of elonga- The lengths of the two sister cells were mea-
tion for each cell length;. course of rate of sured in 205 dividing pairs of E. coli B/r in a
elongation as predicted by Donachie et al. (4) for 7
= 20 min. As cell division was ignored for this cal- sample of a population growing exponentially
culation, the results are only valid up to about 5 jAm. with a generation time of 20 mn. Of these, 155

(76%) were symmetric by the criterion that the
cases of linear growth, exponential growth, and difference in length between the two sisters was
growth that doubles its rate at about 4 ,um. smaller than 0.5 mm in the enlarged negative,
None of the growth laws gave a very good fit that is, 0.33 ,tm in actual length. The remaining
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2 4 6
cell length (jpm)

FIG. 3. Comparison of theoretical and measured cell length distribution in E. coli populations. Symbols:
O-O, Observed cell length distribution (same as Fig. 2a); *-*, theoretical distributions [A (x)]

calculated using equation 2 (see text) for the growth laws. (a) Rate of elongation is constant (linear growth
law):

A (x) =
4

exp [I(n2 -B)
LB LB/

(b) Rate of elongation is proportional to length (exponential growth law):

A (X) =2 LB

x2

(c) Rate of elongation is constant up to the length 2A, and then doubles (step growth law):

2 1n2 [-1n2

A P[ A

IN(x)
IF2exp [-2 (2LB-X) ifor x > 2A
2u2

We used values of birth length LB = 2.77 ,um and A = 1.95 ,Wm.

50 pairs (24%) were asymmetric.
If we define the ratio of asymmetry as:

z = length of the long cell/length of the short
cell

we find an experimental value of z = 1.17 (stan-
dard deviation, 0.08) for the measured asym-
metric pairs.
Asymmetry has also been observed in cells

from cultures growing at slower rates, but such
measurements are less accurate because the
mean cell length decreases as generation time
increases (4).
Length measurements of dividing cells failed

to show any preferential grouping of either the
long or the short sister within asymmetric pairs
with the length of cells in symmetric pairs. This
suggests that asymmetry is more likely caused
by inaccurate positioning of the septum within
a dividing cell rather than as a consequence of
abnormal elongation in one of the sisters. A

computer model was used to study the effects of
asymmetric division. A certain proportion (p) of
cells was allowed to divide in the ratio of z:1, and
the rest were allowed to divide symmetrically.
These parameters for asymmetric division were
considered to be the same for cells of all lengths.

Cell division was assumed to occur when cells
had reached certain minimum length LD and
also reached a minimum age aD. For the growth
laws used, cells in the population that were born
with length less than 1/2 LD divided at length LD
at an age greater than aD (i.e., had a longer
generation time), and those with birth length
greater than 1/2 LD divided at age aD with a length
greater than LD.
A growth law according to which the cell

length growth rate doubled at lengths 2A, 4A,
8A, etc. was used. Results in Fig. 5 show the
output of a computer run for two values of A.
They have a defect similar to that in the distri-
bution calculated for Fig. 3c; the peak is too

cell length (,um)
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high. This was not due to the pa
of the parameters used for simula
ric division, as the peak shape
insensitive to variations in these F

0 2 4
cell length (inm)

FIG. 4. Calculation of cell length

rticular values sults not shown). The birth length distribution
Lting asymmet- generated by the model contains over 90% of the
proved to be cells in two length classes, being therefore much
?arameters (re- more compressed than the observed one (Fig.

lb). Asymmetric division alone cannot account,
then, for the observed cell length distributions,
as it does not produce a large enough spread in
newborn cell lengths; it does, however, account
for some of the cells in the "tails" of the distri-
bution at short and long lengths.
Varying the value of A changes the shape of

the distribution; however, values of A much
different from those in Fig. 5 will produce the
drop from the peak at a length class quite differ-
ent from that observed in real populations. One
special case in which the doubling in rate occurs
at birth, as suggested by Donachie et al. (4), is
shown in Fig. 6. Here the minimum division
length is 4A, so that the growth rate is constant
over most of the cell cycle. In this case, the
length distribution does not have a well-defined

0, '0^*o peak. A similar situation occurred when a sim-
I.. Iulation using an exponential growth law was run.

6 8 Higher limit for cell length. In our com-
puter-modeled population, there was a lower

distributions as- limit for the length of a cell defined by the value
suming the observed birth length distribution and the
exponential and step growth laws. The calculation is
not valid for lengths greater than 5 u.m because it
ignores cell division. Symbols: V, Exponential law;
0, step law; 0, actual measured distribution.

Lmin = LD/(1 + Z)

that corresponded to the length of the short
daughter of a cell that divides asymmetrically at

2O[

15
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5,10

0 2 4 6 8 0 2 4 6 8
cell length (,um) cell length (pm)

FIG. 5. Distribution of length in a simulated population in which the rate of elongation was assumed to
double at 3.8pm when L = 1.37 LB (a) or when L = 1.50 LB (b). The simulation lasted 10 cycles. The computer
was fed the values p = 24% and z = 1.17. Symbols: *-4, distribution of length in simulation; 0-- -0,
actual distribution of length measured in a population of E. coli Blr, shown for comparison.
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FIG. 6. Distribution of length in a simulated pop-

ulation (- 4*) in which the rate ofelongation was
considered to double at length 2A = 2.8 pim coincident
with division and then at each successive doubling of
total length. The simulation lasted 10 cycles. Param-
eters p and z were fixed as in Fig. 5. Distribution of
length in actualpopulation ofE. coli (0 -- ) shown
for comparison.

length LD. However, no upper limit was imposed
in the model, as it could not be defined in terms
of cell elongation alone. In any case, the propor-
tion of cells longer than 8A after a simulation
lasting 100 generations was less than 3% of the
total, which made their contribution to the sim-
ulated distribution insignificant.

It seems possible, nevertheless, that although
small increases in length will not shorten the
generation time of a cell, increases in length
large enough to contain additional units of ini-
tiation mass (5) can impose an upper limit to
cell length. This follows from the reasoning that,
in such long cells, additional rounds of DNA
replication can be initiated and, once completed,
Will allow an additional division of the cell.
These additional divisions could work as a com-

pensating factor to limit the individual length of
the progeny of very long cells.
One example of additional division is pre-

sented in Fig. 7, which shows a cell whose length
at the time of cell separation was 13.50 ,um
instead of the minimum length at division of
5.30 ,um for T = 22 min (4). This cell divided for
the second time 10 min after its first division; it
divided for the third time approximately 20 min
after the second division. At the time of the
third division, some of the progeny lay within
the length range of the control cell, which was
dividing at approximately 22-min intervals, as
expected.

DISCUSSION
The calculation of the rate of cell elongation

shown in Fig. 2 agrees with the model of Dona-
chie et al. (4) in that there is a doubling in rate
at a certain cell length. They estimated, from a
shift-up experiment with a population of homo-
geneous size, that the change occurs at 2.8,im.
However, our results indicate that such a change
occurs between 3.5 and 4.5 ,um. This spreading
could be due either to a spread in each individual
cell or to differences between the cells. It is not
technically feasible to observe such spreading if
the experimental approach of Donachie et al. (4)
is used, which probably accounts for part of the
discrepancy between the two results.
The results of Collins and Richmond for Ba-

cillus cereus (2) are not incompatible with our
model. They used a normal distribution for their
distribution ofnewborn cells, which is not a good
approximation when compared with our results
in Fig. 1. They also introduced a mathematical
smoothing step, thereby reducing the chances of
finding abrupt changes in rate. Our results sug-
gest that such changes in rate are responsible for
the sudden drop observed in cell length distri-
butions. In our simulations, some degree of
smoothing was achieved by considering asym-
metric divisions; this partially reproduced the
tails at both ends of the distribution without
affecting the peak and drop regions. Asymmetry
in division was nevertheless insufficient to pro-
duce a spread in birth lengths as wide as the one
found in a population from a membrane eluate
(Fig. 1). It was found that, after a simulation
lasting 100 cycles, 90% of the newborn cells fell
within the two classes adjacent to the expected
length at birth.
As the distribution of newborn cells is crucial

in relating the growth laws to the distribution of
exponential populations (Fig. 4), this failure to
generate a large spread in the newborn popula-
tion explains why our simulated populations do
not show a good quantitative fit to the measured
distribution. It is likely that some discontinuous
events during the cell cycle, particularly at the
the time of cell division, affect the patterns of
partition or elongation in a way unaccounted for
by our model, thus producing a wider spread in
lengths at birth. In any case, asymmetry by itself
can lead to fluctuation in the generation times
of individual cells within a population. We ex-
plain these fluctuations by considering that cells
born shorter than the normal birth length for
the growth rate of the culture are delayed in
division, whereas those whose birth length is the
correct value or larger are not. Those cells longer
than normal will not alter their generation times,
at least for increases smaller than necessary to
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accommodate additional units of initiation mass.
However, bigger increases could shorten the gen-
eration time for an individual and serve at the
same time as a correcting mechanism to impose
a higher limit to cell length (Fig. 7).
That cells of the same length can have differ-

ent ages provides a theoretical explanation for
why methods to obtain synchronous populations
based on size selection give far-from-perfect re-
sults. It follows, as well, that even cultures de-
rived from a single cell will eventually lose syn-
chrony after a few generations, as they will then
contain cells whose birth length is smaller than
expected for the generation time of the culture.
These cells will suffer a delay before they can
divide. This agrees with experimental evidence
derived from the analysis of cultures obtained
from a single cell in which synchrony was lost
after no more than 16 generations (P. Meacock,
personal communication). The details of the di-
vision process are not yet well enough known to
allow us an interpretation of asymmetry in di-
vision at the molecular level. It is possible that,
ifseptum formation is regulated by some effector
present in only a small number of molecules per
cell, local differences in its concentration could
produce individual diversity at the time of par-
tition.
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