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Abstract
Medical advances in the management of patients with sickle cell disease, thalassemia, and other
hemolytic anemias have led to significant increases in life expectancy. Improved public health,
neonatal screening, parental and patient education, advances in red cell transfusion medicine, iron
chelation therapy, penicillin prophylaxis for children, pneumococcal immunization, and hydroxyurea
therapy have all likely contributed to this effect on longevity.1,2 Importantly, as a generation of
patients with sickle cell disease and thalassemia ages, new chronic complications of these
hemoglobinopathies develop. In this context, pulmonary hypertension is emerging as one of the
leading causes of morbidity and mortality in adult sickle cell and thalassemia patients, and likely in
patients with other hemolytic anemias. A common feature of both sickle cell disease and thalassemia
is intravascular hemolysis and chronic anemia. Recent data suggest that chronic intravascular
hemolysis is associated with a state of endothelial dysfunction characterized by reduced nitric oxide
(NO) bioavailability, pro-oxidant and pro-inflammatory stress and coagulopathy, leading to
vasomotor instability and ultimately producing a proliferative vasculopathy, a hallmark of which is
the development of pulmonary hypertension in adulthood.3–5 In conclusion, pulmonary
hypertension is common in patients with hereditary hemolytic anemias and is associated with a high
risk of death in patients with sickle cell disease. New therapies targeting this vasculopathy and aimed
at normalizing the vasodilator:vasoconstrictor balance are discussed.

Endothelial Control of Vascular Function
No is a soluble diatomic gas molecule, much like carbon monoxide. Because of its unpaired
electron, NO is a free radical, providing it with unique reactivities and biological properties.
6 NO is produced in endothelium by the endothelial NO synthase enzyme, by an oxygen-
dependent conversion of L-arginine to citrulline.7 Once produced, NO can diffuse in a paracrine
fashion to adjacent smooth muscle, where it binds avidly to the heme moiety of soluble
guanylate cyclase. This activates the enzyme, which in turn converts GTP to cGMP, activating
cGMP-dependent protein kinases, which ultimately sequester calcium and produce
vasodilation.8,9 In addition to this vasodilation, which is tonic in nature and controls
approximately 25% of our resting blood flow, NO promotes general vascular homeostasis
(Table 1). Importantly, NO also reacts with the oxygenated and deoxygenated heme groups of
hemoglobin at nearly diffusion limited rates (107 M-1 sec-1) to produce methemoglobin and
nitrate, and iron-nitrosyl-hemoglobin, respectively (Equation 1 and Equation 2).10

NO + oxyhemoglobin (HbFeII − O2) → methemoglobin (HbFeIII) + nitrate (NO
3−

) Equation 1
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NO + deoxyhemoglobin (HbFeII) → iron−nitrosyl−hemoglobin (HbFeII − NO) Equation 2

Because these reactions are so fast and, in the case of Equation 1, irreversible, kinetic
calculations would predict that NO produced from endothelium would not survive long enough
to diffuse to smooth muscle, becoming inactivated by rapid reaction with intravascular
hemoglobin (10 mM heme concentration in whole blood).11 This paradox of biology is solved
by the physical properties of the erythrocyte, of laminar flowing blood, and the plasma
hemoglobin scavenging systems that limit extravasation of free plasma hemoglobin into the
interstitial space. During normal physiology, the reaction of NO with hemoglobin is limited
by compartmentalization of hemoglobin within the erythrocyte membrane.12 This
compartmentalization of hemoglobin from endothelium creates two diffusional barriers: a cell-
free diffusion barrier along the endothelium in laminar flowing blood13,14 and an unstirred
bulk diffusional barrier around the erythrocyte membrane.15 Understanding the role of such
barriers and the requirement for a physical separation of hemoglobin from the source of NO
production in endothelium helps explain the remarkable morbidity and mortality associated
with the use of stroma-free hemoglobin-based blood substitutes and many of the clinical
manifestations of hemolytic disease.3,4,10

Endothelial Dysfunction in Sickle Cell Disease: A Unique State of NO
Resistance

In patients who have coronary artery disease, atherosclerosis and its risk factors (obesity,
hypertension, diabetes, tobacco smoking, and hypercholesterolemia) a state of endothelial
dysfunction is observed, characterized by decreased function of endothelial NO synthase
(Figure 1; see color figures, page 546). In patients with sickle cell disease there is a similar
dysfunction, characterized by a blunted response to NO synthase inhibition. Unlike patients
with atherosclerosis, however, there is also a resistance to exogenously delivered NO donors.
This has been demonstrated by multiple investigators in both human and transgenic mouse
studies:

• Our group has shown that the blood flow responses to infusions of the NO synthase
inhibitor L-NMMA are blunted and that blood flow responses to the NO donor sodium
nitroprusside are nearly abolished in patients with high plasma hemoglobin
concentrations.3,16

• Eberhardt and colleagues have shown that endothelium-dependent, NO-dependent
blood flow is impaired in patients with sickle cell disease, when measured by flow-
mediated vasodilation. They also showed that responses to the exogenous NO donor,
nitroglycerin, are impaired, compared to control subjects with nonhemolytic anemia.
17

• Both Nath et al and Kaul et al have described a similar state of resistance to exogenous
NO (the NO donor NONOate or sodium nitroprusside) in different transgenic mouse
models of sickle cell disease.18,19 Kaul and colleagues recently demonstrated that
this state of NO resistance correlated with plasma hemoglobin levels and suggested
that NO resistance in this model was linked to hemolytic rate and oxidant stress.5

• Aslan and Freeman have shown that NO is inhibited in the vasculature of transgenic
sickle cell mice with sickle cell disease by a diffusion-limited reaction with superoxide
produced from xanthine oxidase on endothelium.20,21 Increased xanthine oxidase
expression in the lung of the transgenic mouse has also been reported to scavenge NO
in this vascular system.22 Recent studies have suggested a role for vascular NADPH
oxidase in aberrant superoxide-mediated NO scavenging in the sickle cell cerebral
vasculature.23
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It is increasingly clear from these studies that plasma hemoglobin-mediated and oxygen free
radical–mediated consumption of NO produces a state of resistance to NO in patients with
sickle cell disease. During intravascular hemolysis, the diffusional barriers that limit NO
reactions with hemoglobin are disrupted and the cell-free plasma hemoglobin destroys NO at
a rate 1000-fold faster than intra-erythrocytic hemoglobin.4,12,24 Consequently, smooth
muscle guanylyl cyclase is not activated and vasodilation is impaired. In support of this
mechanism, plasma from patients with sickle cell disease contains cell-free ferrous oxy-
hemoglobin, which stoichiometrically consumes micromolar quantities of NO and abrogates
forearm blood flow responses to NO donor infusions.3

Downstream effects of intravascular hemolysis and NO consumption include increased
endothelin-1 expression, heme and free iron mediated oxygen radical generation, platelet
activation and increased endothelial adhesion molecule expression (recently reviewed in4). In
patients with sickle cell disease, plasma endothelin-1 levels are increased in steady state and
during crisis.25–27 In vitro, sickle erythrocytes increase endothelin-1 production by cultured
human endothelial cells and endothelin receptor A antagonism decreases the vasoconstrictive
effects of conditioned media from pulmonary endothelial cells exposed to sickled erythrocytes
on aortic rings.28 In addition, endothelin-1 activates Gardos channels in human sickle
erythrocytes, an effect that may promote sickle cell dehydration and facilitate red blood cell
sickling and adhesion.29

Intravascular hemolysis has the potential to drive a pro-coagulant state. Platelet activation is
profoundly inhibited by NO and such NO-dependent inhibition may in turn be blocked by
plasma hemoglobin-mediated NO scavenging.30 Additionally, hemolytic rate (reticulocytosis)
is associated with hemoglobin desaturation (ventilation/perfusion inhomogeneiety) and
adhesion molecule expression;31 it is possible that such a hypoxic state can induce hypoxia-
inducing factor-1 (HIF-1) dependent factors such as erythropoietin, vascular endothelial
growth factor (VEGF), and endothelin-1.

In addition to release of hemoglobin from the red cell into plasma, hemolysis releases
erythrocyte arginase, which converts L-arginine, the substrate for NO synthesis, to ornithine.
32 Morris and colleagues found that arginase activities in the plasma of patients correlated
significantly with plasma hemoglobin and LDH and was increased in the plasma and red cells
of patients with sickle cell disease. Consistent with this observation, in patients with sickle cell
disease, the arginine-to-ornithine ratio decreases significantly as pulmonary pressures increase
and was independently associated with increasing mortality.32,33 Arginine therapy has been
shown to decrease pulmonary pressures in patients with sickle cell disease and secondary
pulmonary hypertension34 and has been shown to inhibit endothelin-1 mediated activation of
the Gardos channel in the transgenic sickle cell mouse and thus limit erythrocyte dehydration.
35

These mechanisms likely contribute to the progressive development of sickle cell
vasculopathy, characterized by vasoconstriction, intimal and smooth muscle hyperplasia and
in situ thrombosis (Figure 2; see color figures, page 546).

Does hemolysis produce a subset of clinical manifestations shared by the hereditary and
acquired hemolytic anemias?

We have proposed that the clinical manifestations of sickle cell disease may fall into two
partially overlapping subphenotypes. The first subphenotype encompasses the more classic
clinical manifestations of the disease: vasoocclusive pain crisis and the acute chest syndrome.
These clinical morbidities are epidemiologically associated with high white blood cell counts,
high steady state hemoglobin levels and low fetal hemoglobin levels (increasing fetal
hemoglobin concentration is protective).36 These “vasoocclusive” complications are widely
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presumed to be mediated by microvascular obstruction by sickle erythrocytes and the
pathogenesis characterized by ischemia-reperfusion injury, infarction and inflammation.37,
38 The second subphenotype encompasses clinical complications shared by other hemolytic
anemias (Table 2) and includes pulmonary arterial hypertension, systemic systolic arterial
hypertension, cutaneous leg ulceration, priapism and possibly stroke.3,33,39 Pulmonary
hypertension is increasingly observed in hemolytic anemias (Table 2), including sickle cell
disease33,40,41 and thalassemia (in particular thalassemia intermedia, such as Hb E-β0-
thalassemia, and inadequately transfused and chelated patients with thalassemia major).42,
43 In addition to published case reports of pulmonary hypertension in diseases listed in Table
2 (this extensive list of diseases associated with pulmonary hypertension is not cited due to
space limitations, but a pubmed search using the search terms “anemia” and “pulmonary
hypertension” will identify reports), our group has received additional reports of patients with
pulmonary hypertension associated with hemolytic anemia secondary to unstable hemoglobin
variants (personal communication, H. Franklin Bunn and Thomas DeLoughery).

Pulmonary Arterial Hypertension in Sickle Cell Disease
Prevalence

Echocardiographic studies have reported that approximately 30% of screened adult patients
with sickle cell anemia have pulmonary hypertension (systolic pulmonary artery pressures
(PAP) ≥ 30 mm Hg).33,41,44,45 Recent autopsy studies suggest that up to 75% of sickle cell
patients have histological evidence of pulmonary arterial hypertension at the time of death.
46 Similarly, retrospective studies have demonstrated that 40%–50% of patients with
thalassemia intermedia,43 and 10%–75% of patients with thalassemia major, have
echocardiographic evidence of pulmonary hypertension.47,48

Risk factors
In the NIH pulmonary hypertension screening study, all markers of hemolytic anemia,
including low hemoglobin and hematocrit, high lactate dehydrogenase (LDH), and high
aspartate aminotransferase, but not alanine aminotransferase levels, were associated with
elevated pulmonary pressures.33 Multiple logistic regression analysis identified a history of
renal or cardiovascular complications, increased systemic systolic blood pressure, LDH,
elevated alkaline phosphatase, and low transferrin levels as independent predictors of
pulmonary hypertension. In men, a history of priapism was an additional independent factor
associated with pulmonary hypertension. These associated risk factors for pulmonary
hypertension suggest that pulmonary hypertension represents one element of the systemic
vasculopathy seen in some patients with sickle cell disease (systemic hypertension, renal failure
and priapism) and is mechanistically linked to hemolytic rate, iron overload and cholestatic
hepatic dysfunction. Interestingly, the development of pulmonary hypertension was not
associated with markers of inflammation, fetal hemoglobin levels or platelet counts.

Functional or surgical asplenia may also contribute to the development of pulmonary
hypertension in patients with hemolytic disorders. Splenectomy has been reported to be a risk
factor for the development of pulmonary hypertension, particularly in patients with hemolytic
disorders.49–53 It has been speculated that the loss of splenic function increases the circulation
of platelet derived mediators and that senescent and abnormal erythrocytes in the circulation
trigger platelet activation, promoting pulmonary microthrombosis and red cell adhesion to the
endothelium.49 Intravenous injection of hemolysate promotes the formation of platelet-rich
thrombi in the pulmonary vascular bed of rabbits after ligation of the splenic artery, without
any thrombus formation in the animals without splenic artery ligation.54 A role for
intensification of intravascular hemolysis following splenectomy (in contrast to predominantly
spleen-mediated extravascular hemolysis) has also been suggested by the demonstration of
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significantly higher plasma hemoglobin and erythrocyte-derived microvesicle levels in patients
with thalassemia intermedia who have undergone splenectomy, compared with those who have
not.55

Interestingly, the number of episodes of acute chest syndrome (a potential cause of chronic
lung disease and pulmonary fibrosis) was not associated with pulmonary hypertension in our
prospective prevalence study.33 In addition, a similar prevalence of pulmonary hypertension
in patients with thalassemia intermedia, who do not develop the acute chest syndrome, suggests
that acute lung injury may worsen pulmonary hypertension but certainly is not etiologic. In
our cohort, individuals with pulmonary hypertension have a higher incidence of restrictive lung
disease and pulmonary fibrosis on high-resolution chest computed tomography (CT) than age-
and hemoglobin-matched patients with sickle cell disease without pulmonary hypertension
(Anthi et al, 2005, manuscript under review). Further, in patients with thalassemia, restrictive
ventilatory defects and pulmonary fibrosis—associated with pulmonary hypertension—have
also been documented.56,57 Taken together, these data suggest that similar pathogenic
proliferative mechanisms that lead to pulmonary hypertension may underlie the genesis of
pulmonary fibrosis in these patients.

Diagnosis
Doppler echocardiography provides essential information such as non-invasive estimation of
pulmonary artery systolic pressure (via calculation of the tricuspid regurgitant Doppler jet
velocity value [TRV]), valvular function and right and left ventricular function. The use of
echocardiography to estimate pulmonary artery systolic pressures has been validated in patients
with sickle cell disease, and noninvasive assessment correlates well with the measurement of
pulmonary arterial pressures by right heart catheterization.33 The velocity of regurgitant blood
across the tricuspid valve during systole is measured, and the pulmonary artery systolic pressure
is calculated using the modified Bernoulli’s equation [(4 × TRV²) plus central venous pressure
estimate]; method described in detail in 33). To avoid the more subjective estimation of central
venous pressures, pulmonary hypertension can be defined by a specific TRV ≥ 2.5 m/sec (based
on high risk of death using this value in a prospective cohort study33) and moderate-to-severe
pulmonary hypertension defined by a TRV ≥ 3.0 m/sec (the more conventional criteria which
is consistent with a pulmonary artery systolic pressure of at least 41 mm Hg). The significance
of these values has only been defined in adult patients with sickle cell disease; limited
information is available for children.

Prognosis
Patients with sickle cell disease and pulmonary hypertension have a significantly increased
mortality rate compared with patients without pulmonary hypertension. Sutton and colleagues
reported a 40% mortality rate at 22 months with an odds ratio for death of 7.86 (2.63–23.4).
44 Powars and colleagues reported a mean 2.5-year survival in sickle cell patients with chronic
lung disease with pulmonary hypertension.58 Castro and colleagues40 similarly reported a
50% 2-year mortality rate in patients with sickle cell disease with pulmonary hypertension
confirmed by right heart catheterization.

Consistent with retrospective studies indicating that pulmonary hypertension is associated with
a higher mortality, in the NIH screening study a measured TRV of at least 2.5 m/sec, as
compared to a velocity of less than 2.5 m/sec, was associated with a marked increased risk of
death (RR 10.1; 95% CI, 2.2–47; P < 0.001) and remained so after adjustment for other possible
risk factors in proportional hazards regression analysis. The 18-month mortality was 16% for
patients with a TRV of greater than or equal to 2.5 m/sec and was less than 2% in patients
without pulmonary hypertension. Further updated follow-up data from this cohort continue to
demonstrate that pulmonary hypertension is a strong independent risk factor for mortality (RR
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7.4, 95% CI 2.4–22.6, P < 0.001) with 40-month mortality rate of approximately 40% (Figure
3). In addition, De Castro and colleagues reported a remarkably similar 17% mortality rate for
patients with pulmonary hypertension over 2 years compared with approximately 2% for
subjects without pulmonary hypertension.59 Taken together, the retrospective40,44,58 and
prospective33,41 studies strongly support the contention that pulmonary hypertension is the
greatest risk factor facing the aging population of patients with sickle cell disease and likely
other patients with chronic high-grade intravascular hemolysis.

Management
In the absence of clinical guidelines and placebo-controlled therapeutic trials for the evaluation
and treatment of pulmonary hypertension in the sickle cell population, we now summarize our
empiric and anecdotal diagnostic and therapeutic approach for the adult patient with sickle cell
disease diagnosed with pulmonary hypertension. Because we do not yet know if an elevated
pulmonary pressure is a direct cause of death or a risk factor for multi-organ disease and
generalized sickle cell vasculopathy, for patients with mild pulmonary hypertension (TRV
2.5–2.9 m/s) we recommend intensification of sickle cell-specific therapy.

• Consider hydroxyurea treatment at the maximum tolerated dose as defined by the
Multicenter Study of Hydroxyurea, with erythropoietin therapy considered if
reticulocytopenia limits hydroxyurea therapy.

• Monthly transfusion therapy may be considered for patients with poor responses to
hydroxyurea, accompanied by chelation therapy, if indicated. Anecdotally, the TRV
has declined in some patients with institution of these treatment measures, although
this has not been studied to date.

• Consultation may be considered with a pulmonologist or cardiologist experienced in
pulmonary hypertension, the latter especially if the echocardiogram shows evidence
of left ventricular dysfunction.

• Identify and treat risk factors associated with pulmonary hypertension such as
hypoxemia during rest or exercise and nocturnal hypoxemia, sleep apnea, pulmonary
thromboembolic disease, left ventricular systolic and diastolic dysfunction, severe
anemia and iron-overload.

In addition to the above measures, we recommend that patients with TRV ≥ 3 m/s should
undergo:

• Right heart catheterization to assess left ventricular diastolic and systolic function.
• A CT-pulmonary angiogram to exclude chronic thromboembolic pulmonary

hypertension.
• Consider systemic anticoagulation. Therapy with warfarin improves outcomes in

patients with primary pulmonary hypertension and in-situ thrombosis but no data are
available in patients with sickle cell disease.

• Consider specific therapy with selective pulmonary vasodilator and remodeling drugs,
particularly if the patient has symptomatic dyspnea on exertion that has progressed
in recent months or years. Drugs that are FDA-approved for primary pulmonary
hypertension include bosentan (Tracleer®) and various forms of prostaglandin
therapy, none of which have been comprehensively investigated for sickle cell
pulmonary hypertension. We have pilot experience with sildenafil, which has recently
gained FDA approval for pulmonary hypertension under the trade name Revatio®.
60 Two multicenter trials using sildenafil and bosentan, for hemolysis-associated
pulmonary hypertension are anticipated in the near future. Appropriate consultation
and right heart catheterization are recommended at baseline and should be repeated
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annually. More detailed management recommendations are available in recently
published reviews.61–63

Conclusions
In patients with sickle cell disease, and likely other hemolytic conditions, intravascular
hemolysis produces a state of endothelial dysfunction characterized by reduced NO
bioavailability and NO resistance. This leads to dysregulation of the endothelium-derived
vasodilator:vasoconstrictor system leading to acute vasoconstriction and chronic proliferative
vasculopathy. We propose that this vasculopathy is characterized epidemiologically by a
clinical subphenotype of pulmonary hypertension, cutaneous leg ulceration, priapism, sudden
death, and possibly stroke. Pulmonary hypertension is common in patients with hereditary
hemolytic anemias and is associated with a high risk of death in patients with sickle cell disease.
New therapies targeting this vasculopathy and aimed at normalizing the
vasodilator:vasoconstrictor balance are in therapeutic trial.
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Figure 3. Kaplan-Meier survival curves according to the tricuspid regurgitant jet velocity (TRV)
The survival rate is significantly higher among patients with a TRV of less than 2.5 m per
second than among those with a TRV of at least 2.5 m per second (P < 0.001). Updated from
Gladwin et al. April 2005.33
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Table 1
Vascular effects of nitric oxide

Vasodilatory
  Relaxation of vascular smooth muscle
  Decreased expression of endothelin-1 and endothelin
  receptor
Anti-adhesive
  Decreased endothelial expression of adhesion molecules
Anti-thrombotic
  Decreased platelet activation
  Decreased tissue factor activity
  Decreased thrombin generation
Anti-oxidant
  Inactivation of reactive oxygen species
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Table 2
Conditions associated with both intravascular hemolysis and increased risk for pulmonary hypertension

Hereditary hemolytic anemia
  Sickle cell disease
  Thalassemia
  Hereditary spherocytosis
  Hereditary stomatocytosis
  Pyruvate kinase deficiency
  Unstable hemoglobin variants
Acquired hemolytic anemia
  Microangiopathic hemolytic anemias
  Paroxysmal nocturnal hemoglobinuria
  Schistosomiasis
  Mechanical heart valves
  Left ventricular assist devices
  Cardiopulmonary bypass devices
  Malaria (?)
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