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Abstract
Impulse control disorders (ICDs), including pathological gambling, trichotillomania, kleptomania
and others, have been conceptualized to lie along an impulsive-compulsive spectrum. Recent data
have suggested that these disorders may be considered addictions. Here we review the genetic and
neuropathological bases of the impulse control disorders and consider the disorders within these non-
mutually exclusive frameworks.

Introduction
Impulse Control Disorders

Formal impulse control disorders (ICDs) for which there are diagnostic criteria in the
Diagnostic and Statistical Manual (DSM-IV-TR) include pathological gambling (PG),
kleptomania, pyromania, intermittent explosive disorder, trichotillomania and ICD not
otherwise specified [1]. Criteria for other ICDs (compulsive shopping, problematic internet
use, compulsive sexual behavior, and compulsive skin picking) have been proposed and are
currently under consideration [2,3]. Basic characteristics of ICDs include repetitive or
compulsive engagement in a specific behavior (e.g., gambling, hair-pulling) despite adverse
consequences, diminished control over the problematic behavior, and tension or an appetitive
urge state prior to engagement in the behavior [2].

ICDs and Addiction
ICDs have been hypothesized to lie along an impulsive-compulsive spectrum [4], representing
obsessive-compulsive (OC) spectrum disorders [5,6]. Although individuals with ICDs engage
in repetitive behaviors, often with strong associated urges, behaviors are often related as
pleasurable or egosyntonic, whereas repetitive behaviors or rituals in OC disorder (OCD) are
generally egodystonic [7,8]. Individuals with ICDs typically score high on measures of
impulsivity and related constructs like sensation-seeking whereas individuals with OCD
typically score high on measures of harm avoidance [8-12]. Diagnostic criteria for ICDs like
PG overlap with those for substance dependence, with specific criteria relating to tolerance,
withdrawal, repeated unsuccessful attempts to cut back or quit, and interference in major areas
of life functioning [1]. As outlined below, there are multiple neurobiological and genetic
similarities between ICDs and substance addictions. Thus, ICDs may be considered
“behavioral addictions” [13-16].
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Addiction: An Overview
Extensive research has been performed into the neurobiological underpinnings of the
development and maintenance of addictions (reviewed in [17-19]). Emerging views of
addiction involve a drug or behavior acquiring saliency via reinforcement, with subsequent
transitions through reward-based learning processes into habitual/compulsive levels of
engagement [19].

Appetitive conditioning is an important consideration in the early stages of the addiction
process. Appetitive conditioning, defined as “the process through which new rewards are
learned and acquire their motivational salience,” includes conditioned environmental stimuli
that are closely associated in time with addictive processes [20]. Several neuroanatomical
structures important in this conditioning process include the amygdala, which is important in
the assignment of emotional significance and learned associations between motivationally
relevant and otherwise neutral stimuli [17,21], the orbitofrontal cortex (OFC), which in animal
studies has been suggested to encode outcome expectancies and via its strong anatomical
connections with the basolateral amygdala (BLA) may facilitate associative learning in the
amygdala, and the anterior cingulate cortex (ACC) which has been implicated in discriminative
learning and cognitive control [22]. Additional structures that are important in this process
include the hippocampus, which provides contextual memory relevant to motivational stimuli,
and hypothalamic and septal nuclei, which provide information relevant to primitive
motivational behaviors such as sexual drives and nutrient ingestion [23,24]. Together, these
and related structures comprise neurocircuitry that underlies the engagement in motivated
behaviors. As motivated behaviors become increasingly subordinated to the addiction-related
ones during the progression of the addictive process, it is likely that changes in the structure
and function of these regions contribute to the excessive engagement in behaviors that is central
to ICDs.

Also important in conditioning and addiction is the nucleus accumbens (NAcc), which is
comprised of a shell and a core. The shell, via reciprocal innervation with the ventral tegmental
area, is important in modulating motivational salience, whereas the core is more involved with
expression of learned behaviors in response to stimuli that predict motivationally relevant
events/conditioned reinforcement [17,19]. The ventral tegmental area (VTA), with its
dopaminergic projections to the amygdala, NAcc and prefrontal cortex (PFC, which includes
the OFC and ACC), facilitates learned associations with motivationally salient events via
phasic dopamine (DA) release [25,26]. Dopaminergic neurons are inhibited, likely via the
dorsal medial thalamus (habenula), when expected rewards do not occur [27,28]. It has been
proposed that in the latter stages of addiction, predominant influence over behavioral drive
transitions from corticostriatal circuits that involve the ventral striatum to circuits that involve
the dorsal striatum, which has long been implicated in habit formation (see below) [29,30].

Using the striatum as a focus, a model can be generated in which appetitive conditioning begins
in the NAcc shell via inputs from the hippocampus, VTA (which also receives input from the
central nucleus of the amygdala), and PFC, “transitions” to conditioned reinforcement in the
NAcc core via inputs from the BLA and PFC, and finally evolves to habit formation in the
dorsal striatum via input from the sensorimotor cortices and other regions like the septal
hypothalamus [19,23]. These transitions involve limbic, associative and sensorimotor regions
of the striatum, respectively (see figure 1A). The dorsal striatum and globus pallidus (via input
from the NAcc core) act on the thalamus which then feeds back to cortical structures. Within
this anatomical framework, the genetics and neurobiology of ICDs are reviewed. Additionally,
though there is much overlap in neurocircuitry and neurotransmitter involvement in different
stages of addiction, these systems are presented in an order roughly paralleling the above-
mentioned transitional formation of addiction.
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Population Genetics of Addiction and ICDs
Genes in essence provide the first contribution to the addiction process, as they determine
foundational vulnerabilities for normal behavioral processes to go awry. Genetic studies of
ICDs suggest similarities to other addictions [31]. Family and twin epidemiologic studies have
estimated that genetic contributions account for up to 60% of the variance in the risk for
substance addictions [32,33]. Similarly robust genetic contributions have been found for PG.
Using data from the Vietnam Era Twin (VET) registry, genetic factors were estimated to
account for between 35% and 54% of the liability for DSM-III-R symptomatology in PG
[34]. The degree of heritability is similar to those of other psychiatric disorders including
substance use disorders: in the same sample, 34% of variance in the risk for drug dependence
was attributable to genetic factors [35]. Another study of the VET registry assessed lifetime
histories of PG and alcohol dependence by structured interview and quantified the extent to
which environmental and genetic risk for PG was shared with alcohol dependence. The authors
found that a significant proportion of the risk for subclinical PG (12-20% of genetic and 3-8%
of environmental) was accounted for by the risk of alcohol dependence [36]. In a subsequent
study of the same population, Slutske and colleagues also found a significant association
between PG and antisocial behavior, with this association predominantly being explained by
genetic factors [37]. These studies suggest that ICDs such as PG are related to alcohol
dependence and antisocial behavior, and may be linked via common underlying pathways such
as impulsivity (see below). Although preliminary, these data suggest that as with drug
addictions, genetic factors contribute significantly to the pathophysiology of ICDs. Specific
genetic contributions related to the neurotransmitters implicated in ICDs are described below.

Impulsivity
Impulsivity has relevance for many psychiatric disorders, including ICDs and substance
addictions [38]. Within the addiction process, impulsivity contributes to early stages such as
drug experimentation. Trait impulsivity has multiple components; e.g., one study identified
four components (urgency, lack of premeditation, lack of perseverance, and sensation seeking
[39]) whereas other structured measures of impulsiveness factor into three elements (the Barratt
Impulsivity Scale fractionates into cognition, motor and planning components and the Eysenck
impulsivity scale into venturesomeness, impulsiveness and empathy domains [40,41]). Moeller
and colleagues have defined impulsivity as “a predisposition toward rapid, unplanned reactions
to internal or external stimuli [with diminished] regard to the negative consequences of these
reaction to the impulsive individual or to others [42].” Together, these findings suggest
impulsivity is a complex, multifaceted construct. Consistently, data from human and animal
studies suggest that multiple brain regions and neurotransmitter systems contribute to
impulsive behaviors throughout the addiction process [32,43].

Dopamine, Impulsivity and ICDs
As outlined above, dopamine is relevant early in the addiction process as well as in later aspects.
Dopaminergic systems have been implicated in impulsivity and ICDs. Psychostimulants such
as amphetamine influence dopamine and other biogenic systems and are effective therapies
for attention deficit hyperactivity disorder (ADHD), a disorder that has impulsivity as a central
feature. Dysregulation of the NAcc DA system has been implicated in ADHD [44].
Dopaminergic systems also contribute to addictive processes. Persistently low D2 receptor
availability has also been reported in cocaine abusers several months after detoxification, and
this availability has been associated with decreased metabolism in the OFC among other brain
regions such as the cingulate gyrus [18,45]. Low baseline measures of striatal DA D2 receptor
availability in non-addicted subjects predict methylphenidate drug liking, supporting the
hypothesis that low D2 receptor availability mediates vulnerability to addiction [46]. In
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support, reduced D2 receptor availability (likely due to decreased receptor numbers rather than
increased DA release) was observed in the ventral striatum of highly impulsive rats, and this
availability predicted high rates of intravenous cocaine self-administration [47]. Low D2
receptor availability in the striatum also predicted subsequent increased cocaine self-
administration by monkeys [48]. The extent to which these findings related to impulsivity and
ICDs requires direct examination.

DA may mediate rewarding or reinforcing aspects of gambling, and DA has been implicated
in PG [49]. Decreased levels of DA and increased levels of it metabolites 3,4-
dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) have been found in the
CSF of pathological gamblers [50], although these findings were no longer observed when
correcting for CSF flow rate [51]. Amphetamine, a drug that increases extracellular
catecholamine and 5-HT concentrations via vesicular depletion, reuptake inhibition,
enhancement of DA synthesis, and monoamine oxidase (MAO) inhibition [52], cross-primes
for gambling behavior in problem gamblers, but not for alcohol use in problem drinkers [53].
These findings suggest a role for DA (and/or other aminergic pathways) in the pathophysiology
of PG as drugs with similar mechanisms of action can cross-prime for reinstatement of other
drugs within that class (i.e. amphetamine for cocaine) [54,55] .

Several reports have linked DA agonist use in Parkinson’s Disease (PD) with PG and other
ICD behaviors such as in the domains of sex and eating [56-60]. A recent study of 272 PD
patients who were screened and assessed for ICDs found similarly strong associations across
DA agonists with PG and other ICDs [61]. A history of an ICD prior to PD onset was associated
with a current ICD. Daily levo-dopa equivalence doses were higher in patients with an ICD
than in those without. A prospective study of 297 patients with PD screened for lifetime
prevalence of PG also found an association between DA agonist use and PG [62]. Although
no association was observed with agonist subtype, an association with concurrent levodopa
administration was observed, suggesting a total dose effect or priming effect of levodopa
[62]. As such, existing data suggest that DA agonists, particularly in individuals at risk for
ICDs, are associated with PG and other ICDs, further linking the DA system with ICDs.

Genetic studies have linked several genes to impulsivity and addiction, including genes
encoding the DA D4 receptor (DRD4) and DA transporter (SLC6A3) [32,63,64] ADHD is
highly heritable, with a genetic contributions accounting for nearly 80% of the risk for the
disorder, and amongst the most implicated genetic variants related to ADHD are DRD4 and
the SLC6A3 variants [65]. Other DA genes such as DRD5 have been linked to ADHD as well
[65]. Two studies found an association of polymorphisms of DRD4 with PG [66,67] .
Additionally, the D2A1 allele of the D2 receptor has been implicated in drug abuse, compulsive
eating and smoking [63,68], and has been found in two-fold higher frequency in subjects with
PG compared to controls [69]. The above data suggest, both through genetic predispositions
and functional output, dopaminergic contributions to impulsive components of ICDs and other
addictions. However, additional studies are needed to replicate and extend these findings,
particularly as studies investigating DA contributions to personality measures of impulsivity
or theoretically related constructs such as novelty seeking have shown varying results in their
relationship to DA gene variants [70].

Dopaminergic Regulation and ICDs: Roles for γ-aminobutyric acid (GABA)
and Glutamate

γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. It is
synthesized in nerve terminals from glutamate by the enzyme glutamate decarboxylase. There
is evidence of anatomic and functional connectivity between GABA and dopaminergic systems
as well as increasing support for effects of modulation of GABAergic systems on substance
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use disorders [71]. For example, tiagabine, a GABA reuptake inhibitor used primarily to treat
seizures, has shown preliminary efficacy in cocaine addiction [72], and has in a case report,
shown to help with control of impulsive aggression [73]. Glutamate, an excitatory
neurotransmitter and precursor of GABA has also been implicated in addictions as well as
ICDs.

In preclinical studies, levels of glutamate within the NAcc mediate reward-seeking behavior
[74]. Nonvesicular glutamate release from cysteine/glutamate antiporters has been shown to
be the main source of extracellular glutamate in the NAcc; it modulates the release of vesicular
glutamate and dopamine via stimulation of glutamate group 2/3 metabotropic glutamate
receptors [75,76]. N-acetylcysteine (NAC), a cysteine pro-drug, increases extracellular levels
of glutamate, perhaps via stimulation of inhibitory metabotropic glutamate receptors, thus
reducing synaptic release of glutamate. It has shown preliminary efficacy in both cocaine
addiction [77] and PG [78]. Taken together, these data suggest possible roles for glutamatergic
and GABAergic systems in substance and behavioral addictions.

Serotonin, Impulsivity and ICDs
Like DA, GABA and glutamate, a role for serotonin (5-HT) is supported in impulsivity, ICDs
and drug addictions. Serotonergic neurons project form the dorsal raphe nucleus throughout
the brain to regions including the hippocampus, frontal cortex and amygdala. In animal models,
forebrain 5-HT depletion has been shown to lead to impulsive choice, while the indirect 5-HT
agonist fenfluramine decreases such behavior [79,80]. Additionally, lesion of the rat raphe
results in transient preference for immediate rewards [81]. Relatively nonselective 5-HT
antagonists have been shown to promote self-controlled choice [82]. A role for specific
serotonin system components is supported by findings of greater motor impulsivity in 5-
HT1B knock-out mice [83]. Tryptophan depletion, which lowers 5-HT levels (with concomitant
decreases in 5-HT metabolites in the cerebrospinal fluid (CSF)), increases motor impulsivity
(continuous-performance test-identical pairs), but not impulsive choice (delay discounting) in
humans [84,85]. In subjects with a family history of alcoholism, tryptophan depletion decreases
behavioral inhibition (Stop Task) but did not influence delay discounting [84]. Low levels of
the 5-HT metabolite 5-hydroxyindolacetic acid (5-HIAA) have been found in individuals with
impulsive characteristics [86,87], and early-onset alcoholism [64]. Low levels of CSF 5-HIAA
have also been associated with risk-taking behaviors in primates; e.g., monkeys taking longer
leaps in the jungle [88]. Taken together, multiple lines of evidence support a role for 5-HT in
mediating impulsivity, though more research is needed to identify the specific 5-HT system
components contributing to specific aspects of impulsivity.

5-HT systems have been implicated in ICDs. Although men with PG versus those without show
no significant differences in 5-HT or 5-HIAA in CSF samples [50,89,90], levels of 5-HIAA
were found to be lower in those with PG when controlling for tapping time (which was
increased in the PG group) [51]. Metachlorophenylpiperazine (m-CPP), a metabolite of
trazodone acts as a partial agonist and has high affinity for 5-HT receptors (especially 5-HT2c,
which has been implicated in the mediation of aspects of mood, anxiety behavior and
neuroendocrine function [91]). Administration of m-CPP has been reported to generate a
behavioral “high” and increase prolactin levels (a process thought to be mediated by
postsynaptic 5-HT1A/2A/2C receptors) in subjects with PG as compared to control subjects
without PG [92]. This subjective response is similar to that reported in other disorders in which
impulsive or compulsive behaviors are prominent, including antisocial personality disorder
[93], borderline personality disorder [94], cocaine dependence [95], and alcohol abuse or
dependence [96].
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In addition to pharmacological challenges, genetic studies have implicated the 5-HT system
in both impulsivity and ICDs. A TPH1 (tryptophan hydroxylase 1, which encodes the enzyme
for the rate-limiting step in 5-HT production) gene variant has been found to be associated with
reduced 5-HIAA in CSF and suicidal behavior in impulsive violent criminal offenders [97].
Other serotonergic genes have been linked to both impulsivity and substance addiction and
include SERT (SLC6A4) and MAOA [32]. A polymorphism in the promoter region of the human
serotonin transporter gene (SLC6A4) encoding short and long forms of the protein (with the
short variant producing functionally less protein) has been associated with several dimensions
of psychopathology, including neuroticism, anxiety and depression [98-102], though more
recent studies have raised questions regarding the strength or validity of these associations
[103-105]. SLC6A4 variation may contribute to ICDs as an association has been reported
between the SLC6A4 short allele and PG in males but not females [106]. Finally, studies
involving small samples of subjects have inconsistently reported links between serotonin and
monoamine oxidase genes and ICDs such as PG, compulsive buying and trichotillomania
[107-109]. Additional studies using larger samples and careful (e.g., diagnostic) assessments
will help to investigate the genetics of the broader family of ICDs.

Treatment studies of serotonergic agents have yielded mixed results regarding efficacy in
treatment of ICDs [110-113]. Placebo-controlled, randomized clinical trials (RCTs) of
selective serotonin reuptake inhibitors (SSRIs) have yielded mixed results, with some RCTs
showing superior efficacy over placebo [114,115] and others not [116,117] . Most studies
showed clinical improvement early in treatment in both drug- and placebo-treated groups.
These gains suggest a treatment or placebo response rather than gains specific to the active
drug, although later differentiation between groups in some studies suggest active medication
effects. In several studies of trichotillomania, no significant difference was observed between
fluoxetine and placebo treatments [111]. In a randomized study of citalopram vs. placebo in
28 homosexual men with compulsive sexual behaviors, no differences were seen in measures
of compulsive sexual behaviors between groups after 12 weeks of therapy, although there was
a significant decrease in sexual drive related to active drug [118]. Two parallel-arm, controlled
studies of fluvoxamine in the treatment of compulsive buying showed no difference between
active drug and placebo [119,120], but a study of seven weeks of open-label citalopram
followed by nine weeks of randomization showed improvement in active drug compared to
placebo [121]. A case report suggested efficacy of escitalopram, and SSRI in the treatment of
problematic internet use, but further studies need to be conducted regarding efficacy in
treatment (and diagnosis) of this disorder [113]. Taken together, the findings suggest that SSRIs
work for some individuals with ICDs but not others. These findings suggest that specific
individual features (e.g., genetic features or co-occurring disorders like anxiety or depression)
might help guide the selection of appropriate treatments [122].

As described above, impulsivity contributes to both ICDs and substance addictions. It is likely
that impulsivity has unique contributions to individual ICDs and substance addictions as is the
case for aspects of cognitive functioning [123]. Additionally, like with impulsivity, similarities
between ICDs and substance addictions exist in other domains, such as decision-making and
stress responsivity, and these domains are considered below.

Risk-Reward Assessment, Decision-making, and Ventral Prefrontal Cortex
(PFC)

Once a behavior has moved beyond the initial stages of associative learning, executive control
over its execution becomes increasingly important. Regions of the PFC contribute to decision-
making in disorders of impulse control and addiction. The OFC codes the relative value of
reward stimuli [124,125], a process in part mediated by the 5-HT system. The OFC facilitates
cognitive flexibility by promoting updating of associative encoding in downstream brain areas
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such as the amygdala [126]. Additionally, the inferior frontal gyrus/dorsolateral PFC is
important in shifting attention, which contributes to the ability to resist intrusive information
such as thinking about drugs/behaviors [127]. The OFC, including the overlapping
ventromedial PFC (vmPFC), contributes to reward processing and prediction [128,129] .
Subjects with vmPFC lesions show characteristic deficits in planning, often repeatedly making
decisions that lead to negative consequences [130]. Further, these subjects also perform worse
than control comparison subjects on the Iowa Gambling Task (IGT), a measure which was
developed to investigate small immediate reward and intermittent punishment associated with
long-term gain versus large immediate reward and intermittent punishment associated with
long-term loss [131].

Subjects with substance use disorders typically display impaired performance on the IGT
[132], and this poor performance has been correlated with decreased blood flow to the vmPFC
and other cortical regions [133-136]. Individuals with PG also choose disadvantageously as
compared to controls on the IGT [12,137]. Individuals with PG more readily choose lower
monetary rewards promised immediately over higher monetary rewards promised after delayed
intervals (“delay discounting”) compared to control subjects [138]. Temporal discounting of
rewards has been shown to be more rapid in individuals with PG with comorbid substance use
disorders, consistent with mechanisms contributing to each disorder in an additive or
synergistic fashion [138]. Dysfunction of vmPFC circuitry may contribute to these differences
in behaviors between PG and control subjects, as appears to be the case in drug addiction.
Decreased activation of the vmPFC has been observed in PG subjects during presentation of
gambling cues [9], performance of the Stroop Color-Word Interference Task [139], and
simulated gambling [140]. In this last study, activation of the vmPFC correlated inversely with
gambling severity among PG subjects. Together, these data suggest an important role for the
vmPFC in PG. Future studies will help to elucidate the extent to which these finding extend to
other ICDs.

Substance-dependent individuals show abnormalities in the OFC. Similar to individuals with
damage to the OFC, subjects with stimulant dependence show sub-optimal decision making,
with longer deliberation before choice selection [141]. Diminished activation of the OFC and
cingulate gyrus has been associated with chronic cocaine use [142]. Poor performance on a
color-word drug Stroop task correlates with hypoactivation of the OFC in cocaine-addicted
individuals [142]. Taken together, these data suggest regions of the PFC are important in
decision-making.

Decision-Making, Impulsivity, and the Amygdala
Amygdala function contributes significantly to decision-making and impulsivity. The
amygdala receives serotonergic and dopaminergic input from the raphe and VTA respectively,
and its activation is regulated by a balance between glutamate-induced excitation and GABA-
mediated inhibition [143,144]. The amygdala participates in the processing and memory of
emotional reactions. According to the somatic marker hypothesis (which states that decision
making relies on neural substrates that regulate homeostasis, feeling and emotion), affective
responses to stimuli are evoked through visceral motor structures such as the hypothalamus
and other autonomic brainstem nuclei [127]. The amygdala works in conjunction with the
vmPFC/OFC in decision-making, with each region contributing in a distinct fashion. In
rodents, excitotoxic lesions of the BLA promote impulsive choice in a delayed-reinforcement
task [145]. In humans, subjects with vmPFC damage and subjects with amygdalar damage both
demonstrate deficiencies in decision-making in the IGT [146]. However, autonomic responses
(measured by skin conductance response) to large monetary gains or losses are deficient in
individuals with bilateral amygdalar lesions; in contrast, these responses are intact in patients
with vmPFC damage [146]. However, anticipatory skin conductance responses during IGT
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performance show a different pattern: subjects with vmPFC damage show deficiencies,
whereas those with amygdalar damage show normal responses. Together, these findings that
abnormal amygdala-ventral striatum activity may influence impulsivity in addictive processes,
possibly through an effect on incentive value attribution of cues [148]. In drug-addicted
persons, exaggerated autonomic responses are triggered by drug cues [149]. Abnormal
amygdalar activity can be influenced by genetic variants in 5-HT genes [100]. The role of the
amygdala in ICDs has not been directly investigated.

Habit Formation
As a behavior shifts from active learning to habitual response, control shifts from an associative
cortico-basal ganglia network involving the PFC and ventral striatum to dorsomedial striatum/
caudate and then to a more sensorimotor cortico-basal ganglia network involving the
dorsolateral striatum/putamen (see Figure 1b) [29]. Overtraining of behaviors shifts activation
from dorsolateral PFC and caudate to putamen and motor cortices [150, 151]. In addiction,
repeated cocaine self-administration in monkeys is related to a progression of activation of the
ventral striatum to involvement of the dorsal striatum [152]. As behavior becomes habitual,
conditioned stimuli, important components of the addictive process, tend to potentiate habit
responses rather than goal-directed activity [153]. This differential response may be influenced
indirectly by the NAcc via its projections to the VTA/substantia nigra with subsequent
dopaminergic input from the latter to the sensorimotor network [154]. Infusion of the mixed
DA receptor antagonist alpha-flupenthixol in the dorsal striatum but not into the NAcc core
reduces established cocaine seeking in animal models of addiction [155]. Down-regulation of
D2 DA receptors has been observed first in ventral and then dorsal striatum in cocaine-taking
monkeys, consistent with observations made with human chronic cocaine abusers [156, 157].

ICDs have been described in terms of habit formation [158]. As with drug addictions,
dysregulation of striatal circuitry is implicated in these disorders. For example, in a study of
simulated gambling, individuals with PG showed differences in striatal activation as compared
with control subjects, and activation was related to gambling severity [140]. Preliminary data
similarly implicate striatal function in gambling urges in PG and in cocaine cravings in cocaine
dependence [159]. Relatively diminished putamenal volume has been observed in subjects with
trichotillomania as compared to control subjects, although the functional relevance of this
anatomical difference requires additional investigation [160]. From these data, a hypothesis
can be constructed that goal-directed actions transit from active learning to a more
dysfunctional, habit-based response in ICDs in a similar fashion to that observed in substance-
addicted individuals.

Stress Responsiveness and ICDs
Stressful events and psychological distress frequently contribute to relapse to drug use among
individuals with opiate and cocaine dependence [161,162]. Preclinical evidence indicates that
acute stress leads to increases in self-administration of drugs such as amphetamines [163],
cocaine [164,165], and alcohol [166,167]. Mechanisms related to stress are critical in the
establishment of addictions and their propagation as chronic disorders [168]. Stress exposure
produces an increased arousal state similar to drugs themselves [169]. A number of drugs of
abuse, such as psychostimulants [170-172] and alcohol [173] activate stress circuitry and the
HPA axis. In rodents, opioids stimulate the HPA axis, but the opposite effect is seen in primates,
including humans (reviewed in [174]). Additionally, benzodiazepines have been shown to
attenuate HPA activation in humans [175] As activation of the HPA axis reciprocally increases
mesolimbic dopamine transmission, exposure to stress may provide a common neural substrate
by which stress enhances drug-seeking behavior [169]. Stress-related stimuli, such as restraint
and footshock, increase NAcc DA release [176,177]. Stress-induced craving paradigms in
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treatment-engaged addicted individuals activate the striatum and decrease activation in the
anterior cingulate. These findings suggest a role for stress in prefrontal dysfunction and
concurrent engagement of habit circuitry in addiction [178]. The extent to which these changes
are related to impulsivity and/or disadvantageous decision-making requires further
investigation [179].

Studies of individuals with ICDs have yielded varying results regarding the involvement of
stress pathways in these disorders [180]. For example, CSF levels of corticotrophin-releasing
hormone (CRH) did not differ in subjects with PG compared to controls [89]. Transient
increases in cortisol have been noted in gambling studies of volunteers recruited from casinos
with problem gamblers showing a similar magnitude of response to controls [181-183].
Stressful life events like early life trauma have been implicated in PG like they have in drug
addiction [177]. Together, these data suggest that it will be important to examine further the
precise mechanisms in which stress and stress pathways contribute to the pathophysiology of
ICDs.

Opioids, Stress and ICDs
Opioids modulate mesolimbic DA pathways in the VTA by activating μ opioid receptors on
secondary interneurons causing hyperpolarization and inhibition of GABA release on primary
neurons (the dopaminergic output neurons) with consequent increased DA release [184].
However, activation of κ opioid receptors on primary neurons causes their direct inhibition
[185]. Recently it has been shown that opioid receptor activation (κ vs. μ) differentially inhibits
mesolimbic neurons depending on their target projections (Nacc vs. BLA) [186]. The
endogenous opioid system, via both μ and κ opioid receptors, tonically inhibits the HPA axis,
suggesting that atypical responsivity contributes to addiction [32]. In support of this hypothesis,
mice that lack the mu opioid receptor gene (OPRM1) show no morphine analgesia or place
preference [187].

Polymorphisms in OPRM1 are associated with differential binding to endorphins (for example,
the A118G variant codes for a receptor with three-fold greater binding and activation of its G
protein-coupled inwardly rectifying potassium channel [188]). The A118G variant has been
associated with opioid dependence [32], and subjects with this variant have shown more
favorable responses to naltrexone for treatment of alcohol dependence [64,189]. Haplotypes
of the kappa opioid receptor gene (OPRK1) and the promoter region of its endogenous ligand
precursor, prodynorphin, have also been associated with opiate dependence and other
addictions [33].

Gambling or related behaviors have been associated with elevated blood levels of the
endogenous opioid β-endorphin [190]. Given their mechanism of action [191] and efficacy in
the treatment of alcohol and opiate dependence [192], opioid receptor antagonists have been
examined in the treatment of ICDs. Naltrexone has shown superiority to placebo in a single-
site study of PG [193], and nalmefene, a long-acting opioid antagonist, has shown superiority
to placebo in a large double-blind, multi-centered study of subjects with PG [194]. Naltrexone
has shown benefit in case studies of compulsive sexual behavior [195] and open-labeled trials
of adolescent sexual offenders [196]. Naltrexone has shown preliminary efficacy in compulsive
buying [121]. These data suggest that, opioid systems are important in both chemical and
behavioral addictions. As opioids influence multiple neural networks and stress-related
pathways, future studies will likely define their precise mechanisms of action in ICDs.

Conclusions and Future Directions
Emerging data on the neurobiology of impulsivity and ICDs suggest parallels with drug
addictions. Although many fewer studies have investigated ICDs than have drug addictions
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(and most existing studies have investigated PG), genetic, behavioral and treatment data
implicate multiple neurotransmitter systems and neuronal circuits in the establishment and
maintenance of behavioral addictions. Despite these advances, controversy remains regarding
the nosology and underlying pathophysiology of specific ICDs.

Endophenotypes provide insight into the etiology of disorders and such information can inform
the categorizations of disorders. Endophenotypic views of psychiatric disorders like depression
and schizophrenia are emerging [197,198]. Endophenotypes are “measurable components
unseen by the unaided eye” and may be neuropsychological, endocrinological, cognitive,
neuroanatomical or biochemical in nature. Endophenotypes inform the understanding of
genetic factors underlying disease processes by focusing on specific biological features rather
than diagnostic categories which in psychiatry are typically heterogeneous in nature [198]. As
more becomes known as to the nature and characterization of ICDs, endophenotypic views of
their underlying components may emerge. For example, impulsivity, differential endocrine
responses to stress, or components thereof may represent important endophenotypes for PG,
other ICDs and substance addictions. Identifying endophenotypes should help differentiate
subclasses of disorders (genetically based and otherwise), ultimately honing characterization,
diagnosis and optimal treatment. Changes in similar endophenotypic measures might be
expected to accompany symptom improvement for both ICDs and substance addictions.
Clinically relevant endophenotypes may also guide the development of animal models of these
diseases that will ultimately help us understand the etiology of ICDs and substance addictions,
develop more effective prevention strategies and optimize behavioral and pharmacological
treatments.
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Figure 1.
a: Brain circuitry implicated in addiction. PFC = prefrontal cortex, VTA = ventral tegmental
area, SN = substantia nigra, NAcc = nucleus accumbens, OFC = orbitofrontal cortex
b. Transition of activation of different corticostriatal networks with the formation of habit.
Different colors reflect distinct corticostriatal circuits that underlie motivated and habitual
behavior. The multicolored arrow represents the shift in involvement of these circuits as
behavior becomes more habitual or compulsive in nature. Bottom triangles reflect hypothesized
proportions of the motivational behavior repertoire that are devoted to adaptive and addictive
behaviors respectively, as involvement of more dorsal striatal circuits become more prominent
and addictive behaviors become more severe.
c. Habit formation in Addiction. Habit formation in addiction progression with cyclical arrow
representing pattern of behaviors posited as central to the addictive process [178]. Straight
arrow represents transition from acquisition to habitual/compulsive behaviors in addiction
formation.
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