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Abstract

Pathogens have evolved numerous strategies to infect their hosts, while hosts have evolved immune responses
and other defenses to these foreign challenges. The vast majority of host–pathogen interactions involve
protein–protein recognition, yet our current understanding of these interactions is limited. Here, we present
and apply a computational whole-genome protocol that generates testable predictions of host–pathogen
protein interactions. The protocol first scans the host and pathogen genomes for proteins with similarity to
known protein complexes, then assesses these putative interactions, using structure if available, and, finally,
filters the remaining interactions using biological context, such as the stage-specific expression of pathogen
proteins and tissue expression of host proteins. The technique was applied to 10 pathogens, including spe-
cies of Mycobacterium, apicomplexa, and kinetoplastida, responsible for ‘‘neglected’’ human diseases. The
method was assessed by (1) comparison to a set of known host–pathogen interactions, (2) comparison to gene
expression and essentiality data describing host and pathogen genes involved in infection, and (3) analysis of
the functional properties of the human proteins predicted to interact with pathogen proteins, demonstrating
an enrichment for functionally relevant host–pathogen interactions. We present several specific predictions
that warrant experimental follow-up, including interactions from previously characterized mechanisms,
such as cytoadhesion and protease inhibition, as well as suspected interactions in hypothesized networks,
such as apoptotic pathways. Our computational method provides a means to mine whole-genome data and is
complementary to experimental efforts in elucidating networks of host–pathogen protein interactions.
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Genome sequencing has changed the scale and diversity
of biomedical problems amenable to investigation as
complete sequences are now available for many species,
including human and a number of biomedically relevant
microbes (Guttmacher and Collins 2005). Functional
insights into the proteins encoded by these genomes are
emerging from technical advances such as three-dimen-
sional structure determination and the detection of
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genetic and physical interactions (Westbrook et al. 2002;
Bader et al. 2003). However, in general, the wealth of
genomic information available for both human host and
pathogens remains unmined due to the lack of whole-
genome protocols that can predict host–pathogen inter-
actions.

Pathogens have evolved numerous strategies to suc-
cessfully invade their hosts, acquire nutrients, and evade
their immune defenses (Munter et al. 2006). These
strategies often involve direct interactions between host
and pathogen molecules, including the formation of
protein complexes (Stebbins 2005). Much remains to be
learned about the network of interactions between host
and pathogen proteins. If the intraspecies interaction
network of Saccharomyces cerevisiae is a guide, several
independent large-scale studies are likely required for a
comprehensive mapping of host–pathogen interactions
(Collins et al. 2007).

Interactions between host and pathogen proteins are
typically studied using traditional small-scale biochem-
ical and genetic experiments, which focus on one protein
or pathway at a time. Large-scale interaction discovery
methods, such as tandem affinity purification and yeast–
two-hybrid experiments, enable more comprehensive
detection but at the cost of significant false-negative
and false-positive error rates (Hart et al. 2006). Computa-
tional methods have demonstrated utility in improving the
coverage, accuracy, and efficiency of identifying protein–
protein interactions in combination with experimental
data sets (Jansen et al. 2003; Lee et al. 2004) and are
likely to similarly complement large-scale experimental
efforts to characterize host–pathogen interaction networks.

Here we hypothesize that host–pathogen protein inter-
actions, knowledge of which is severely lacking, can
be inferred from the growing body of experimentally
observed interactions, which is reaching saturation in
some species. We previously showed that this approach
can be useful in predicting intraspecies interactions
(Davis et al. 2006). We now provide three additional
lines of evidence that suggest the hypothesis is a valid one
and that the developed protocol can predict functionally
relevant host–pathogen protein interactions. The protocol
identifies pairs of host and pathogen proteins with
similarity to proteins known to interact, assesses the
likelihood of interaction based on structural modeling,
and then identifies those pairs with a greater chance of
encounter as suggested by their subcellular location and
expression properties. The result of the protocol is an
enriched candidate set that is suitable for subsequent
experimental study. We have applied the protocol to 10
human pathogens, including species of mycobacteria,
kinetoplastida, and apicomplexa, which are responsible
for ‘‘neglected’’ human diseases. These pathogens cause
tropical diseases with a significant global burden, infect-

ing over 1 billion people and incurring over 1 million
annual deaths (World Health Organization 2003).

We first describe the protocol, detailing the data
sources, the computations used, and its performance on
intraspecies protein interactions in S. cerevisiae. We then
present the predictions made for the 10 pathogens and
assess them by three independent computational proce-
dures. We then discuss the observed performance of the
method and potential future improvements. We present
several specific predictions that warrant experimental
follow-up. Finally, we conclude by discussing the impli-
cations of these results for understanding the molecular
mechanisms of pathogenesis.

Results

The protocol begins with the target set of host and
pathogen protein sequences (Materials and Methods)
(Fig. 1).

Detecting sequence and structure similarities and
identifying pairs of proteins with similarity
to known complexes

Similarities were first detected between the target se-
quences and components of known protein complexes,
using an automated comparative protein structure model-
ing pipeline. The fraction of the pathogen proteomes for
which a suitable interaction template was identified
varied from 16% of Trypanosoma cruzi sequences to

Figure 1. Prediction protocol. The protocol begins with the set of host and

pathogen proteins. Sequence matching procedures are then used to identify

similarities between the host or pathogen proteins and proteins with known

structure or known interaction partners. A structure-based statistical

potential assessment, or a sequence similarity score in the absence of

structure, is then used to predict interacting partners. Finally, this set of

potential interactions is filtered using the biological contexts of the host

and pathogen proteins and a network-level filter. The protocol reduces the

number of potential P. falciparum–human protein interactions by about

five orders of magnitude (Table 2).
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25% of Cryptosporidium parvum sequences, while the
human proteome coverage was 34% (Table 1).

Pairs of host and pathogen proteins that each had
detectable similarity to components of a known interac-
tion were then identified. The number of these pairs
varied widely among the pathogens, with the prokaryotes
having far fewer pairs than the eukaryotes (Table 2,
column 2). For example, 43,528 host–pathogen protein
pairs were identified for Mycobacterium tuberculosis (3954
sequences, 18% template coverage), while 160,952 pairs
were identified for Cryptosporidium hominis with approx-
imately the same proteome size and interaction template
coverage (3886 sequences, 20% template coverage).
Among the eukaryotic pathogens, the number of pairs
varied approximately in proportion to the proteome sizes
(Tables 1, 2).

Assessing the sequence or structural basis of the
potential interactions

Next, the sequence or structural basis of interaction
between the identified pairs was assessed using sequence
similarity and statistical potential scores, respectively.
This step identified ;5% of the host–pathogen pairs
identified in the previous step as possible interacting
partners (Table 2), almost all (99.5%) of which were
based on structural templates. The minimal contribution
of sequence-based templates to the predictions is due to
the stringent joint sequence identity threshold ($80%;
Materials and Methods) required to reliably transfer
interactions (Yu et al. 2004; Mika and Rost 2006). The
reduction in the number of pairs by the assessment step
was greatest for the Toxoplasma gondii–human pairs,
of which only 3.4% passed the scoring thresholds. As

expected from the number of host–pathogen protein pairs
with interaction templates, fewer predictions were made
for the prokaryotic than for the eukaryotic pathogens.

Applying biological and network-level filters

The interactions were then filtered by the biological
context of their component proteins, such as life-cycle
stage and tissue expression, and by network-level infor-
mation regarding the template usage frequencies. Inter-
actions that met at least one host and one pathogen
biological criterion were considered to pass the biological
context filter (Materials and Methods) (Table 1; see Table
4 and Supplemental Table S3). Next, the network-level
filter flagged those predictions based on templates that
were used for more than 1% of the total predictions, as
these predictions exhibited a low level of interaction
specificity. For example, many pairs of G-protein sub-
units a and b were predicted to interact based on the
crystal structure of the G-protein Gi heterotrimer (Protein
Data Bank [PDB] 1GG2).

The filters resulted in a wide range of reductions in
predicted interactions (Table 2), due to the different levels
of biological annotation used for the genomes. For
example, Plasmodium falciparum had the highest bio-
logical annotation coverage (88%) and, as expected, the
highest fraction of interactions that passed the biological
and network-level filters (13%). This final set of P.
falciparum–human interactions is five orders of magni-
tude smaller than the initial set of all possible protein
pairs. The low coverage of biological annotation for other
pathogens was also evident, as filtering the predictions
for two pathogens, Trypanosoma brucei and T. gondii,
resulted in removal of all interactions. The type of
annotation available for the pathogen proteins is partic-
ularly important. For example, both T. brucei and T. cruzi
have biological annotation for 45% of their proteomes
(Table 1); however, filtering results in zero interactions
for the former and 914 for the latter. This difference
occurs because life cycle annotation is available for 1930
(10%) of T. cruzi proteins but only 120 (1%) of T. brucei
proteins (Supplemental Table S3). The majority of the
biological annotations are GO terms that do not pass the
filtering criteria.

Assessment

Next, the predictions were assessed to characterize the
coverage and accuracy of the method. Coverage refers to
the fraction of interactions that are accessible by the
method, and accuracy refers to the fraction of the covered
interactions that were correctly identified. The structure-
and sequence-based prediction methods have both been
previously benchmarked in the context of intraspecies

Table 1. Interaction template and biological data coverage
of the genomes analyzed

Pathogen
Protein

sequences
With interaction

templates
With biological

data

M. leprae 1601 359 22% 1023 64%

M. tuberculosis 3954 729 18% 2551 65%

L. major 8009 1908 24% 3749 47%

T. brucei 8965 1817 20% 4040 45%

T. cruzi 19,245 3147 16% 8604 45%

C. hominis 3886 780 20% 1591 41%

C. parvum 3806 958 25% 1828 48%

P. falciparum 5342 1126 21% 4691 88%

P. vivax 5334 1131 21% 413 8%

T. gondii 7787 1311 17% 3627 47%

H. sapiens 32,010 10,993 34% 26,595 83%

Our automated comparative protein modeling pipeline MODPIPE was
used to detect sequence and structure similarities to proteins in known
complexes. Biological coverage refers to those proteins for which at least
one type of annotation was available (Supplemental Table S1).

Host–pathogen interactions by structure
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interactions (Yu et al. 2004; Davis et al. 2006), and the
results are briefly described in Materials and Methods.
In contrast to interspecies interactions, large experimental
data sets of thousands of intraspecies interactions are
available and ideal for benchmarking prediction methods.
These benchmarking results remain informative in the
host–pathogen context as the underlying physichochem-
istry remains the same. We assessed the quality of the
protocol in the host–pathogen context in three additional
ways.

Assessment I: Comparison of predicted and known
host–pathogen protein interactions

The predicted interactions were first compared with the
set of known host–pathogen interactions (Supplemental
Table S1), which although too small to rigorously assess
the method, still allow insight into the performance of the
method. Our protocol recovered four of the 33 host–
pathogen protein interactions published in the literature
for the 10 pathogen species. Other known interactions
were not identified because of the lack of available
templates. None of these latter cases was due to incorrect
assessment by our method (Fig. 1, step 3). As expected,
this result suggests that currently, a limitation of the
protocol’s coverage is the restriction to interactions with
an appropriate template.

No interactions have been previously identified for
three of the species we studied, Leishmania major,
C. hominis, and C. parvum. The method recovered 67%
(n ¼ 2) of the known T. brucei–human interactions. One
of these interactions, an ornithine decarboxylase (ODC)
interspecies dimer whose physiological relevance has not
been established, was later filtered out of the predictions
because it was based on a homodimer template. For the
species with the most observed interactions, P. falciparum
and T. cruzi, the method recovered 9% (n ¼ 1) and 8%

(n ¼ 1) of the previously observed interactions, respec-
tively. In both cases, the interactions were protease–
protease inhibitor interactions.

Assessment II: Comparison to gene expression and
essentiality data

Next, we compared our prefiltered predictions to genome-
scale data sets describing pathogen genes involved in
M. tuberculosis infection and human genes involved in
L. major, M. tuberculosis, and T. gondii infections. These
comparisons were performed because genomic studies
are, so far, the only source of large-scale data sets
describing host–pathogen interactions, even though only
weak correlation has been observed between physical
protein interactions and expression data (Mrowka et al.
2001; Jansen et al. 2002).

Previous studies have identified 194 M. tuberculosis
genes that are essential for in vivo infection (Sassetti
and Rubin 2003) and 286 genes that are up-regulated in
granuloma, pericavity, or distal lung infection sites com-
pared with in vitro conditions (Rachman et al. 2006).
Comparison of these two sets of genes to the set of M.
tuberculosis proteins predicted to interact with human
proteins revealed minimal overlap (Supplemental Table
S2). In fact, only one gene occurs in both experimental
data sets and our predictions: Rv3910 (GI 15611046), a
probable conserved trans-membrane protein. The overlap
of our predictions with the set of genes up-regulated
during infection (23 genes) is greater than that between
the two experimental sets of up-regulated genes and
genes essential for infection (18 genes).

Previous studies have identified human genes that are
differentially regulated in response to a variety of proto-
zoal infections, in particular within the macrophage and
dendritic cells of the immune system (Chaussabel et al.
2003). The human proteins predicted to interact with

Table 2. Potential interaction set reduction by assessment and filtering

Pathogen Pairs with templates Potential interactions Filtered interactions

M. leprae 26,234 (6200/359) 1351 (706/101) 13 (13/1)

M. tuberculosis 43,528 (6549/729) 2474 (992/240) 45 (41/13)

L. major 411,468 (9978/1908) 22,243 (2680/656) 289 (186/29)

T. brucei 427,884 (9935/1817) 20,797 (2546/661) 0 (0/0)

T. cruzi 750,419 (10,078/3147) 33,869 (2601/1028) 914 (356/138)

C. hominis 160,592 (9118/780) 7237 (1854/257) 79 (59/8)

C. parvum 203,570 (9242/958) 10,987 (2108/335) 211 (156/13)

P. falciparum 200,428 (9554/1126) 11,655 (2291/434) 1501 (826/216)

P. vivax 211,185 (9546/1131) 12,159 (2305/399) 34 (26/4)

T. gondii 216,187 (9638/1311) 7282 (2024/261) 0 (0/0)

The potential interactions meet the structural assessment or sequence alignment significance criteria. These interactions are then filtered so that they meet
at least one pathogen biological criterion, one host biological criterion, and are based on a template that is used for less than 1% of the total number
of predictions in a given host–pathogen network. The numbers in parentheses represent the number of individual host/pathogen proteins involved in
the interactions.

Davis et al.
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L. major, M. tuberculosis, and T. gondii include, respec-
tively, 231, 78, and 169 proteins encoded by genes
differentially expressed in macrophages and dendritic
cells upon infection by these pathogens (Supplemental
Table S2B) (Chaussabel et al. 2003).

Assessment III: Functional overview of
predicted interactions

Finally, we evaluated the functional relevance of the
predicted interactions by searching for functional anno-
tations of proteins that were significantly enriched in
the human proteins predicted to interact with pathogens,
compared with the whole human proteome. This analysis
was done before the application of the biological filters to
prevent introduction of filter bias into the functional
profile of the predictions.

The human proteins predicted to interact with pathogen
proteins were significantly enriched in several gene
ontology terms (Table 3). For example, the human
proteins predicted to potentially interact with M. tuber-
culosis are enriched in cellular component terms that
make sense in light of known mechanisms of tuberculosis
infection including immunological synapse (7.7-fold
enrichment, P ¼ 10�3), T-cell receptor complex (8.5-fold
enrichment, P ¼ 1.6 3 10�2), and autophagic vacuole
(17.1-fold enrichment, P ¼ 3 3 10�4). These terms all
reflect the known immunobiology of this pathogen, which
elicits a T-cell response and was recently found to be
eliminated through autophagy (Gutierrez et al. 2004;
Deretic 2006; Singh et al. 2006; Vergne et al. 2006).
Similarly, the human proteins predicted to interact with
P. falciparum proteins are enriched in terms such as
extrinsic to plasma membrane (5.2-fold enrichment,

Table 3. Functional annotation of human proteins predicted to interact with M. tuberculosis

Rank GO ID Function Number Enrichment P-value

(a) Cellular component of all human proteins predicted to interact with M. tuberculosis

1 GO:0005776 autophagic vacuole 5 17.1 3.0 3 10�4

2 GO:0005853 eukaryotic translation elongation factor 1 complex 5 12.2 2.2 3 10�3

3 GO:0042101 T-cell receptor complex 5 8.5 1.6 3 10�2

4 GO:0001772 immunological synapse 7 7.7 1.0 3 10�3

5 GO:0005884 actin filament 8 5.3 4.3 3 10�3

6 GO:0005746 mitochondrial electron transport chain 8 4.9 7.6 3 10�3

7 GO:0044455 mitochondrial membrane part 12 3.8 1.2 3 10�3

8 GO:0042995 cell projection 23 2.2 1.2 3 10�3

9 GO:0015629 actin cytoskeleton 25 2.2 5.1 3 10�4

10 GO:0031410 cytoplasmic vesicle 22 1.9 1.5 3 10�2

(b) Biological process of all human proteins predicted to interact with M. tuberculosis

1 GO:0006021 myo-inositol biosynthetic process 3 34.1 1.4 3 10�2

2 GO:0019642 anaerobic glycolysis 5 34.1 6.5 3 10�6

3 GO:0006422 aspartyl-tRNA aminoacylation 5 24.4 1.3 3 10�4

4 GO:0032011 ARF protein signal transduction 7 23.9 3.4 3 10�7

5 GO:0032012 regulation of ARF protein signal transduction 7 23.9 3.4 3 10�7

6 GO:0046847 filopodium formation 6 17.1 1.1 3 10�4

7 GO:0051014 actin filament severing 4 17.1 1.9 3 10�2

8 GO:0043088 regulation of Cdc42 GTPase activity 5 14.2 4.5 3 10�3

9 GO:0032489 regulation of Cdc42 protein signal transduction 5 14.2 4.5 3 10�3

10 GO:0032318 regulation of Ras GTPase activity 5 14.2 4.5 3 10�3

(c) Molecular function of all human proteins predicted to interact with M. tuberculosis

1 GO:0016872 intramolecular lyase activity 3 34.1 5.6 3 10�3

2 GO:0004512 inositol-3-phosphate synthase activity 3 34.1 5.6 3 10�3

3 GO:0019967 interleukin-1, type I, activating binding 4 27.3 5.9 3 10�4

4 GO:0004909 interleukin-1, type I, activating receptor activity 4 27.3 5.9 3 10�4

5 GO:0004739 pyruvate dehydrogenase (acetyl-transferring) activity 3 25.6 2.2 3 10�2

6 GO:0005094 Rho GDP-dissociation inhibitor activity 3 25.6 2.2 3 10�2

7 GO:0004738 pyruvate dehydrogenase activity 3 25.6 2.2 3 10�2

8 GO:0004591 oxoglutarate dehydrogenase (succinyl-transferring) activity 3 25.6 2.2 3 10�2

9 GO:0004815 aspartate-tRNA ligase activity 5 24.4 5.3 3 10�5

10 GO:0004459 L-lactate dehydrogenase activity 7 23.9 1.4 3 10�7

The 10 (a) cellular component, (b) biological process, and (c) molecular function annotation terms that are most enriched in the set of human proteins
predicted to potentially interact with M. tuberculosis proteins, compared with the background, are listed. The analysis was done before application of the
biological filters to prevent bias in the enriched terms. The enriched terms were identified and their significance computed by GO::TermFinder using a
Bonferroni correction (Boyle et al. 2004).

Host–pathogen interactions by structure

www.proteinscience.org 2589



P ¼ 9.2 3 10�15) and homophilic cell adhesion (4.2-fold
enrichment, P ¼ 2.8 3 10�21).

The enriched functional terms that have not been
previously implicated in infection represent either novel
biological insights or false positives. Distinguishing
between these two possibilities requires experiments
beyond the scope of this paper. However, some of the
enriched terms suggest that false positives could be
identified and discarded if they arise from conservation
of core cellular components. For example, the conserva-
tion of core translation machinery across all divisions
of life (Tatusov et al. 1997) could result in erroneously
predicted interactions causing the enrichment in the
human–P. falciparum network for eukaryotic translation
elongation factor (7.4-fold, P ¼ 8.4 3 10�4). Similarly,
terms such as pyruvate deydrogenase activity (25.6-fold,
P ¼ 2.2 3 10�2) and asparate-tRNA ligase activity (24.4-
fold, P ¼ 5.3 3 10�5), which are enriched in the human
proteins predicted to interact with M. tuberculosis, may
also be false positives caused by the conservation of core
cellular components, and could be filtered.

Discussion

We presented a protocol that reduces the number of host–
pathogen protein pairs to an experimentally tractable set
of predicted interactions, by a series of assessments: (1)
identifying template interactions; (2) assessing the puta-
tive interaction, using structure if available; and, finally,
(3) filtering using biological context and network-level
information (Fig. 1; Tables 1, 2, 4; Supplemental Table
S3). For example, the procedure resulted in a five order of
magnitude reduction in the number of possible human–
P. falciparum protein interactions (Table 2). Although it is

not possible to directly assess the enrichment of true
interactions in the predictions, previous assessment in the
context of S. cerevisiae interactions found an enrichment
of about two orders of magnitude (Materials and Meth-
ods). In addition, assessment of the method by compar-
ison to known host–pathogen interactions (Supplemental
Table S1), genomics data (Supplemental Table S2), and
functional analysis (Table 3) suggests that the method is
capable of enriching for functionally relevant interactions.

We now discuss the observed performance of the
method, present several specific predictions and their
support in the literature, and close by discussing future
developments and applications of the method to charac-
terize host–pathogen and other types of interspecies
interactions.

Limitations in coverage

The performance of the method can be characterized
by two factors: coverage, describing the fraction of all
interactions covered by the method, and accuracy,
describing the fraction of the covered interactions that
were correctly identified.

The main factor that limits the coverage of our method
is that, like all comparative approaches, it depends on
previous experimental observations of similar interac-
tions. Despite the limited coverage, reflected in the low
number of known interactions recovered by the method
(four of 33), the availability of structure enables a more
rigorous assessment of the interactions than that allowed
by sequence alone (Fig. 2; Davis et al. 2006). As ex-
perimental efforts identify more interactions and further
characterize the biology of host and pathogen proteins,
the increased number of templates and expanded bio-
logical context data will increase the coverage and ac-
curacy of our method, respectively.

Another factor that limits the coverage of our method is
that the template identification procedure is primarily
restricted to domain-mediated interactions, although pep-
tide-mediated interactions are also known to contribute to
protein interaction networks (Neduva and Russell 2006).
Peptide motifs that mediate protein interactions are being
identified through a combination of computational and
experimental methods (Tong et al. 2002; Neduva et al.
2005), and application of these motif-based methods will
likely expand the coverage of host–pathogen protein
interactions.

Errors in accuracy

Several factors affect the accuracy of the method. These
include errors in the comparative modeling process
(Marti-Renom et al. 2000), the coarse-grained nature of
the statistical potential used to assess the interface residue

Table 4. Host–tissue filters used for each pathogen

Pathogen Host tissues

M. leprae Skin, lymph node, lung

M. tuberculosis Lung, bronchial epithelial cells, lymph node

L. major Skin, whole blood, monocyte (Abbas et al. 2005)

T. brucei Erythrocyte (Pasini et al. 2006), whole blood,

lymph node, brain, endothelial

T. cruzi Erythrocyte (Pasini et al. 2006), whole blood,

lymph node, skeletal muscle, smooth muscle,

cardiac myoctes, endothelial

C. hominis Colorectal adenocarcinoma

C. parvum Colorectal adenocarcinoma

P. falciparum Erythrocyte (Pasini et al. 2006), liver, brain,

whole blood, endothelial

P. vivax Erythrocyte (Pasini et al. 2006), liver, whole blood

T. gondii Lymph node, skeletal muscle, cardiac myoctes,

placenta, brain, lung

Host–tissue expression data were obtained from the GNF Tissue Atlas
(Su et al. 2004) unless noted otherwise.

Davis et al.
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contacts (Davis et al. 2006), and consideration of only
interactions between individual domains (i.e., incorrectly
predicting interactions that are unfavorable in the context
of the full-length proteins). While these three sources of
error affect both intraproteomic and host–pathogen pro-
tein interactions, an additional type of error uniquely
affects interspecies interactions. As the pathogen and host
species are both eukaryotic for eight of the 10 pathogens
studied, many of the predicted interactions are between
core cellular components, such as translation machinery,
metabolic enzymes, and ubiquitin-signaling components
(Table 3). Although these interactions could potentially
occur if the host and pathogen proteins encountered one
another, their availability for such an encounter is not
guaranteed. We used biological data, such as known
exported pathogen proteins and known host–tissue tar-
gets, to address the ‘‘accessibility’’ issue. However, the
precise spatial and temporal locations of these proteins
are generally difficult to characterize. We expect this last
source of errors to be diminished when the evolutionary
distance between pathogen and host is greater, such as
between bacterial or viral pathogens and their human
hosts.

Specific examples of validated predictions

We now describe two examples of predicted interactions
that have been previously observed experimentally. We
predicted several interactions between proteases and
protease inhibitors, the best scoring of which occurred
between P. falciparum falcipain-2 protease and the human
cystatin-A inhibitor based on a template structure of
human cathepsin-H bound to cystatin-A (PDB 1NB3)
(Fig. 2A). This prediction was recently experimentally
validated, with chicken cystatin (PDB 1YVB) (Fig. 2B;

Wang et al. 2006). This crystal structure was not present
in our template set, because it has not yet been classified
by the SCOP domain annotation database (Materials and
Methods) (Murzin et al. 1995). Thus, the predicted
complex was a true blind prediction. The experimentally
determined structure provides direct validation of our
prediction, although it does not demonstrate relevance to
infection. However, the known involvement of cysteine
proteases in malaria pathogenesis and experimentally
established cross-talk between host and pathogen pro-
tease and inhibitors (Pandey et al. 2006) suggests that
the interaction may play a role during infection. This
case is an example where structure is important both in
making the prediction and in highlighting its potential
relevance as a potential pharmacologic target. Falcipain-2
and cathepsin-H share only 34% sequence identity,
beyond the threshold of the sequence-based method
required for a reliable prediction of interaction (Yu
et al. 2004). However, comparison of the experimental
falcipain-2–cystatin structure with the template cathep-
sin-H–cystatin-A structure reveals a high degree of
structural similarity at the interface (Ca RMSD of
0.43 Å). In addition, this structure can be used to search
for small-molecules that may disrupt or mimic the target
interaction.

We predicted several interspecies enzyme dimeriza-
tions, such as T. brucei ornithine decarboxylase (ODC)
binding to human ODC. Functional dimerization of
parasitic and host enzyme subunits have been previously
observed, such as in T. brucei and mouse ODC (Osterman
et al. 1994). Although both host and pathogen ODCs have
been implicated in viral and protozoal infections (Kiers-
zenbaum et al. 1987; Das Gupta et al. 2005; Singh et al.
2007), the in vivo relevance of these homodimer-like
complexes is not clear, and thus, we generally removed

Figure 2. Example of a validated prediction: falcipain-2–cystatin-A. (A) An interaction was predicted between falcipain-2 and

cystatin-A based on a template structure of cathepsin-H (orange) bound to cystatin-A (teal) (PDB 1NB3). (B) The structure of falcipain-2

bound to chicken cystatin was recently experimentally determined (PDB 1YVB). Although the interaction is experimentally verified,

the question remains whether it would occur in vivo. Figures were generated by PyMOL (http://www.pymol.org).

Host–pathogen interactions by structure
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predictions based on homodimer sequence templates or
template structures of subunits classified in the same
domain family (Materials and Methods). This restriction
also facilitates visualization and analysis of the networks,
although some true positive predictions may be lost.

Specific examples of predicted interactions

We now describe two specific examples of predicted
interactions whose indirect support in the literature
warrants experimental follow-up. Two additional exam-
ples are discussed in the Supplemental material.

We predicted that P. falciparum thrombospondin-
related adhesive protein (TRAP, SSP2, PF13_0201) in-
teracts with human Toll-like receptor 4 (TLR4,
ENSP00000346893), based on a template structure of
Glycoprotein IBa bound to Von Willenbrand factor (PDB
1M10) (Fig. 3A; Huizinga et al. 2002). TRAP, an
immunogenic protein used as a component of several
vaccine candidates (Hill 2006), was also predicted to
interact with three other leucine-rich repeat proteins;
however, the interaction with TLR4 had the most support
from the biological filters. Single nucleotide polymor-
phisms have been observed in TLR4, a ‘‘pattern recog-
nition module’’ involved in the innate immune response.
These mutations are associated with an increased severity
of malaria, although they fall outside of the region that
was modeled here (Mockenhaupt et al. 2006). Analysis of
TRAP sequence data from a Gambian P. falciparum
population indicates that the gene is under strong selec-
tion for variation in the sequence, with peaks in this
variation occurring in the A-domain that we predicted to
interact with TLR4 (Weedall et al. 2007). The possible
encounter of these two proteins is also supported by the

known expression of TRAP on the parasite surface during
the sporozoite stage of the plasmodium life cycle and of
TLR4 in the liver. While alternative explanations are
possible, the biological evidence and the structural
predictions made here suggest that a TRAP–TLR4 inter-
action may play an in vivo role in infection.

We predicted that M. tuberculosis probable exported
protein Rv0888 (GI 15608028) may interact with several
human a-actins (ENSP00000295137) based on the tem-
plate structure of DNAse I bound to actin (PDB 1ATN)
(Fig. 3B; Kabsch et al. 1990). The interaction between
DNAse and actin is known to be strong enough to
depolymerize actin (Kabsch et al. 1990), and so the
predicted interaction could be involved in the observed
M. tuberculosis rearrangement of host actin (Guerin and
de Chastellier 2000), which has been hypothesized to be
triggered by a secreted pathogen factor (Garcia-Perez
et al. 2003).

Future developments

The identification of protein–protein interactions is an
important problem that has inspired the development of
numerous algorithms to predict them (Shoemaker and
Panchenko 2007). Several of these methods rely on
information such as genomic proximity, gene fission/
fusion, phylogenetic tree similarity, gene co-occurrence,
colocalization, co-expression, and other features that only
make sense or are currently feasible in the context of a
single genome. However, comparative approaches that
infer interactions based on previously observed interac-
tions remain applicable to host–pathogen protein inter-
actions, including the sequence and structure-based
methods we have used here (Yu et al. 2004; Davis et al.

Figure 3. Examples of predicted interactions. (A) P. falciparum thrombospondin-related adhesive protein (TRAP) was predicted to

interact with human Toll-like receptor 4 (TLR4) based on a structure of glycoprotein IBa (orange) bound to von Willenbrand factor

(teal), respectively (PDB 1M10). (B) M. tuberculosis probable exported protein Rv0888 was predicted to interact with actin based on

a structure of DNAse-I (orange) bound to actin (teal), respectively (PDB 1ATN). Figures were generated by PyMOL (http://

www.pymol.org).
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2006). Other applicable methods include those that
identify peptide motifs (Neduva and Russell 2006) or
sequence signatures (Sprinzak and Margalit 2001) that
mediate interactions.

Another possible extension of the presented method
that may aide in the interpretation of the predictions is an
analysis of the genetic polymorphisms at loci encoding
for the proposed interacting proteins. If the host gene
exhibits polymorphisms associated with infection severity
or the pathogen gene exhibits a pattern of polymorphisms
suggesting antigenic variation, for example, human TLR4
and P. falciparum TRAP (Fig. 3A), there may be greater
reason to believe that the interaction is relevant to
infection.

Potential impact

We developed a computational whole-genome method to
study potential host–pathogen protein interactions and
presented four lines of evidence that suggest it is a valid
approach to enrich for these interactions. The method,
like any experimental or computational method, has
limitations in coverage and accuracy, as we have quanti-
fied to the best of our ability. Despite these limitations,
our resource is valuable as it is the first attempt to provide
large data sets enriched for host–pathogen protein inter-
actions.

Knowledge of host–pathogen interactions is useful in
the development of strategies to treat and prevent infec-
tious diseases. These interactions may serve as pharma-
cologic targets, both for traditional drug discovery efforts
aimed at disrupting individual pathogen proteins and for
small molecule or antibody inhibitors of protein–protein
interactions. The proposed interactions also highlight
pathogen proteins that may be potential immunization
targets.

We have also applied our method to 10 pathogens in-
volved in human infectious diseases. The predictions are
available on the Internet at http://salilab.org/hostpathogen
and can be viewed and filtered according to criteria
of interest to an investigator, such as particular host
tissues or pathogen life-cycle stages. We hope that the
predictions serve the larger biomedical research com-
munity in moving toward the goal of treating infectious
diseases, in the ‘‘open source’’ model of the Tropical
Disease Initiative, a decentralized, Web-based, commu-
nity-wide effort where scientists from laboratories, uni-
versities, institutes, and corporations work together for a
common cause (http://www.tropicaldisease.org) (Maurer
et al. 2004). In closing, we expect our method to comple-
ment experimental methods in providing insight into the
basic biology of host–pathogen systems, as well as other
interspecies relationships that fall elsewhere on the
mutualism–parasitism continuum.

Materials and Methods

The protocol began with the host and pathogen protein se-
quences: CryptoDB (Heiges et al. 2006), GeneDB (Hertz-Fowler
et al. 2004), OrthoMCL-DB (Chen et al. 2006), PlasmoDB
(Stoeckert Jr. et al. 2006), ToxoDB (Kissinger et al. 2003),
TubercuList (http://genolist.pasteur.fr/TubercuList/) (Table 1).

Detecting sequence and structure similarities

First, protein structure models were calculated for all sequences
using MODPIPE, our automated software pipeline for large-scale
protein structure modeling (Eswar et al. 2003). MODPIPE relies
on MODELLER (Sali and Blundell 1993) for its functionality and
calculates comparative models for a large number of sequences
using different template structures and sequence-structure align-
ments. Sequence-structure matches are established using a variety
of fold-assignment methods, including sequence–sequence (Smith
and Waterman 1981), profile–sequence (Altschul et al. 1997)
(BUILD_PROFILE, a module for calculating sequence profiles in
MODELLER), and profile–profile alignments (Marti-Renom et al.
2004) (PROFILE_SCAN, a module for fold-assignment using
profile–profile scanning in MODELLER). Increased sensitivity of
the search for known template structures is achieved by using an
E-value threshold of 1.0. Ten models are calculated for each of the
sequence-structure matches to achieve a reasonable degree of
conformational sampling (Sali and Blundell 1993). The best
scoring model for each alignment is then chosen using a statistical
potential (Shen and Sali 2006). Finally, all models generated for a
given input sequence are evaluated for the correctness of the fold
using a composite model quality criterion that includes the
coverage of the model, sequence identity of the sequence-structure
alignment, the fraction of gaps in the alignment, the compactness
of the model, and statistical potential Z-scores (Melo et al. 2002;
Eramian et al. 2006; Shen and Sali 2006). Only models that are
assessed to have the correct fold were included in the final data
sets. The models have been deposited in our database of
comparative models, MODBASE (Pieper et al. 2006) (http://
salilab.org/modbase), as publicly accessible data sets.

The detected structural similarities were then used to assign
structural domain boundaries to the modeled sequences, accord-
ing to the SCOP classification system (Murzin et al. 1995), as
previously described (Davis et al. 2006). Briefly, domain
boundaries were assigned to the target proteins when the
putative domain contained at least 70% of the residues in the
template domain. If the template-target domain similarity was
more than 30% sequence identity, the target domain was
classified at the family level of the template’s domain classi-
fication. If the sequence identity was more than 30% and a
reliable model was built or if the sequence identity was more
than 30% but MODBASE deemed only a reliable fold assign-
ment, the superfamily was assigned. The remaining target
domains received the template domains SCOP classification at
the fold level, and were not used in the interaction prediction.

Identifying pairs of proteins with similarity to known
interactions and assessing the sequence or structural
basis of the potential interactions

Next, pairs of host and pathogen proteins were searched for
similarity to known interactions collected in PIBASE (Davis and
Sali 2005) and IntAct (Kerrien et al. 2007). PIBASE (release
1.69) is a comprehensive relational database of structurally

Host–pathogen interactions by structure

www.proteinscience.org 2593



defined protein interfaces that currently includes 209,961
structures of interactions between 2613 SCOP domain families.
As previously described, these structures were clustered and
then filtered to remove potential crystallographic artifacts,
resulting in a set of template binary interfaces of 5275 structures
(Davis and Sali 2005). IntAct (release 2006-08-18) is an open
source database of protein interaction data and contains 63,276
binary protein interactions (Kerrien et al. 2007).

Putative interactions between pairs of host and pathogen
proteins that contained domains classified in the same super-
family as those previously observed to interact (PIBASE) were
assessed by alignment of their comparative structure models
onto the corresponding domains of the template complexes and
by subsequent assessment of the putative interface by a statis-
tical potential, as previously described (Davis et al. 2006).
Briefly, pairs of residues from the host and pathogen protein
models whose side chains occurred within a distance of 8 Å of
one another were identified and their scores summed according
to a statistical potential derived from binary interface structures
in PIBASE. A Z-score was calculated to assess the significance
of this raw statistical potential score, by consideration of the
mean and standard deviation of the statistical potential scores
for 1000 sequences where all amino acid residues in the target
domain sequences were shuffled.

The ability of the statistical potential to discriminate a set of
100 true protein interfaces from a background set of 100,000
sequence-randomized decoys was previously assessed using a
receiver-operator-curve (ROC) analysis (Davis et al. 2006). This
ROC analysis exhibited an area under the curve (AUC) of 0.993
and suggested an optimal statistical potential Z-score threshold
of �1.7, which gave true-positive and false-positive rates of
97% and 3%, respectively. Interactions predicted based on
template complexes formed by protein domains from the same
SCOP family were omitted from the analysis, because these
predictions primarily consisted of multimeric enzyme com-
plexes formed by both host and pathogen proteins, as well as
core cellular components such as ribosome subunits and pro-
teasome subunits.

Sequence profiles, built by MODPIPE, were searched
for proteins that participate in binary protein interactions
(IntAct) (Kerrien et al. 2007). Host and pathogen sequences
were predicted to interact when each aligned to at least 50% of
the sequence of members of a template complex with a joint
sequence identity of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sequence identity1 � sequence identity2

p
$

80% (Yu et al. 2004). This threshold has been previously shown to
correctly predict true protein–protein interactions (Yu et al. 2004).
Interactions predicted based on homodimer templates were
omitted from the analysis, because the predictions primarily
consisted of complexes formed between corresponding core
cellular components of host and pathogens (e.g., histones).

Applying biological and network-level filters

The predicted interactions were filtered using biological context
and network-level information. The biological context filter was
imposed at two levels, individual proteins and their interactions
(Table 4; Supplemental Table S3). The host proteins were
filtered by expression in tissues known to be targeted by the
pathogen (GNF Tissue Atlas [Su et al. 2004], Harrison’s
Principles of Internal Medicine [Kasper et al. 2004]), known
expression on cell surface, and known immune system involve-
ment (ENSEMBL [Hubbard et al. 2007], Gene Ontology
Annotation [GOA] [Camon et al. 2004], IRIS [Abbas et al.
2005]) (Table 4). The pathogen proteins were filtered by known

or predicted secretion, known expression on cell surface,
infective life-cycle stage, and functional annotation to defense
response mechanisms (PlasmoDB [Stoeckert Jr. et al. 2006],
ToxoDB [Kissinger et al. 2003], CryptoDB [Heiges et al. 2006],
GeneDB [references in Supplemental Table S1] [Hertz-Fowler
et al. 2004]). The GO terms for human protein involvement
in immune system were GO:0051707, GO:0002376, and
GO:0006955. The GO terms for pathogen protein involvement
in host–pathogen interactions were GO:00044419 (involved in
defense response), GO:0043657 (cellular component: host cell),
and GO:0009405 (pathogenesis). Potential interactions between
human and pathogen proteins that each met at least one
biological criterion were considered to pass the biological filter.

The second level of biological filters was applied simulta-
neously to both human and pathogen proteins, as follows:
M. tuberculosis, pairs of human proteins expressed in lung
tissue or bronchial epithelial cells and pathogen proteins up-
regulated in granuloma, pericavity, or distal infection sites
(Rachman et al. 2006); L. major, pairs of human proteins
expressed in skin and pathogen proteins expressed in the
promastigote or metacyclic life-cycle stage and human proteins
expressed in blood and pathogen proteins expressed in amasti-
gote life-cycle stage; T. brucei, pairs of human proteins
expressed in blood and pathogen proteins expressed in the
bloodstream life-cycle stage; P. falciparum, pairs of human
proteins expressed in erythrocytes and pathogen proteins
expressed in the merozoite life-cycle stage, known or predicted
to be secreted, and found on the surface of infected erythrocytes
and human proteins expressed in liver and pathogen proteins
expressed in the sporozoite life-cycle stage; and Plasmodium
vivax, pairs of human proteins expressed in erythrocyte and
pathogen proteins predicted to be secreted.

The network-level filter removed predictions based on tem-
plates used for more than 1% of the total number of predictions
in each host–pathogen network. This filter was imposed due to
the lack of specificity in the predictions based on these highly
used templates. On average, 15 interaction templates were
removed from each run.

The filtering step was performed after the initial modeling
and interaction prediction steps so that the filters could be easily
updated to include biological annotation resulting from future
experiments, without requiring re-calculation of models and
interactions.

Assessment: Intraspecies interactions benchmark

The sequence- and structure-based prediction methods have
both been previously benchmarked in the context of intraspecies
S. cerevisiae protein interactions. For the sequence-based
method, all of the interactions transferred from Caenorhabditis
elegans, Drosophila melanogaster, and Helicobacter pylori onto
S. cerevisiae were correct at a joint sequence identity threshold
of 80% (Yu et al. 2004).

For the structure-based method, 270 of 3387 (8%) predicted
S. cerevisiae interactions overlapped with experimentally
observed interactions, 90% of which exhibited less than 80%
sequence identity to the their interaction template (Davis et al.
2006). The use of orthogonal biological information as filters
was found to provide a significant (threefold) enrichment of
previously observed interactions. The method could not predict
the correct specificities in families of homologous receptor-
ligand networks, such as the epidermal growth factor receptor
and tumor necrosis factor-b network of ligand receptor inter-
actions. In total, 19,424 interactions have been experimentally
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observed out of the possible 21,776,700 pairs of yeast proteins
(0.09%; Jan 2006) (Davis et al. 2006). Thus, the number of
protein pairs was reduced by about four orders of magnitude,
while the enrichment was increased by about two orders of
magnitude. The analysis suggested that the method was appli-
cable as a first pass for genome-wide predictions of protein
complexes.

Assessment: Functional overview of predicted complexes

The human proteins predicted to interact with pathogen proteins
were analyzed for significant enrichment of gene ontology
function terms using GO::TermFinder (Boyle et al. 2004). The
analysis was done on the interactions before application of the
biological filters to prevent introduction of filter bias into the
functional profile of the predictions. The enrichment for a given
GO term was computed as the ratio of the fraction of proteins in
the predicted set annotated with the GO term to the fraction in
the entire human genome. The significance of this enrichment
was computed as a P-value with Bonferroni correction for
multiple hypothesis testing (Sokal and Rohlf 1995).

Assessment: Comparison to gene expression and
essentiality data

Human genes differentially regulated (two-tailed t-test, P <
0.05) in macrophages and dendritic cells during infection by L.
major, M. tuberculosis, and T. gondii were retrieved from GEO
Omnibus (GDS2600) (Edgar et al. 2002; Chaussabel et al.
2003). Lists of M. tuberculosis genes essential for in vivo
infection (Sassetti and Rubin 2003) and genes that are up-
regulated in granuloma, pericavity, or distal lung infection sites
compared with in vitro conditions (Rachman et al. 2006) were
obtained from literature.
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