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Abstract
A population of complete subgraphs or cliques in a protein network model is studied. The network
evolves via duplication and divergence supplemented with linking a certain fraction of target–replica
vertex pairs. We derive a clique population distribution, which scales linearly with the size of the
network and is in a perfect agreement with numerical simulations. Fixing both parameters of the
model so that the number of links and abundance of triangles are equal to those observed in the
fruitfly protein-binding network, we precisely predict the 4- and 5-clique abundance. In addition, we
show that such features as fat-tail degree distribution, various rates of average degree growth and
nonaveraging, revealed recently for a particular case of a completely asymmetric divergence, are
present in a general case of arbitrary divergence.

1. Introduction
The duplication–divergence mechanism [1,2] of network growth is traditionally used to model
protein networks: a duplication of a node is a consequence of the duplication of the
corresponding gene, and a divergence or loss of redundant links or functions is a consequence
of gene mutations [3]–[6]. General properties of the duplication–divergence growth have
recently been studied in the extreme case of a fully asymmetric divergence, that is, when links
are removed with a certain probability only from the replica node [7]. Even this simplest model
exhibits a very rich phenomenology and reproduces surprisingly well the degree distribution
observed in real protein–protein networks. Overall, when the link removal probability is small,
the network growth is not self-averaging and an average vertex degree increases algebraically
with the size of the network. For larger values of the link removal probability, the growth is
self-averaging, the average degree increases very slowly or tends to a constant, and a degree
distribution has a power-law tail.

A natural next step in exploring the properties of the duplication–divergence networks is to
investigate their modular structure and distribution of various subgraphs or motifs. Small
subgraphs are often considered to be building blocks of a network; densities of particular
subgraphs may tell if a network belongs to a certain ‘superfamily’ [8] or performs specific
functions [9]. Abundances of triangles and loops have been studied in the Internet, random and
preferential attachment networks, and regular scale-free graphs [10]–[13]. Densities of small
motifs and cycles centred on a vertex were considered as a function of the vertex degree and
clustering coefficient in [14]. In protein–protein networks, highly interconnected subgraphs
were found to be well-conserved in evolution [15] and to correspond to functional protein
modules in living cells [16]. An extreme case of highly interconnected motifs are cliques, or
completely connected subgraphs. Cliques have been found in higher than random abundances
in protein–protein networks in yeast [16].
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In this paper, we consider a generalization of the duplication–divergence network growth
mechanism, duplication–divergence–heterodimerization. The heterodimerization, or linking a
certain number of pairs of target and replica nodes, is essential for clustering and is observed
in protein–protein networks [17]. We show that duplication–divergence–heterodimerization
produces the cliques in the number, very similar to those observed in protein–protein networks.

As in our previous work [7], we again start with the simplest case of the completely asymmetric
divergence. Yet in real protein networks, apart from special cases of partially asymmetric
divergence [18], the divergence is believed to be close to symmetric [19]. It turns out that the
asymmetric divergence results for the clique statistics as well as the previously obtained results
for the network growth [7] are qualitatively similar to those in the arbitrary divergence case,
where links are removed with given probabilities both from the target and replica nodes.

The outline of this paper is as follows. In the next section, we derive the clique abundance
distribution for the completely asymmetric case and compare it to the simulation and
experimental results. In section 3, we generalize these findings, as well as previous results
about the network growth and degree distribution, to the case of arbitrary divergence. A
discussion and conclusion in section 4 completes the paper.

2. Cliques
Protein–protein networks exhibit a distinct modular structure and contain densely linked
neighbourhoods or complexes (see e.g., [16] and references therein). The extreme case of
densely linked complexes are cliques or completely connected sub-graphs where each vertex
is connected to all other subset members. Cliques of the sizes of up to 14 vertices were found
in a much higher than ‘random’ abundance in the protein-binding network of yeast [16]. One
should of course keep in mind that many large cliques observed in protein networks may be
artifacts of specific experimental techniques or even of misinterpretation of the experimental
data. For example, there is a strong evidence that all cliques of order higher than six in the
yeast interaction network [21] considered in [16] result from the ‘matrix’ recording of the
experimental data from mass-spectrometry experiments. In such experiments, an
immunoprecipitation is used to isolate stable protein complexes. Usually, a single protein is
used as a target for the antibody; binding of the antibody to this protein leads to an isolation
of the entire complex. However, the precise pairwise binding between proteins in the
complexes, strictly speaking, remains undefined if a complex contains more than two proteins.
Yet, in the ‘matrix’ interpretation of the mass-spectrometry experiment, all possible pairwise
interactions between proteins in the complex are usually recorded. A well-known example of
such erroneous recording is the anaphase-promoting complex. It is reported as a 11-node clique
in three different mass-spectrometry high-throughput interaction surveys of yeast genome and
in the MIPS database [21]. The biggest reported clique in yeast network, SAGA/TFIID
complex [16], is also the result of such a ‘matrix’ recording of the data from a co-
immunoprecipitation experiment described in [20].

However, a two-hybrid method, used to determine the protein-binding network of fruitfly
[22] (which is virtually free of subjective interference), also yields higher than ‘random’
number of cliques. Specifically, the fly dataset contains 1405 triads, 35 4-cliques and one 5-
clique, while a randomly rewired graph of fly dataset contains only 1147 triads and eight 4-
cliques [23]4. Here and below, the lower-order cliques that comprise the higher-order ones
(each clique with j vertices or ‘j-clique’ contains j cliques with j – 1 vertices which can be

4A procedure, described in [23] randomizes a graph by rewiring links without altering degrees of its vertices. When the fly dataset is
randomized according to this procedure, the number of cliques significantly decreases; specifically, there are at average 1147 triads, eight
4-cliques and no higher cliques after randomization.
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obtained by eliminating one of the j vertices) are counted along with the non-trivial cliques.
The number of only non-trivial cliques is slightly lower; the fly dataset contains 1297 non-
trivial triads, 30 4-cliques and one 5-clique.

Is such a high concentration of large cliques, caused by an evolutionary pressure that
specifically favours big cliques, or by some stochastic mechanism of network evolution?
Evidently, a simple duplication–divergence network growth never produces even a single-triad
as new duplicates are never linked to their ancestors [7]. Random mutations, or rewiring of
some links will give rise to a certain number of cliques, yet their abundance will be much less
than the experimentally observed one [16,23]. However, in [17] it was concluded that links
between paralogs (or recently duplicated pairs of proteins) are significantly more common than
if such links appeared by random mutations. Most of these paralogous links are formed when
a self-interacting protein or (homodimer) is duplicated [17], thus giving rise to a pair of
interacting heterodimers. While after divergence, certain pairs of heterodimers loose their
ability to interact, some paralogs retain their propensity to heterodimerize. In the following,
we show that the simple duplication–divergence network growth complimented with
heterodimerization of some pairs of duplicates does explain the observed abundance of cliques
without invoking any evolutionary pressure.

The duplication–divergence–heterodimerization process is based on duplication–divergence
[7] and heterodimerization.

• Duplication: a randomly chosen target node is duplicated, that is its replica is
introduced and connected to each neighbour of the target node;

• Divergence: each link emanating from the replica is activated with probability σ (this
mimics link disappearance during divergence);

• Heterodimerization: the target and replica nodes are linked with probability P. It
mimics the probability that the target node is a dimer and the propensity for
dimerization is preserved during divergence.

Similarly to the ‘pure’ duplication–divergence growth [7], the replica is preserved if at least
one link is established; otherwise the attempt is considered as a failure and the network does
not change.

Let us first consider an evolution of population of triads, or 3-cliques. Two processes that give
rise to new triads are illustrated in figure 1 and figure 2. During the first process a target vertex
1, initially linked to the vertices 2 and 3, is duplicated to produce a new vertex 4. The resulting
pair of duplicates 1 and 4 have a probability P to be linked. In addition, links 4-2 and 4-3 are
inherited with the probability σ each. As a result of this process, two new triads 1-4-2 and 1-4-3
are formed, each with probability Pσ.

In the second process (figure 2), a new triad is produced from the existing one when one of its
vertices (vertex 1) is duplicated. The new triad is formed only if both links, 4-2 and 4-3 survive
divergence, which happens with the probability σ². Correspondingly, a rate equation for the
increase in the number of triads C3 per duplication–divergence–heterodimerization step
contains two terms,

ΔC3 = σP 2L
N + σ2 3C3

N , (1)

where L and N are the numbers of links and vertices in the network. The fraction 2L/N in the
first term is an average number of links picked up for a potential triad (which is also equal to
the average degree 〈d〉). The factor 3 in the second term indicates that each of the three vertices
in the existing triad can be picked up as a target vertex for duplication.
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Considering links as 2-cliques, the first term in equation (1) can be interpreted as describing a
creation of 3-clique from a lower-order 2-clique. It is easy to see that with such an interpretation,
equation (1) can be generalized to describe the evolution of population of cliques of an arbitrary
order:

ΔCj
ΔN =

( j − 1)C j−1Pσ j−2

νN +
jCjσ

j−1

νN . (2)

Here, ν ⩽ 1 is an increment in the number of vertices per duplication step. In the following,
we focus on a biologically-relevant regime of 0 < σ < 1/2, where the average degree 〈d〉 is
constant or almost constant [7]. In this regime ν = 2σ, and assuming the usual scaling for Cj,
namely Cj ≡ Ncj, one obtains a recurrent relation for the rescaled j-clique abundance:

cj =
( j − 1)c j−1σ

j−3 P

2 − jσ j−2 . (3)

For large j, the second term in denominator becomes subdominant (jσj−2 ≪ 2), and therefore
cj ~ ( j − 1) ! σ ( j−3)( j−2)/2(P / 2) j−2. (4)

Hence, the relative population of large cliques decays faster than exponentially. This renders
large cliques highly improbable in networks of biologically relevant size of N ~ 104.

To check the analytical prediction (3), and to see if the proposed duplication–divergence–
heterodimerization model explains the observed population of cliques, we performed a
numerical simulation. We fixed σ = 0.38 so that the average degree is equal to that of the fly
dataset, where 〈d〉 ≈ 5.9 for N = 6954 proteins [22]. We selected P = 0.03, so that the number
of triads in the simulated network is also similar to that in the fly dataset and count the number
of 4- and 5-cliques in the resulting network. The theoretical predictions for Cj were computed
from recurrence (3) by taking into account that c2 ≡ 〈d〉/2. Results of simulations Cj

s averaged

over 2000 network realizations, the theoretical predictions Cj
th , and empirical results for the

clique abundances in the fly dataset Cj
fly  are shown in table 1. The agreement between the

experimental dataset, simulations, and equation (3) is surprisingly good, especially given the
fact that for σ = 0.38, 〈d〉 = constant only approximately [7].

3. Arbitrary divergence
In this section, we extend the results obtained in [7] and above for the completely asymmetric
divergence to the general situation. The arbitrary divergence model is defined as follows:

1. Duplication. A randomly chosen target node is duplicated, that is, its replica is
introduced and connected to all neighbours of the target node.

2. Divergence. Each link emanating from either the target or the replica node is
independently removed with probability 1 – σ1 and 1 – σ2, respectively. This mimics
disappearance of links during divergence from initially indistinguishable target and
replica nodes. Vertices that have lost all their links during this process (this may
include both the target and the replica vertices as well as their neighbours) are
discarded.

The completely asymmetric version considered in [7] corresponds to σ1 = 1, σ2 = σ; the
symmetric version (σ1 = σ2) of our model slightly differs from a model investigated by Vázquez
and co-workers [4].
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The existing links were never lost in completely asymmetric divergence, and the network
remained connected if it were initially connected. When σ1 < 1, however, the network does
lose old links, which may result in splitting it into disconnected components which would never
reconnect.

We ignore heterodimerization in the following discussion of the network growth and degree
distribution (section 3.1 and section 3.2) since in the biologically interesting regime P ≪ σ1,
σ2, and the total fraction of heterodimerization links is negligible. Naturally, in describing the
clique generation (section 3.3) we will of course add heterodimerization.

3.1. Growth law
As in [7], an increment in the number of links L during a duplication step is

ΔL
ΔN =

2L (σ1 + σ2 − 1)

νN , (5)

where N is the number of vertices, 2L/N ≡ 〈d〉 is the average number of neighbours or the
average degree, and 0 < ν ⩽ 1 is an increment in the number of vertices per step. Assuming
that for a large network, ν does not depend on the network size N, we obtain

L (N )~N
2(σ1+σ2−1)/ν

. (6)

There are three distinct regimes of network growth:

1. Since at a duplication step the number of vertices cannot increase by more than one,
ν ⩽ 1, and therefore, for σ1 + σ2 > 3/2 the growth of L(N) is superliniear. The average
degree grows as a power-law of a network size, and for sufficiently large networks
the probability to eliminate all the links and therefore, not to add a vertex at a
duplication step becomes negligible. Hence for large networks ν → 1 and

L ~N
2(σ1+σ2−1)

. (7)

2. For σ1 + σ2 ⩽ 3/4 and σ1 > σ1
*, σ2 > σ2

* (where the lower bounds σi
* will be determined

below), we observe that the average degree increases logarithmically and L ~ N ln
N.

3. Since only linked vertices are counted, the average degree cannot decrease below
unity. Hence, even for small link retention probability, 1 < σ1 + σ2, and
σ1 < σ1

*, σ2 < σ2
*, the growth of L is linear, L ~ N and the average degree saturates to

a constant.

When σ1 + σ2 < 1, the network loses links faster than it gains new links and quickly disappears
(since vertices that lost all links are discarded).

3.2. Degree distribution
The degree distribution Nk evolves according to the following rate equation (see [7] for details
of a similar derivation)

ν
ΔNk
ΔN =

Nk/σ1
Nσ1

+

Nk/σ2
Nσ2

−
Nk
N + (σ1 + σ2 − 1)

(k − 1)Nk−1 − kNk
N . (8)

Here, the first three terms describe the gain of two new degrees of the duplicated vertices and
the loss of an old degree of the target vertex, while the fourth term accounts for a change in
the number of degrees of a neighbour of a target vertex. Substituting Nk ∝ Nk−γ and using ν =
2(σ1 + σ2 − 1)(which follows from (5)), we obtain
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σ1
γ−1 + σ2

γ−1 + (σ1 + σ2 − 1)(γ − 1) + 1 − 2(σ1 + σ2) = 0. (9)

This equation has a trivial solution γ′ = 2 and a non-trivial σ-dependent solution γ(σ1, σ2).
These two solutions coincide along the line (σ1

*, σ2
*) in the (σ1, σ2) plane defined by the

equation
σ1
*(ln σ1

* + 1) + σ2
*(ln σ2

* + 1) = 1. (10)

An important example is the symmetric case, σ1
* = σ2

* ≈ 0.72985 in the completely asymmetric

case, σ1 ≡ 1 and σ2
* = 1/ e ≈ 0.36879.

A phase diagram in the (σ1, σ2) space that represents various regimes of the network growth
is shown in figure 5. The exponent γ is plotted in figure 6 for the symmetric case σ1 = σ2 =
σ. The measured in simulation degree distribution for 1/2 < σ < σ* does not contradict the
predicted power-law asymptotics, figure 7.Yet the true asymptotic regime is reached for far
larger networks than the biological protein–protein graphs [7], and the full functional form of
the degree distribution or even the corrections to scaling remain unknown.

A summary of results for the arbitrary symmetric duplication–divergence is presented in table
2.

3.3. Cliques
Similarly to the completely asymmetric divergence considered above, to generate cliques one
must add heterodimerization to the pure duplication and divergence. Hence, we assume that a
target node and a replica node are linked with probability P.

A generalization of equation (2) reads
ΔCj
ΔN =

( j − 1)C j−1 P(σ1σ2)
j−2

νN +
jCj(σ1σ2)

j−1

νN −
jCj(1 − σ1

j−1)(1 − σ2
j−1)

νN . (11)

Since the creation of a new clique requires that all links emanating both from the target and
replica vertices survive divergence, in the first two terms σ is replaced by σ1σ2. The third term
accounts for the loss of j-cliques due to disappearance of at least one link both from the target
and replica nodes. Following the procedure for the asymmetric case and taking into account
that in the scaling regime where 1 < σ1 + σ2 < 3/2 an increment in the number of vertices per
step is ν = 2(σ1 + σ2 − 1), we obtain the following recurrence analogous to equation (3):

cj =
( j − 1)c j−1(σ1σ2)

j−2P

2(σ1 + σ2 − 1) − j(σ1
j−1 + σ2

j−1 − 1)
. (12)

We checked this prediction, in the symmetric case (σ1 = σ2 = σ) using the fly dataset [22] for
reference. The correct average degree and number of triads are obtained when σ ≈ 0.725 and
P ≈ 0.0475. The experimental, simulation, and theoretical results, shown in table 3, are again
in very good agreement.

3.4. Integrity of the network
For symmetric divergence, we have measured the number of components and the size of the
largest component for the networks grown with various σ1 = σ2 = σ. The results for the networks
of the size of fruitfly dataset, N= 6954, are presented in table 4.
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For 1/2 < σ ≲ σ* we have found that the grown network contains many fairly small components,
while, for σ* < σ there is usually one or a few large components and several small ones.
Intuitively, it is clear that if the average degree grows, even slowly, the probability to split the
network into many parts becomes small.

A theoretical prediction for the size of the giant component exists only for the Erdős–Rényi
random graph [24]: when the average degree scales logarithmically with the number of vertices,
i.e., 〈d〉 = p ln N, the total number of vertices that do not belong to the giant component scales
as N1−p for p < 1, while for p > 1 the giant component engulfs the entire system. It turns out
that for the same number of vertices and links, the completely random linking of the Erdős–
Rényi graph keeps more vertices in a giant component than the corresponding duplication–
symmetric-divergence network. Indeed, for the parameters corresponding to the fly dataset,
σ1 = σ2 = 0.725, N = 6954, 〈d〉 ≈ 5.9, and accordingly p= 0.667. The number of vertices not
belonging to the giant component is 6954 × 0.08 ≈ 556 (see table 4), while the random graph
with the same number of vertices and links has about 695400.333 ≈ 19 vertices disconnected
from the giant component. This happens mainly because in our duplication–divergence growth
model, once a component splits from the giant component, it never reconnects. If such
separation happens at an early stage of the network growth, the separated component may grow
to a significant size, thus leaving many vertices outside of the giant component. On contrary,
at each step of the Erdős–Rényi growth, any two components can be united with a random link.
This makes the co-existence of two or more large components very improbable.

4. Discussion and conclusion
In the previous sections, we obtained the following results for the clique abundance and growth
laws of the duplication–divergence–heterodimerization networks:

• For the duplication–divergence network growth model with completely asymmetric
divergence [7], complimented with heterodimerization links between duplicates, we
computed the clique population distribution and found that it agrees well with
empirical data.

• Generalizing results obtained for the completely asymmetric divergence, we
demonstrated that similar regimes, such as presence and lack of self-averaging,
growth and saturation of the average degree, scaling and fat-tail in the degree
distribution, exist in the general duplication–divergence case. We also computed the
clique population distribution for the arbitrary divergence scenario.

The heterodimerization links are not taken into account in our description of the network growth
and degree distribution. Despite their crucial role in the network topology and clique formation,
they constitute only about 1% of all links and do not contribute significantly to the degrees of
most of the vertices. For link inheritance and heterodimerization probabilities σ and P,
corresponding to the fly dataset, the resulting number of heterodimeric links in a network of
the size of the fly dataset is Lhd ≈ PN/(2 σ) ≈ 270. This is somewhat higher than the observed
number of links between the pairs of recently duplicated (paralogous) proteins L hd

fly = 142

[17]. The main reason for this discrepancy is that in our simulation, all heterodimeric links are
counted, while in the real protein network one can reliably identify only the pairs of recently
duplicated proteins. Another reason may be in the ‘mean-field’ character of our model: while
we chose the target–replica pairs for heterodimerization at random, in reality, a propensity for
dimerization is often inherited. Thus, in real networks a community of descendants of a dimer
may have a higher than average concentration of heterodimers. Such local enhancement of
heterodimerization can produce more cliques per heterodimer link than in our ‘uniform’
heterodimerization case.
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In the case of not completely asymmetric divergence, when links can disappear both from the
target and replica nodes, a network may fragment into several components. Yet the biological
protein networks are believed to be connected to ensure their functionality. Hence, during in
vivo divergence, the steps that lead to breaking the network into isolated components are
excluded due to evolutionary pressure. Our probabilistic network growth model does not take
any evolutionary pressure into account. However, since for sufficiently high link retention
probabilities the resulting network consists of one or very few large components, the number
of link eliminations that have to be evolutionary overridden is small. Hence, most of the
properties of the probabilistically grown graphs should be similar to those of the realistic
evolutionary single-component networks. As the link inheritance probabilities σi decrease and
the number of network components grow, the number of link removal steps that have to be
evolutionary overridden becomes large. Consequently, the probabilistic multi-component
network becomes less similar to the real single-components one.

As we mentioned in the section 2, an example of the fly dataset was selected as being the most
non-subjective one. Yet, we believe that the proposed network growth mechanism is
biologically justified and with a proper choice of parameters, it should correctly predict clique
abundance in any protein–protein network. However, other currently known protein–protein
networks, such as for yeast, worm, and human, do contain parts of data that are results of the
‘matrix’ recording of the experimental data from the immunoprecipitation experiments. These
datasets contain a higher number of large cliques, which can be attributed to this data
interpretation and in reality are tightly, but not completely, linked protein complexes. In
principle, the clique population distribution derived here can be used to verify and filter the
experimental datasets, revealing the erroneously recordered large cliques.

In a recent publication, Middendorf et al [25] compared topological properties of the fly dataset
to those of the networks grown by several mechanisms such as different versions of
duplication–mutation model and preferential attachment. It was found that the abundance of
many types of small subgraphs, including, but by far not limited to cliques, ‘duplication–
mutation–complementation’ networks provide the best fit to the fly dataset. The duplication–
mutation–complementation network growth model is very close to the duplication–
divergence–heterodimerization model studies here. ‘Conjoining’ in [25] is equivalent to
heterodimerization in our model, the only difference between the two models is in the way the
links are deleted during divergence (or mutation): unlike our model, in [25] each neighbour
remains connected to at least one of the two duplicates. Thus, our works confirm the
conclusions made in [25] that the majority of considered properties of protein–protein networks
are very well described by the duplication–divergence–heterodimerization model.

And finally, a few words on the importance of heterodimerization links in clique formation.
An alternative to the heterodimerization way of connecting paralogs is to link them randomly
by ‘mutation’links. In this case, the probability to establish a heterodimeric link P has to be
replaced by a probability that a mutation link, emanating from a target node, selects the replica
node out of N network nodes. This probability is equal to M/N, where M is the number of
mutation links established at each duplication step. In the example of the fruitfly dataset, where
P = 0.03 and N = 6954, one needs M = NP = 209 random links at each step to form the correct
number of triads and higher cliques. Obviously, the mutation scenario which requires so many
additional links is completely ruled out due to, for example, the average degree constraint.
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Figure 1.
A sketch of duplication event, when a new triad is formed with a heterodimerization link. Solid
lines correspond to the existing links, dotted line is a heterodimerization link, established with
the probability P, and dashed lines denote the inherited with probability σ links.
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Figure 2.
A sketch of duplication event when a new triad is formed by duplicating the existing one. Solid
lines correspond to the existing links and dashed lines denote the links, each inherited with the
probability σ.
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Figure 3.
The average node degree 〈d〉 versus N for (bottom to top) the completely symmetric network
growth, σ1 = σ2 = 0.6, 0.75, 0.85. Solid lines are the corresponding best fits, 〈d〉 = constant for
σ1 = σ2 = 0.6, 〈d〉 ~ N0.14 or 〈d〉 ~ ln N for σ1 = σ2 = 3/4, and 〈d〉 ~ N0.14 for σ1 = σ2 = 0.85
(〈d〉 ~ N0.4 follows from equation (7)).The results are averaged over 100 network realizations.
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Figure 4.
Scaling of the degree distribution in the networks of N = 200, N = 2000, and N= 20 000 nodes
with σ1 = σ2 = 0.85.
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Figure 5.
The curved line (10) and the straight line σ1 + σ2 = 3/2 separate qualitatively different network
regimes. In the region denoted as ‘algebraic growth’ the average degree increases as 〈d〉 ~
N2(σ1+σ2−3/2) and the degree distribution has a scaling form shown in figure 4.
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Figure 6.
The degree distribution exponent γ(σ) for the symmetric divergence from equation (9), γ ≈ 1/
(2σ − 1) for σ → 1/2 + 0.
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Figure 7.
The degree distribution nk for symmetric divergence, σ1 = σ2 = 0.675. A dashed line is the
predicted power-law asymptotics with the exponent γ(0.675) ≈ 4.3.
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Table 1
Number of j-cliques in networks with N = 6954 vertices and L = 20435 links for, Cj

fly —fruitfly protein–protein-

binding network, Cj
s—simulations with σ = 0.38 and P = 0.03, and Cj

th —equation (3) prediction for the same
σ and P.

j Cj
fly Cj

s Cj
th

3 1405 1371 ± 9 1416
4 35 33 ± 1 34
5 1 0.37 ± 0.04 0.34
6 0 0.0025 ± 0.0016 0.0014
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Table 2
The behaviour of the duplication–divergence network of arbitrary symmetry for different values of probabilities
to preserve a link σ1 and σ2. Here, L(N) is the average number of links for a given number of nodes N, nk the
average fraction of nodes of degree k. σi

*, i = 1, 2 are the solutions of equation (5), γ(σ1, σ2) is given by equation
(9).

σ Self-averaging L(N) nk

σ1 = σ2 = 1 No N(N + 1)/6 2(N − k)/[N(N − 1)]
3/2 < σ1 + σ2 < 1 No ~N2(σ1+σ2−1) ~N3−2σ1−2σ2F(k/N2σ1+2σ2−3)

σ1 + σ2 < 3/2, σi > σi
*, i = 1, 2 Yes ~N ln N probably ~k−2

1/2 < σ1 + σ2, σi < σi
*, i = 1, 2 Yes ~N ~k−γ(σ1,σ2)
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Table 3
Number of j-cliques in networks with N = 6954 vertices and L = 20435 links for Cj

fly —fruitfly protein–protein-

binding network, Cj
s—simulation of symmetric divergence with σ1 = σ2 = 0.725 and P = 0.0475, and Cj

th —
equation (12) prediction for the same σ and P. Simulation results are averaged over 2000 network realizations.

j Cj
fly Cj

s Cj
th

3 1405 1353 ± 9 1377
4 35 28 ± 1 28
5 1 0.24 ± 0.03 0.24
6 0 0.0025 ± 0.0016 0.0011
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Table 4
Number of components nc and the number of vertices in the largest component normalized by the network size,
NL/N, in the duplication–symmetric-divergence networks for various σ1 = σ2 = σ. All networks are grown to the
fly dataset size, N = 6954; the results are averaged over 1000 realizations.

σ nc NL/N

0.8 1.1 ± 0.01 99 ± 0.2%
0.725 8.4 ± 0.2 92 ± 0.4%
0.65 232 ± 1 33 ± 1%
0.6 835 ± 1.4 2.7 ± 0.03%
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