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Abstract
Research on aging in Drosophila continues to provide new insights into this complex process.
Drosophila is highly amenable to study aging because of its short generation time, comprehensive
resources for genetic manipulation, and functionally conserved physiology. Importantly, many of
these physiological processes such as heart function, sleep, and metabolism functionally senescence
in older flies. As the evolutionarily conserved insulin and TOR pathways are critical regulators of
aging, the influence of insulin and TOR signaling on these processes is an important area for future
research. An important emerging theme is determining the age-dependent alterations that occur at
the organ level and how this functional senescence is regulated by different tissues.
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Sleep
The fruit fly, Drosophila melanogaster, can be used as an effective model organism to study
sleep (Hendricks et al., 2000; Shaw et al., 2000). Sleep in the fly is identified using behavioral
criteria that were established in the days before the electroencephalogram became the standard
for identifying sleep in mammals and birds. The criteria include: 1) Prolonged periods of
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quiescence; 2) Reduced responsiveness to external stimuli; 3) Rapid reversibility, which
distinguishes sleep from hibernation or coma; 4) Homeostatic regulation – the increased need
for sleep that follows sleep deprivation (Tobler, 1983). These criteria continue to be used to
evaluate sleep-like states in organisms in which electrophysiological recordings are not
possible (Campbell and Tobler, 1984). They help to avoid interpretive problems resulting from
comparisons of brain activity patterns between species having very different neuroanatomical
organizations (Campbell and Tobler, 1984; Greenspan et al., 2001; Hartse, 1994).

Careful observations of fly behavior demonstrate that Drosophila exhibit consolidated periods
of quiescence (Hendricks et al., 2000; Shaw et al., 2000). During periods of quiescence lasting
5 minutes or longer, flies are unresponsive to mild external stimuli but could be quickly aroused
with stronger stimulation. Furthermore, when flies are kept awake they respond by exhibiting
large compensatory increases in the amount of quiescence the next day (Shaw et al., 2000).
Moreover, adenosine antagonists such as caffeine increase waking while antihistamines
increase sleep and reduce its latency (Hendricks et al., 2000; Shaw et al., 2000). More
importantly, several molecular markers that are modulated by sleep and waking in mammals
are similarly modulated in Drosophila. Altogether, behavioral, ontogenetic, pharmacological,
molecular and genetic studies indicate that quiescence in Drosophila shares many of the critical
features of mammalian sleep.

Aging is associated with sleep disruptions in humans, monkeys, dogs, cats, rats, mice, and flies
(Pandi-Perumal et al., 2002; Shaw et al., 2002; Shiromani et al., 2000). Because sleep
deprivation, sleep fragmentation and insomnia activate catabolic pathways and induce
hormonal profiles that are commonly found during aging, it has been suggested that decreased
sleep quality increases the wear and tear of living and accelerates aging processes (Van Cauter
et al., 2000). Several recent epidemiological studies have found that sleep duration and
insomnia are associated with an increased risk of all-cause mortality (Kripke et al., 2002;
Manabe et al., 2000; Tamakoshi and Ohno, 2004). More importantly, sleep deficits, particularly
in older adults, are associated with chronic health problems, impaired quality of life, decreased
psychomotor performance, reduced attention, and increased fatigue (Akerstedt and Nilsson,
2003; Buysse and Ganguli, 2002; Pandi-Perumal et al., 2002; Spiegel et al., 1999).

In humans, sleep duration declines with age and is associated with increased nighttime
awakenings and reduced slow wave sleep (Cajochen et al., 2006). Aging is also associated with
modification in circadian timing as measured by reduced period and amplitude of temperature,
sleep and hormonal rhythms (Dijk and Lockley, 2002). Frequently the circadian sleep cycle is
phase advanced such that older adults both go to sleep earlier and wake up earlier than younger
subjects. Not surprisingly, the prevalence of sleep disorders such as sleep apnea, periodic limb
movement disorder, restless legs syndrome, and insomnia increase with age and pose an
increased risk for health problems and reduced quality of life (Cooke and Ancoli-Israel,
2006).

Given its short lifespan, ≈ 60 days, Drosophila is an ideal model system to study the relationship
between sleep and aging. As with humans, sleep time starts to decline in middle aged
Drosophila and continues to fall in older flies (Figure 1) (Shaw et al., 2000). In addition to
changes in sleep time, older Drosophila display other alterations in sleep architecture that
resemble those found in older human adults. Thus, sleep becomes fragmented, longer sleep
episodes become rare and the animals display an increase in nighttime awakenings. Although
the field of Drosophila sleep research is only a few years old, several studies have evaluated
lifespan in mutant flies that display reduced and/or disrupted sleep (Bushey et al., 2007;Cirelli
et al., 2005;Hendricks et al., 2003;Kume et al., 2005;Seugnet et al., 2004;Shaw et al., 2002).
The focus of these studies has not been to evaluate the effects of sleep on aging per se. Rather,
these studies have used lifespan to determine whether the changes in sleep that are observed
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in the identified mutant are beneficial or detrimental to the organism. For example, a mutation
that slows the cost of waking may reduce the need for sleep. While these flies might sleep
substantially less than wild-type animals they should have a normal lifespan. On the other hand,
mutations that disrupt sleep regulatory pathways may interfere with the animal's ability to
obtain needed sleep thereby resulting in both reduced sleep time and a shorter lifespan. Not
surprisingly then, short sleeping flies have been reported to have both a reduced (Cirelli et al.,
2005;Hendricks et al., 2003;Seugnet et al., 2004) and a normal lifespan (Bushey et al.,
2007;Kume et al., 2005;Pitman et al., 2006). While these studies were not designed to assess
the relationship between sleep and aging, they have identified specific genetic tools that may
ultimately be useful in elucidating common mechanisms between these two important
processes.

In contrast to studies that have focused on lifespan in sleep mutants, Sehgal and colleagues
(2006) have evaluated sleep and aging. In particular, they have shown that sleep fragmentation
is associated with a reduction in the strength of sleep-wake cycles as measured by fast Fourier
transform (Koh et al., 2006). As flies become very old, daytime sleep increases, presumably
in an effort to compensate for poor sleep at night such that total sleep duration is not reduced
further. Aging in the fly can be easily manipulated by simply rearing the animals at different
ambient temperatures. Flies reared at warm temperatures (29°C) have a reduced lifespan
compared to flies reared at cooler temperatures (18°C). Interestingly, when flies were housed
at cooler temperatures sleep impairments were slowed substantially over time compared with
their accelerated-aging siblings. Thus, Sehgal and colleagues (2006) demonstrated that sleep
fragmentation is associated with physiological not chronological age. Such a conclusion would
not be possible using mammalian protocols and emphasize the utility of the fly to address
problems that have been intractable using traditional approaches. It should be noted that
intensive research efforts have begun to separately elucidate biological principles of aging and
sleep (Cirelli et al., 2005; Hendricks et al., 2001; Hwangbo et al., 2004; Shaw et al., 2002). By
combining these tools it should be possible to determine the precise relationship between sleep
and aging.

Cardiomyopathies and Arrhythmias
Novel methods for investigating fly heart function have recently become available that promise
to dramatically expand the possibilities for screening mutants and for analysis of cardiac
contractility and stress response in Drosophila (Wessells et al., 2004; Wolf et al., 2006; Ocorr
et al., 2007a,b). One method uses a non-contact echography, optical coherence tomography
(OCT), discussed last year in Exp. Gerontol. (Lim et al., 2006), to image the contractions of
the heart (Wolf et al., 2006). This non-invasive ultrasound-like method seems to be applicable
for high throughput screening to identify mutants with ‘dilated heart’ phenotypes. It was found
that cardiac overexpression of a mutant cardiomyopathic form of δ-sarcoglycan, a component
of the Dystrophin Glycoprotein Complex (DGC), exhibit systolic dysfunction phenotypes
reminiscent of ‘dilated cardiomyopathy’ in humans (Wolf et al., 2006). Recently, loss-of-
function mutants of δ-sarcoglycan, which in addition to a dilated heart phenotype, also exhibit
reduced motor function and a shortened lifespan (Allikian et al., 2007). A reduced life
expectancy was also observed with reduced function of DGC genes, namely dystrophin and
dystroglycan (Shcherbata et al., 2007). This suggests that compromised muscle function
significantly truncates a fly's life expectancy similar to that of dystrophic mdx mice
(Chamberlain et al., 2007).

Another method for detailed analysis of heart contractions uses surgically exposed fly's hearts
that are accessible for high-speed digital video microscopy (Ocorr et al., 2007a). This semi-
intact fly preparation is well-suited for the study of cardiac arrhythmias and other dynamic
measures of heart function. To monitor the movement of the edges of the heart, ‘M-modes’
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from movies of exposed heart tube preparations display the dynamics of the heart wall
contractions over time (Figure 2, top panel). These images are remarkably similar to the M-
mode of human cardiac ultrasound measurements. The high speed of the movies (up to 200
frames per second) permits the racking of very rapid changes in and deviations of the regular
heart wall movements. Significantly, as the fly ages, Ocorr et al. (2007a) find that the regularity
of the heartbeat progressively deteriorates, displaying various forms of arrhythmia (Figure 2,
bottom panel). These age-dependent changes in heart rhythm bear a resemblance to the
increased incidence of atrial fibrillation in the elderly (see Lakatta and Levy, 2003).These
findings suggest that the Drosophila heart may provide a powerful genetic model of cardiac
aging.

Ocorr et al. (2007a) tested this hypothesis by examining mutations in the single fly homolog
of the human KCNQ genes, which encode the alpha subunits of the IKs current. KCNQ
mutations in humans cause type 1 long QT syndrome (LQT1) and are associated with an
increased risk for torsades des pointes (TdP) arrhythmias and sudden death (Jentsch, 2000;
Towbin, 2004; Sanguinetti and Tristani-Firouzi, 2006). Deletion mutants of the Drosophila
KCNQ are viable but show an elevated risk to pacing-induced heart failure (Ocorr et al.,
2007a), a method that assesses age-dependent cardiac performance under stress (Wessells et
al., 2004). Further investigation of the heart rhythm of KCNQ mutants with high-speed video
recording revealed episodes of prolonged heart contraction and fibrillation in KCNQ mutants,
and importantly these phenotypes get progressively more severe with age (Ocorr et al.,
2007a). The observed arrhythmias in mutant flies apparently experience a broadening of the
cardiac action potential due delayed relaxation of the cardiac myocytes. Interestingly, in
contrast to the fly and human heart, these channels seem to be of lesser importance in the much
faster beating mouse heart. Therefore, flies develop congenital and age-dependent arrhythmias
as do humans, suggesting that at least some of the causes and underlying mechanisms are
similar and can be genetically examined in Drosophila to further elucidate the molecular basis
for functional aging in an organ system.

Coordination of Tissue Aging
Tissue and functional aging of organs is an important component of the regulation of
organismal lifespan, yet the underlying regulation and coordination of these processes remains
largely unknown. One mechanism influencing lifespan is genetic variation. For example, there
are polygenic influences contributing to lifespan regulation (Wilson et al., 2006). Although
many quantitative trait loci (QTLs) have been identified that contribute to the variation in
longevity, how these QTLs functionally interact with established pathways that control aging
remains to be determined.

A first foray toward an understanding of genetic interactions in longevity has been made in a
screen of fifty ‘real’ wild-type lines, generated by inbreeding of individual wild-caught flies,
for defects in heart function (Ocorr et al., 2007c). These ‘wild’ lines revealed a continuous
spectrum of pacing-induced heart failure, including some extreme cases where young flies
exhibit an incidence of failure that is as high as is normally found in old flies (Ocorr et al.,
2007c; see also Wessells et al., 2004; Wessells et al., 2007). High-speed video analysis of the
inbred lines with high rates of inducible heart failure shows that they also exhibit elevated
occurrence of arrhythmias and contractile disorders. This suggests that flies in the wild exhibit
naturally occurring ‘cardiomyopathies’. Although the inbred lines examined generally showed
an increased frequency of heart failure with age, a few lines displayed an unusually low
frequency of failure upon pacing-induced stress (Ocorr et al., 2007c). This finding is
reminiscent of hearts with decreased insulin or TOR signaling (Wessells et al., 2004; Luong
et al., 2006). Thus, is seems that in the wild there exists a remarkable spectrum of genetic
variation in age-dependent cardiac performance. It remains to be seen what genes are affected

Shaw et al. Page 4

Exp Gerontol. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in these natural variants. Using QTL and other quantitative genetic measures, the traits can
now be mapped and nature of the genetic variation can be identified. Elucidating why these
variations exist will be important for understanding the epidemiology of heart disease.

Changes in the endocrine system and metabolism are known to affect the aging process.
Determining the age-dependent alterations in endocrine function and metabolism will be
critical to develop an integrated understanding of the functional changes that occur in senescent
organ systems (Tatar, 2004). Recent work has shown that components of the endocrine system,
such as TOR, are involved in aging, possibly by influencing insulin signaling (Luong et al.,
2006; Kapahi et al., 2004). For example, reduction of TOR function leads to elevated insulin
levels in Drosophila. The nutrient-sensitive Tuberous Sclerosis Complex proteins (TSC 1-2)/
Target of Rapamycin (TOR) pathway interacts in many ways with the Insulin Receptor (InR)
pathway in controlling metabolism and aging (Oldham and Hafen, 2003; Wullschleger et al.,
2006). Akt/PKB activation by PI3K inhibits not only FOXO but also TSC2, thus interfering
with the tumor suppressor TSC1-2 complex, which negatively regulates TOR signaling.
Interestingly, TOR seems to influence Akt/PKB activity by Ser473 phosphorylation (Sarbassov
et al., 2005). The TOR kinase, in turn, stimulates the translation factors S6K and eIF4E, the
latter by inhibiting 4E-BP (Fingar and Blenis, 2004). S6K may also need the phosphoinositide-
dependent kinase PDK1 and the TSC-dependent Rheb GTPase for full-activation, although the
exact relationships are somewhat controversial. InR-TOR signaling may control these
processes both autonomously and non-autonomously, as evidence in Drosophila suggests
(Tatar, 2004). For example, FOXO signaling in the IPCs changes DILP levels (Luong et al.,
2006), and increases stress resistance and longevity when expressed in the head fatbody
(Hwangbo et al., 2004). Also, the temporal dynamics of FOXO overexpression during aging
were examined to determine when FOXO action acts in the fatbody to extend lifespan
(Giannakou et al., 2007). These results showed that loss of insulin signaling can lead to long-
range effects on the aging trajectory. Tissue specificity and temporal requirement of aging and
metabolism will be particularly important areas of future research.

TOR signaling is an integral sensor of nutritional status of the environment and may also be
part of the dietary restriction (DR) response in various species. Interestingly, a recent study by
Promislow and colleagues shows evidence that DR has different effects on the functional
decline in different tissues and at different times (Burger et al., 2007). For example, starvation
resistance is increased in young flies but decreased in old flies by DR. DR also has little effect
on oxidative stress response at young ages, while having a negative effect in older flies.
Furthermore, DR had differential effects on responses to different pathogens, which suggests
that the functional interaction of DR with the innate immune responses is complex. Thus,
although DR increases lifespan, it has differential effects on functional changes at the organ
level. As an important goal of aging research is to prevent the age-dependent decline in organ
function, more work is needed to understand how DR affects these organ-specific traits.
Remarkably, the sense of smell may also play into the DR response. Work by Pletcher and
colleagues have shown that yeast odorants can partially reverse the effects of DR on lifespan
(Libert et al., 2007; see also Pletcher et al., 2002). This result suggests that the perception of
nutrient availability leads to changes that can affect aging. Consistent with this hypothesis,
mutations in the odorant receptor Orb83b, which is broadly expressed in olfactory neurons,
can alter metabolism and extend lifespan (Libert et al., 2007).

It is known that organs age at different rates, yet how these organ aging processes occur and
are coordinated is not well established. In keeping with different organs having tissue-specific
signatures of aging, a genomic analysis of aging in different tissues has revealed unique as well
as common signatures (Zhan et al., 2007; see also Pletcher et al., 2002). For example, Zhou
and colleagues recently showed that different tissues have some genes in common that are
altered with age (Zhan et al., 2007). Many of the genes include factors involved in the regulation
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of energy production as well as protein and amino acid biosynthesis. As InR-TOR is a critical
pathway for regulating both growth and metabolism, these results are in keeping with the role
of InR-TOR signaling as a global coordinator of organ and organismal aging. Furthermore,
there were also individual genetic signatures associated with the aging of individual tissues.
This result suggests that there are non-autonomous regulators that may coordinate the aging
of individual organs with organismal aging. One example of non-autonomous regulation comes
from the study of HMGCR, an enzyme involved in the production of juvenile hormone (JH)
after stimulation by insulin signaling (Tatar, 2004). Loss of InR affects growth non-
autonomously by decreasing HMGCR and JH levels in the organism (Belgacem and Martin,
2007). This loss of HMGCR and InR in the corpus allatum leads to changes in size and sexually
dimorphic changes in locomotor activity due to loss of JH. This result is also consistent with
the non-autonomous control of aging by InR signaling because the increased lifespan due to
loss of InR function requires JH production (Tatar, 2004).

Subcellular organelles are also important in the age-dependent functional decline of organ
systems. The nuclear envelope contributes to organismal aging as laminopathies show
degenerative and progeric phenotypes. A Drosophila model of laminopathy includes Lamin
A mutants, which show accelerated senescent phenotypes such as muscle degeneration and a
shortened lifespan (Muñoz-Alarcón et al., 2007). The function of the proteosome also declines
with age, which suggests that the ability to degrade proteins is altered with age in both
Drosophila and mammals. For example, the 26S proteosome switches to the 20S form with
age, but the mechanism by which this impacts organismal and tissue aging is not clear (Vernace
et al., 2007). It is possible that this change affects the ability of the proteosome to remove
damaged proteins, which can contribute to aging and degenerative diseases. Mitochondria are
also subcellular organelles, whichcontribute to aging through the generation of ATP and ROS.
Work by Sheldahl and colleagues has shown the mitochondrial control of aging via different
haplotypes depends on the nuclear DNA genetic background, suggesting the relationship
between the mitochondria and nuclear background is more complex than previously envisioned
(Rand et al., 2006).

In sum, we are at the beginning of an understanding of how individual organs age as well as
how this process is coordinated by the InR-TOR nutrient endocrine system. Future work using
the Drosophila model promises to provide a more comprehensive picture of both organismal
and tissue aging at genetic, cellular, and physiological levels.
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Figure 1. Sleep is disrupted in older flies
Average sleep bout duration declines with age (black), while the number of nighttime
awakenings increases.
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Figure 2. M-mode traces prepared from high speed movies of dissected flies
A 1 pixel-wide region with both edges of the heart tube is defined in a single movie frame.
Same regions are electronically cut from all of the frames in the movie and aligned horizontally
to produce the trace. A regular heart beat is seen in young flies (at 1 week of age; top trace).
Arrhythmic heart beats are evident in old flies (at 5 weeks of age; bottom trace). For quantitative
analysis, see Ocorr et al 2007a.
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