Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Aug;135(2):498–510. doi: 10.1128/jb.135.2.498-510.1978

Induction and inhibition of the allantoin permease in Saccharomyces cerevisiae.

R Sumrada, C A Zacharski, V Turoscy, T G Cooper
PMCID: PMC222409  PMID: 355231

Abstract

Allantoin uptake in Saccharomyces cerevisiae is mediated by an energy-dependent, low-Km, active transport system. However, there is at present little information concerning its regulation. In view of this, we investigated the control of alloantoin transport and found that it was regulated quite differently from the other pathway components. Preincubation of appropriate mutant cultures with purified allantoate (commercial preparations contain 17% allantoin), urea, or oxalurate did not significantly increase allantoin uptake. Preincubation with allantoin, however, resulted in a 10- to 15-fold increase in the rate of allantoin accumulation. Two allantoin analogs were also found to elicit dramatic increases in allantoin uptake. Hydantoin and hydantoin acetic acid were able to induce allantoin transport to 63 and 95% of the levels observed with allantoin. Neither of these compounds was able to serve as a sole nitrogen source for S. cerevisiae, and they may be non-metabolizable inducers of the allantoin permease. The rna1 gene product appeared to be required for allantoin permease induction, suggesting that control was exerted at the level of gene expression. In addition, we have shown that allantoin uptake is not unidirectional; efflux merely occurs at a very low rate. Allantoin uptake is also transinhibited by addition of certain amino acids to the culture medium, and several models concerning the operation of such inhibition were discussed.

Full text

PDF
503

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMMANN E. C., LYNCH V. H. PURINE METABOLISM OF UNICELLULAR ALGAE. I. CHROMATOGRAPHIC DETECTION OF SOME PURINES, PYRIMIDINES, AND IMIDAZOLES BY THEIR MERCURIC COMPLEXES. Anal Biochem. 1964 Apr;7:387–392. doi: 10.1016/0003-2697(64)90150-2. [DOI] [PubMed] [Google Scholar]
  2. Bossinger J., Cooper T. G. Execution times of macromolecular synthetic processes involved in the induction of allophanate hydrolase at 15 degrees C. J Bacteriol. 1976 Oct;128(1):498–501. doi: 10.1128/jb.128.1.498-501.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bossinger J., Cooper T. G. Molecular events associated with induction of arginase in Saccharomyces cerevisiae. J Bacteriol. 1977 Jul;131(1):163–173. doi: 10.1128/jb.131.1.163-173.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bossinger J., Cooper T. G. Sequence of molecular events involved in induction of allophanate hydrolase. J Bacteriol. 1976 Apr;126(1):198–204. doi: 10.1128/jb.126.1.198-204.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bossinger J., Lawther R. P., Cooper T. G. Nitrogen repression of the allantoin degradative enzymes in Saccharomyces cerevisiae. J Bacteriol. 1974 Jun;118(3):821–829. doi: 10.1128/jb.118.3.821-829.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chevallier M. R., Jund R., Lacroute F. Characterization of cytosine permeation in Saccharomyces cerevisiae. J Bacteriol. 1975 May;122(2):629–641. doi: 10.1128/jb.122.2.629-641.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
  8. Cooper T. G., Lawther R. P. Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the last intermediate of the pathway. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2340–2344. doi: 10.1073/pnas.70.8.2340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooper T. G., Sumrada R. Urea transport in Saccharomyces cerevisiae. J Bacteriol. 1975 Feb;121(2):571–576. doi: 10.1128/jb.121.2.571-576.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crabeel M., Grenson M. Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Eur J Biochem. 1970 May 1;14(1):197–204. doi: 10.1111/j.1432-1033.1970.tb00278.x. [DOI] [PubMed] [Google Scholar]
  11. Greth M. L., Chevallier M. R., Lacroute F. Ureidosuccinic acid permeation in Saccharomyces cerevisiae. Biochim Biophys Acta. 1977 Feb 14;465(1):138–151. doi: 10.1016/0005-2736(77)90362-5. [DOI] [PubMed] [Google Scholar]
  12. Kotyk A., Ríhová L. Transport of -aminoisobutyric acid in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Nov 2;288(2):380–389. doi: 10.1016/0005-2736(72)90259-3. [DOI] [PubMed] [Google Scholar]
  13. Lawther R. P., Phillips S. L., Cooper T. G. Lomofungin inhibition of allophanate hydrolase synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1975;137(2):89–99. doi: 10.1007/BF00341675. [DOI] [PubMed] [Google Scholar]
  14. Lawther R. P., Riemer E., Chojnacki B., Cooper T. G. Clustering of the genes for allantoin degradation in Saccharomyces cerevisiae. J Bacteriol. 1974 Aug;119(2):461–468. doi: 10.1128/jb.119.2.461-468.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Macris B. J. Mechanism of benzoic acid uptake by Saccharomyces cerevisiae. Appl Microbiol. 1975 Oct;30(4):503–506. doi: 10.1128/am.30.4.503-506.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pall M. L., Kelly K. A. Specificity of transinhibition of amino acid transport in neurospora. Biochem Biophys Res Commun. 1971 Mar 5;42(5):940–947. doi: 10.1016/0006-291x(71)90521-3. [DOI] [PubMed] [Google Scholar]
  17. Pateman J. A., Kinghorn J. R., Dunn E. Regulatory aspects of L-glutamate transport in Aspergillus nidulans. J Bacteriol. 1974 Aug;119(2):534–542. doi: 10.1128/jb.119.2.534-542.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roon R. J., Even H. L., Dunlop P., Larimore F. L. Methylamine and ammonia transport in Saccharomyces cerevisiae. J Bacteriol. 1975 May;122(2):502–509. doi: 10.1128/jb.122.2.502-509.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roon R. J., Levy J. S., Larimore F. Negative interactions between amino acid and methylamine/ammonia transport systems of Saccharomyces cerevisiae. J Biol Chem. 1977 Jun 10;252(11):3599–3604. [PubMed] [Google Scholar]
  20. SVIHLA G., DAINKO J. L., SCHLENK F. Ultraviolet microscopy of purine compounds in the yeast vacuole. J Bacteriol. 1963 Feb;85:399–409. doi: 10.1128/jb.85.2.399-409.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SVIHLA G., SCHLENK F. S-adenosylmethionine in the vacuole of Candida utilis. J Bacteriol. 1960 Jun;79:841–848. doi: 10.1128/jb.79.6.841-848.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sumrada R., Cooper T. G. Allantoin transport in Saccharomyces cerevisiae. J Bacteriol. 1977 Sep;131(3):839–847. doi: 10.1128/jb.131.3.839-847.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sumrada R., Cooper T. G. Oxaluric acid: a non-metabolizable inducer of the allantoin degradative enzymes in Saccharomyces cerevisiae. J Bacteriol. 1974 Mar;117(3):1240–1247. doi: 10.1128/jb.117.3.1240-1247.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sumrada R., Gorski M., Cooper T. Urea transport-defective strains of Saccharomyces cerevisiae. J Bacteriol. 1976 Mar;125(3):1048–1056. doi: 10.1128/jb.125.3.1048-1056.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whitney P. A., Cooper T. G., Magasanik B. The induction of urea carboxylase and allophanate hydrolase in Saccharomyces cerevisiae. J Biol Chem. 1973 Sep 10;248(17):6203–6209. [PubMed] [Google Scholar]
  26. Whitney P. A., Cooper T. G. Requirement for HCO3- by ATP: urea amido-lyase in yeast. Biochem Biophys Res Commun. 1970 Aug 24;40(4):814–819. doi: 10.1016/0006-291x(70)90975-7. [DOI] [PubMed] [Google Scholar]
  27. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]
  28. Woodward J. R., Cirillo V. P. Amino acid transport and metabolism in nitrogen-starved cells of Saccharomyces cerevisiae. J Bacteriol. 1977 May;130(2):714–723. doi: 10.1128/jb.130.2.714-723.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zacharski C. A., Cooper T. G. Metabolite compartmentation in Saccharomyces cerevisiae. J Bacteriol. 1978 Aug;135(2):490–497. doi: 10.1128/jb.135.2.490-497.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES