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The detection of ligand-binding sites is often the starting point for
protein function identification and drug discovery. Because of
inaccuracies in predicted protein structures, extant binding pocket-
detection methods are limited to experimentally solved structures.
Here, FINDSITE, a method for ligand-binding site prediction and
functional annotation based on binding-site similarity across
groups of weakly homologous template structures identified from
threading, is described. For crystal structures, considering a cutoff
distance of 4 Å as the hit criterion, the success rate is 70.9% for
identifying the best of top five predicted ligand-binding sites with
a ranking accuracy of 76.0%. Both high prediction accuracy and
ability to correctly rank identified binding sites are sustained when
approximate protein models (<35% sequence identity to the
closest template structure) are used, showing a 67.3% success rate
with 75.5% ranking accuracy. In practice, FINDSITE tolerates struc-
tural inaccuracies in protein models up to a rmsd from the crystal
structure of 8–10 Å. This is because analysis of weakly homologous
protein models reveals that about half have a rmsd from the native
binding site <2 Å. Furthermore, the chemical properties of tem-
plate-bound ligands can be used to select ligand templates asso-
ciated with the binding site. In most cases, FINDSITE can accurately
assign a molecular function to the protein model.

pocket detection � protein structure prediction � ligand screening

To date, although the genomes of �500 organisms have been
sequenced (1, 2), the biological function of many identified

genes/gene products is unknown. This rapid accumulation of
protein sequences of unknown structure and function has mo-
tivated the development of proteome-scale protocols for protein
structure and function prediction (3–5). The detection of ligand-
binding sites is often a starting point for structure-based function
identification. Knowledge of the ligand-binding site is also
essential for structure-based drug discovery (6). Existing ap-
proaches for ligand-binding site prediction can be roughly di-
vided into sequence- and structure-based methods (see refs. 6
and 7). The main strength of sequence-based methods is their
ability to identify a ligand-binding/interaction motif in proteins
that may not have the same overall fold. However, motif-based
searches frequently become ineffective if the binding region is
nonlocal in sequence. Homology-based methods require related
proteins with significant sequence identity to a protein in the
Protein Data Bank (PDB) (8, 9) because the conservation of
biochemical function drops rapidly for proteins sharing �35–
40% sequence identity (10, 11). In that regard, a number of
structure-based approaches have been developed to identify
ligand-binding sites (6). Geometry-based methods locate binding
residues by searching for cavities/pockets in a protein structure
(12–15). Other methods consider blind docking of small mole-
cules into the receptor structure (16, 17), calculate theoretical
microscopic titration curves (18), or identify electrostatically
destabilized residues (19). Finally, analysis of the spatial hydro-
phobicity distribution can identify sites on the protein surface
involved in ligand binding (20). Among the best of these pocket-
detection algorithms is the recently developed LIGSITECSC

(14), an extension and implementation of LIGSITE (13).
LIGSITECSC calculates surface accessibility for the protein’s

Connolly surface (21) and then reranks the identified pockets by
the degree of conservation of identified surface residues.

A systematic analysis of known protein structures grouped
according to SCOP (22) reveals a general tendency of certain
protein folds to bind substrates at a similar location, suggesting
that analogous or very distantly homologous proteins can have
common binding sites (11). If so, it should be possible to develop
an approach for ligand-binding site identification that is less
sensitive than pocket-detection methods to distortions in the
modeled structures. In this spirit, we develop FINDSITE, a
method for the prediction of ligand-binding sites and functional
annotation based on binding-site similarity among superimposed
groups of template structures identified from threading (23); a
schematic overview of the methodology is shown in Fig. 1. For
a given target protein, the PROSPECTOR�3 threading algo-
rithm (24, 25) identifies ligand-bound structural templates.
Then, holo-templates are superimposed onto the predicted (or
experimental, if available) target protein structure by the TM-
align (26) structure alignment program. Upon superimposition,
the clustered centers of mass of the ligands bound to the
threading templates identify putative binding sites, and the
predicted sites are ranked according to the number of templates
that share a common binding pocket. FINDSITE also specifies
the chemical properties of the ligands that likely occupy detected
binding sites. To assess its validity, we use a representative set of
proteins that are weakly homologous to their templates and
generate models using two state-of-the-art programs for protein
structure modeling: TASSER (27–29), and MODELLER9v1
(30, 31). We demonstrate that FINDSITE operates satisfactorily
in the ‘‘twilight zone’’ of sequence similarity (32), which covers
roughly two-thirds of known protein sequences (30). Its main
advantage is that no experimental structure of the target protein
is required; the high accuracy of the prediction and the ability to
correctly rank the identified binding sites is sustained when
protein models instead of target crystal structures are used for
template superimposition. In most cases, FINDSITE can accu-
rately assign a molecular function to the protein model. Use of
consensus ligands extracted from the binding sites is shown to be
quite useful in ligand screening. These features should enhance
the utility of low-to-moderate quality protein models in ligand
screening and structure-based drug design.

Results
Ligand-Binding Site Prediction. We evaluated the performance of
the LIGSITECSC pocket-detection and FINDSITE threading-
based approaches on a nonredundant benchmark set of 901
proteins in terms of the accuracy of ligand-binding site predic-
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tion and the ability to correctly rank identified pockets in both
crystal structures and protein models. LIGSITECSC detects
pockets using a geometric analysis of the target protein’s surface,
whereas FINDSITE uses the putative protein structure (either
predicted or experimental, when available) as the reference for
template structure superimposition. For both, the results are

compared with randomly selected patches on the target’s protein
surface. The prediction success rate is assessed by the distance
between the center of mass of the bound ligand and a single point
representing the predicted pocket. In LIGSITECSC, this point
represents the geometric center of the pocket’s grid points.
FINDSITE defines a pocket center as the center of mass of all
ligands that occupy the consensus-binding site in the superim-
posed threading template structures. For a random surface
patch, the center corresponds to the side-chain center of mass of
the predicted binding residues. A cutoff distance of 4 Å is used
as the hit criterion, because the average radius of gyration for
ligand molecules in our dataset is 4.03 Å. To evaluate the results
of ligand-binding site prediction for protein models, we trans-
ferred ligand molecules from crystal structures onto protein
models by superposition of the binding residues. In no case is the
sequence identity between the target and template sequences
�35%. Thus, binding-site prediction is done by using the struc-
tures of weakly homologous template proteins.

The results of ligand-binding site prediction carried out for the
901 benchmark proteins are shown in Fig. 2 and supporting
information (SI) Fig. 5. In Fig. 2A, we use the target protein’s
crystal structure. For LIGSITECSC, the native structure is scanned
to identify binding pockets, whereas for FINDSITE, the set of
predicted template models (where the target has a sequence
identity �35% to all of the selected template structures) is super-
imposed onto the crystal structure. FINDSITE performs better
than the pocket-detection method in both overall accuracy and
ranking ability of identified pockets. When the native crystal
structure is used for the binding-site prediction procedure, the
success rate using the best of top five identified binding pockets is
70.9% and 51.3% for FINDSITE and LIGSITECSC, respectively.
For those proteins where a binding pocket is correctly identified, the
ranking is comparable: 76.0% and 74.7% of the best pockets are
ranked as the top solutions by FINDSITE and LIGSITECSC,
respectively.

As shown in Fig. 2 B and SI Fig. 5, using LIGSITECSC, the
prediction accuracy falls off considerably if one uses modeled
protein structures rather than the experimental structure in ligand-
binding site prediction by pocket detection. LIGSITECSC’s success
rate decreases from 51.3% to 27.2%, 32.5%, and 25.7%, when
PROSPECTOR�3 template structures and protein models gener-
ated by TASSER and MODELLER, respectively, are used. This
decrease is accompanied by deterioration in the ability to correctly
rank the binding site. For the top-ranked threading templates,
TASSER and MODELLER models, only 59.1%, 61.4%, and

Fig. 1. Overview of the FINDSITE prediction methodology. Details are given
in Materials and Methods.

Fig. 2. Performance of FINDSITE and LIGSITECSC compared with randomly selected patches on a target protein surface using target crystal structures (A) and
TASSER models (B). The results are presented as the cumulative fraction of proteins with a distance between the center of mass of a ligand in the native complex
and the center of the best of top five predicted binding sites, less than or equal to the distance displayed on the x axis and the rank of the best pocket selected
from the top five predictions (Inset).
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58.9% of the best pockets are assigned to rank 1, respectively. In
contrast, with FINDSITE, both the high accuracy of ligand-binding
site prediction and the ability to correctly rank the identified
binding sites are sustained if models instead of native structures are
used as reference structures for holo-template superimposition.
The success rate is 67.0%, 67.3%, and 65.7% for the top-ranked
PROSPECTOR�3 templates, TASSER and MODELLER models,
respectively, with a corresponding ranking accuracy of 75.9%,
75.5%, and 75.7%. The high accuracy may be explained by TM-
align’s ability to find a similar structural alignment for crystal and
modeled structures, especially for confidently predicted targets
(25). Most proteins used here (811 of 901) are classified by
PROSPECTOR�3 as targets for which good template structures
and alignments can be identified (an overview of TM-align and
PROSPECTOR�3 is provided in SI Text).

We note that for both native structures and predicted models,
the results using random patches are much worse than for
LIGSITECSC and FINDSITE.

In Fig. 3, binding site prediction accuracy is evaluated in terms
of the quality of the modeled protein structure used. FINDSITE
tolerates structural inaccuracies in a protein model with a global
rmsd from the crystal structure of 8–10 Å. In this interval, the
modeled binding sites (solid line) usually do not have a rmsd �3
Å from the native binding sites, and the average distance
between the center of mass of the native ligand pose and the
center of the predicted binding site is �6 Å. However, the
pocket-detection approach, LIGSITECSC, is far more sensitive to
structural distortions. For protein models with a global rmsd
from the crystal structure �4 Å, the average distance between
the LIGSITECSC predicted and observed binding pockets is
10–13 Å. Again, if random patches are considered, the results are
much worse than LIGSITECSC and FINDSITE.

The relatively low accuracy of binding-site prediction by
pocket detection applied to theoretical protein models com-
pared with experimental structures motivated us to examine the
possible structural distortions of ligand-binding regions in
weakly homologous protein models. The rmsd from the crystal
structure was calculated on the superposition of protein models
onto the corresponding ligand-bound crystal structures with
respect to the binding residues. In general, the overall structure
of the ligand-binding regions was preserved, with a rmsd from

native �2 Å found for approximately one-half of the protein
models. The structural distortion of binding regions observed in
the modeled structures may also account for the reduced ability
to properly accommodate ligand molecules.

Confidence Index. The overall accuracy of binding site prediction
depends on the number of identified ligand-bound templates
that share a common binding site (see SI Fig. 6). We used this
observation to classify proteins as Easy (�125 threading tem-
plates, including homologous proteins for each template), Me-
dium (25–125 templates), and Hard (�25 templates) targets for
threading-based binding site prediction. The average distance
between the centers of predicted and observed binding pockets
calculated for top-ranked FINDSITE solutions is �2 Å, �5 Å,
and �10 Å for Easy, Medium, and Hard targets. According to
this classification, 9%, 47%, and 44% of proteins in the bench-
mark dataset are assigned by FINDSITE as Easy, Medium, and
Hard targets, respectively. With a cutoff distance of 4 Å between
predicted and observed binding sites, the hit rate for the
top-ranked predictions is 90.0%, 71.7%, and 43.7% for Easy,
Medium, and Hard targets, respectively.

Performance on a True Negative Dataset. We next examine the true
negative rate of LIGSITECSC and FINDSITE, namely how often
each algorithm is likely to predict that a binding site is present,
when in reality none occurs. The negative dataset consists of
protein–protein interfaces that are assumed unlikely to have
protein-ligand interactions. We considered a residue as binding
a ligand if any of its heavy atoms lie within a distance of 4 Å from
the predicted binding site center. The false positive rate is
defined as the fraction of interface residues predicted to bind a
ligand. The performance of LIGSITECSC and FINDSITE was
evaluated for crystal structures of target proteins as well as for
the top-ranked PROSPECTOR�3 templates and TASSER-
refined models. The results obtained for crystal structures using
LIGSITECSC and FINDSITE compared with randomly selected
surface patches are presented in SI Fig. 7A. Both LIGSITECSC

and FINDSITE perform equally well on the negative dataset,
with the random patch calculation giving much worse results. For
the top binding pockets, LIGSITECSC (FINDSITE) misclassified
�5% interface residues as belonging to a binding pocket in
10.1% (8.4%) of the cases. Moreover, both approaches achieve
satisfactory results on the negative dataset even if the worst of
the top five predictions is considered as well as if predicted
structures are used (see SI Fig. 7 B and C). In contrast, the
fraction of proteins with �5% of interface residues assigned as
ligand binding by randomly selecting surface patches is consid-
erably higher, 41.4%.

Among the proteins present in the negative dataset, 128 bind
a single ligand in a noninterfacial region. We used these proteins
to assess the true positive rate of LIGSITECSC and FINDSITE
on this dataset and compare the results with these obtained for
the benchmark set described above. For crystal structures, the
true positive rate considering the best of top five identified
binding pockets was 49.2% and 36.7% for FINDSITE and
LIGSITECSC, respectively, with the corresponding ranking ac-
curacy of 57.8% and 57.0%. If protein models were used in the
prediction procedure instead of crystal structures, the accuracy
of FINDSITE and LIGSITECSC was 46.1% and 25.8%, with a
ranking ability of 56.3% and 45.3%, respectively. We note that
4%, 38%, and 58% of proteins present in the negative dataset
used to assess the true positive rate were assigned by FINDSITE
as Easy, Medium, and Hard targets, respectively; this may
explain the lower accuracy of ligand-binding site prediction for
this dataset.

Comparison with PROSITE. We compared consensus binding resi-
dues predicted for each target protein by FINDSITE with

Fig. 3. Average distance between the native ligand center of mass upon
superposition of a protein model onto the protein–ligand crystal complex
with respect to the binding residues and the center of predicted binding
pocket. The accuracy is presented for decreasing quality of TASSER models
used in the prediction procedure, expressed by the global rmsd from the
crystal structure. The solid line is the local rmsd calculated for the ligand-
binding regions.
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ligand-binding signatures detected by ScanProsite (33). We
consider only the top-ranked threading consensus binding sites
and the best PROSITE pattern (34). Performance is evaluated
by several recognized metrics defined in SI Text. The overall
accuracy of both methods is comparably high: 0.93 and 0.92 for
FINDSITE and PROSITE, respectively. Similarly, both methods
demonstrate comparable median specificity: 0.96 and 1.00. How-
ever, FINDSITE clearly covers more ligand-binding sites than
PROSITE. The median sensitivity and Matthew’s correlation
coefficient between predicted and observed binding residues are
0.64 and 0.59, and 0.00 and 0.00, for FINDSITE and PROSITE,
respectively (the zero values calculated for PROSITE result from
small binding site coverage). Using FINDSITE, excellent agree-
ment is found between the average numbers of predicted binding
residues (20.0 � 7.3 and 20.3 � 6.8 for the best and the top
identified pockets, respectively) and that observed in the crystal
structures of protein–ligand complexes (19.6 � 6.5).

Ligand Selection. FINDSITE also provides information on the
chemical properties of the binding ligands, termed here ‘‘tem-
plate ligands.’’ We used this observation to select representative
ligand molecules likely bind to the predicted site on the protein’s
surface. Subsequently, these molecules were used as ligand
templates in a simple ligand-based virtual screening experiment
against the KEGG (35) compound library. The results shown in
Fig. 4 present the cumulative distribution of enrichment factors
calculated for the target proteins (see Materials and Methods).
The ligand templates selected by FINDSITE for accurately
predicted binding sites (whose center of mass is within 4 Å of the
experimental one) used in fingerprint-based similarity searching
perform better than random in 78% of the cases. The ideal
enrichment factor (all native-like compounds found in the top
1% of the ranked library) was observed for 50% of these target
proteins. For less accurately predicted binding pockets, the
quality of ligand templates is notably worse (the ideal enrich-
ment factor was obtained for 12% of the cases and is better than
random for 38% of the cases). We note that for a given target
protein, template ligands can be selected even if the crystal
structure is unavailable and its molecular function unknown.
Finally, a case study presenting the performance of FINDSITE
in ligand-based virtual screening for HIV-1 protease inhibitors
is described in detail in SI Text (Case Study), with quite

encouraging results. If only templates with �35% sequence
identity are used, the enrichment factor of the top 1% of
compounds is 40.

Molecular Function Prediction. The relatively high accuracy of the
ligand selection procedure encouraged us to investigate the
transferability of specific functions of the threading templates to
the target. We use Gene Ontology (GO; ref. 36) to describe
protein function. GO is based on three organizing principles:
cellular components, biological processes, and molecular func-
tions. The latter consider molecular events, such as catalytic or
binding activities; therefore, we use GO molecular function
terms. From the benchmark set, we selected 753 proteins for
which a GO annotation is provided by GO (36) or UniProt (37).
The procedure for molecular function prediction uses the su-
perimposed group of holo-templates selected by threading as
previously used for binding-site detection and ligand selection.
Only predicted threading templates with �35% sequence iden-
tity to a target protein are used for the purpose of functional
inference.

Function transferability is assessed by well known metrics
(defined in SI Text). For each target protein, all GO annotations
are identified for the threading templates that share the top-
ranked predicted binding site using the GO and UniProt data-
bases. Then, the target protein is assigned a function with a
probability that corresponds to the fraction of threading tem-
plates annotated with the particular molecular function. For a
probability threshold of 0.5 (at least one-half of the threading
holo-templates must be annotated with the same GO term to
transfer it to the target protein), the maximal Matthew’s corre-
lation coefficient of 0.64 is found. This corresponds to a precision
of 0.76 with a sensitivity (recall) of 0.54. In addition, we
calculated predictive metrics with respect to individual GO
identifiers. FINDSITE distinguishes between the enzymatic and
nonenzymatic character of an action that occurs at the predicted
binding site, with a precision and sensitivity of 0.93 and 0.89,
respectively. Moreover, many molecular functions are accurately
transferable from the templates selected by threading to the
target proteins. See SI Table 1 for an assessment of the best
predictions. These cover a broad spectrum of molecular events
including both enzymatic and binding activities. The full set of
predicted functions can be found at http://cssb.biology.gatech.
edu/skolnick/files/FINDSITE.

Discussion
Ligand-binding site identification is usually the first step in
inferring the biological role of proteins of unknown structure and
function. The development of accurate algorithms for ligand-
binding site prediction in modeled protein structures is of
importance, because protein models are increasingly used in the
identification of protein function and in screens for new ligands
(38, 39). Their main limitation is that high-quality structures are
usually required for good prediction accuracy. Performance falls
off considerably if one uses modeled protein structures. To
improve the overall prediction accuracy on experimental struc-
tures as well as to develop an approach suitable for lower-quality
predicted models, we developed FINDSITE, a threading-based
method for the prediction of ligand-binding sites and functional
annotation based on binding-site similarity across superimposed
groups of threading templates. The ability to detect and correctly
rank ligand-binding regions in weakly homologous protein mod-
els (�35% identity to any selected template) is the most
pronounced practical advantage of FINDSITE, whose perfor-
mance on the negative control dataset confirms its high speci-
ficity. Comparison with PROSITE reveals that FINDSITE cov-
ers more binding sites with similar accuracy and specificity.
When no information concerning potential ligands is available
for a given target protein, the chemical properties of template-

Fig. 4. Cumulative distribution of enrichment factors resulting from the
ligand-based virtual screening experiment against the KEGG compound li-
brary using ligand templates selected by FINDSITE. Target proteins are divided
into the two subsets with respect to the accuracy of binding pocket prediction
(the distance between the top-ranked pocket and the center of mass of the
native ligand �4 and �4 Å).
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bound ligands that occupy consensus binding pockets can be
used to select ligand templates for virtual screening with en-
couraging results.

Function prediction based on homology to previously char-
acterized proteins is frequently used (40, 41). However, current
methods using global sequence alignment and local sequence
motif identification frequently fail, as the sequence identity lies
within and below the ‘‘twilight zone’’ of sequence identity (9). To
overcome this limitation, a method for the prediction of enzy-
matic function based on 3D descriptors of specific protein
functions, termed fuzzy functional forms, was developed (42)
and shown to provide high-confidence novel annotations (43).
However, approaches using geometrical active-site descriptors
typically require high-quality target protein structures as well as
high structural conservation of functional sites and thus far have
been successfully applied only to enzymes. Our effective ligand
selection procedure motivated us to test the possibility of direct
functional annotation by inferring functional similarity from
threading templates. In most of cases, molecular function ac-
cording to the GO (36) classification can be inferred with a
satisfactory precision from holo-templates selected by threading,
even if the sequence similarity to the target protein is �35%. We
found that weakly homologous templates identified by
PROSPECTOR�3 can be used by FINDSITE to precisely dis-
tinguish between the enzymatic and nonenzymatic character of
a predicted binding site. The superimposition of threading
templates and the clustering of binding pockets serves as an
additional filter that facilitates the extraction of molecular
functions associated with common sites in the threading tem-
plates; this method may also capture more general functions for
which binding pocket activity is one manifestation. Finally, these
results suggest that a threading procedure that uses a strong
sequence profile component (25) works by detecting very re-
mote, yet evolutionary related homologues.

Materials and Methods
Benchmark Set of Protein–Ligand Complexes. The structures of protein–ligand
complexes used here were selected from the Protein Data Bank (PDB) (44).
First, ligand-bound forms are identified, where noncovalently bound organic
molecules, cofactors, nucleotides, and short peptides composed of standard or
modified amino acids are considered as ligands if the number of atoms was �6
and �100. We remove proteins having more than one ligand in the binding
pocket. Because proteins �400 residues cannot be modeled using TASSER
(27–29) in a reasonable amount of computer time, these are excluded. No two
proteins in the dataset share �35% sequence identity. More details concern-
ing dataset creation are given in SI Text. The benchmark set consists of 901
protein–ligand complexes and may be found in SI Text as well as at http://
cssb.biology.gatech.edu/skolnick/files/FINDSITE.

Negative Dataset of Protein–Protein Interfaces. A set of protein–protein in-
terfaces is used as a negative control to supplement the positive dataset of
protein–ligand complexes described above. The underlying assumption is that
interfacial residues are not likely to bind small ligands. The negative dataset
consists of 281 protein–protein dimeric interfaces formed by 562 nonredun-
dant protein chains (45). The following criteria are applied to select multichain
crystal structure entries from the PDB: The minimum number of interfacial
contacts between chains is 30, where interfacial contacting residues are
defined as a pair of residues from different chains with at least one pair of
heavy atoms within 4.5 Å. Proteins with �40 residues are accepted; the set of
dimers have �35% sequence identity with each other.

Template–Consensus-Binding Pockets. The flowchart of the FINDSITE approach
is presented in Fig. 1. For a given target sequence, template structures are
identified from a nonredundant PDB library by the PROSPECTOR�3 threading
algorithm (24, 25). From threading templates with a Z-score �4, we use only
those with �35% sequence identity to the target protein. In addition, we
expand the set of identified threading templates by including homologous
proteins for each template. Again, proteins homologous to threading tem-
plates with a sequence identity to the target sequence �35% are rejected. The
results are frequently improved by including template homologues (see SI Fig.
6). Among all templates, structures containing a bound ligand molecule are

identified and superimposed onto the target structure using TM-align (26).
The performance of FINDSITE was assessed for either the target crystal struc-
ture or the protein model (TASSER- or MODELLER-generated or the top-
ranked PROSPECTOR�3 template) used as a reference structure for template
superimposition. Subsequently, the centers of mass of ligands bound to
threading templates are clustered according to their spatial proximity, using
an 8-Å cutoff distance. This cutoff maximizes the ranking accuracy and ac-
commodates some structural distortions. The geometrical center of each
cluster corresponds to the center of a putative binding site. Finally, the
predicted binding sites are ranked according to the number of threading
templates that share a common binding pocket (cluster multiplicity). If two or
more pockets have the same number of templates, the average Z-score of
threading templates is used as an additional ranking criterion. For each target,
we select the top five identified ligand-binding sites for further analysis.

Template–Consensus-Binding Residues. For each predicted binding site, bind-
ing residues are identified in those threading templates that share a common
pocket based on interatomic contacts reported by LPC (46). Using the se-
quence alignment provided by PROSPECTOR�3, for each residue in the aligned
target sequence, the fraction of templates that have a residue in the corre-
sponding position in contact with the ligand is calculated. A consensus-
binding residue is defined as a residue in contact with a ligand in at least 25%
of the threading templates. This criterion maximizes Matthew’s correlation
coefficient between predicted and observed binding residues and reduces
overpredictions. Here, the chemical properties of binding residues are ig-
nored. Subsequently, consensus binding residues identified for each target
sequence are compared with the results of ligand-binding motif prediction
using the PROSITE database (34) and ScanProsite tool (33). The accuracy of
predictions made with FINDSITE and ScanProsite is assessed by standard
evaluation metrics. Details are given in SI Text.

Ligand Selection. FINDSITE also selects representative molecules that bind to a
particular binding site by exploiting the chemical properties of template-
bound ligands that occupy consensus binding pockets. For a given target
protein, these can be used to construct ligand templates for use in ligand-
based virtual screening when no other information concerning potential
binders is available. We use the 1,024-bit version of Daylight fingerprints (47)
to calculate the Tanimoto coefficient (TC)† that expresses the chemical simi-
larity between two compounds. First, all molecules that occupy the top-
ranked binding pocket in identified ligand-bound threading templates are
clustered using the TC cutoff of 0.7. Then, representative molecules selected
from the clusters are used as ligand templates to rank a compound library
using the sum of weighted TCs:

mTC � �
i�1

n

wiTCi, [1]

where n is the number of chemically dissimilar ligand clusters obtained for a
given FINDSITE binding pocket, wi is the fraction of ligands belonging to
cluster i, and TCi is the Tanimoto coefficient calculated for the ligand template
selected from this cluster and a library compound. In this manner, larger
clusters have potentially higher impact on the fingerprint similarity score, and
thus, on the ranking of library compounds. The results were assessed by
calculating the enrichment factor for each target protein: EF�(Fs/Ns)/(Ft/Nt),
where Fs is the number of native-like compounds in the top-ranked sample of
Ns compounds (here we consider top 1% of the ranked library), Ft and Nt is the
total number of native-like and all compounds in the library, respectively. A
native-like compound is defined as a molecule with TC � 0.7 to the native
ligand. In the ligand-based virtual screening experiment, we used the KEGG
compound library (35) (release 44.0�/10–15, Oct07, the total of 12,478 com-
pounds).

Protein Structure Modeling. For each target protein, weakly homologous
protein models were generated using the PROSPECTOR�3 templates, TASSER
(27–29) and MODELLER9v1 (30, 31) models. The protocols for protein structure
modeling are given in SI Text.

Pocket Detection. We used LIGSITECSC for ligand-binding site prediction by
pocket detection (14). LIGSITECSC is provided with the target protein’s crystal
structure, the top-ranked PROSPECTOR�3 templates and theoretical protein

†Tanimoto TT, IBM Internal Report, November 17, 1957.
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models generated by TASSER and MODELLER. In each case, we consider the
top five identified binding pockets for further analysis.

Molecular Function Prediction. We used the GO classification (36) to investigate
the specific function transferability from threading templates to target proteins.
Weselected753proteins fromthebenchmarkdataset forwhichaGOannotation
is provided by GO (version 1.12) (36) or UniProt (37) (release 12.0). The procedure
for transferring molecular function uses the previously described superimposed
group of holo-templates selected by PROSPECTOR�3. Each target protein is an-
notatedwiththesetofGOterms identifiedinGOandUniProtdatabases fromthe
threading templates that share the top-ranked predicted binding site. All parent
terms for a specific GO identifier are traced to explore the more general ontology

classes. Annotation accuracy is assessed by the precision (positive predictive
value), sensitivity (recall), and Matthew’s correlation coefficient (MCC) as defined
in SI Text. To assess the overall performance of FINDSITE functional annotation,
the predictive metrics were calculated for all 7,825 molecular function terms
available from the GO website (www.geneontology.org). We have also calcu-
lated predictive metrics with respect to individual GO numerical identifiers that
appear in the benchmark dataset.
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