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Abstract
Previous N-ethylmaleimide-labeling studies show that ligand binding increases the reactivity of
single-Cys mutants located predominantly on the periplasmic side of LacY and decreases reactivity
of mutants located for the most part on the cytoplasmic side. Thus, sugar binding appears to induce
opening of a periplasmic pathway with closing of the cytoplasmic cavity resulting in alternative
access of the sugar-binding site to either side of the membrane. Here we describe the use of a
fluorescent alkylating reagent that reproduces the previous observations with respect to sugar
binding. We then show that generation of an H+ electrochemical gradient (Δμ ̄H +, interior negative)
increases the reactivity of single-Cys mutants on the periplasmic side of the sugar-binding site and
in the putative hydrophilic pathway. The results suggest that Δμ ̄H +, like sugar, acts to increase the
probability of opening on the periplasmic side of LacY.
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LacY, a member of the Major Facilitator Superfamily of membrane transport proteins,
catalyzes the stoichiometric translocation of one galactopyrananoside with an H+ (reviewed in
1; 2). As such, LacY utilizes the free energy stored in an H+ electrochemical gradient (Δμ ̄H +;
interior negative and/or alkaline) to drive accumulation of galactosidic sugars against a
concentration gradient (i.e., the free energy released from the downhill movement of H+

with Δμ ̄H + is utilized to drive sugar accumulation uphill against a concentration gradient).
Conversely, LacY can use the free energy released from downhill translocation of galactosides
to drive uphill translocation of H+ with generation of Δμ ̄H +, the polarity of which depends on
the direction of the sugar gradient.

LacY has been solubilized, purified and reconstituted into proteoliopsomes in a fully functional
state3. An X-ray structure of the LacY mutant C154G has been solved in an inward-facing
conformation 4; 5, and wild-type LacY has the same global fold 2; 6; 7. LacY is organized into
two pseudo-symmetrical α-helical bundles. Perpendicular to the plane of the membrane, the
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molecule is heart-shaped with a large interior hydrophilic cavity open to the cytoplasm,
representing the inward-facing conformation. Within the cavity, a single sugar is observed at
the apex of the cavity near the approximate middle of the molecule. The periplasmic side of
LacY is completely blocked with respect to sugar access to the binding site, which makes it
highly likely that a pathway must form on this side during turnover.

Functional LacY devoid of eight native Cys residues (C-less LacY) has been engineered by
constructing a cassette lacY gene with unique restriction sites about every 100 bp 8. Utilizing
this cassette lacY for Cys-scanning mutagenesis, a highly useful library of molecules with a
single-Cys residue at almost every position of LacY has been constructed 9. Cys is average in
bulk, relatively hydrophobic and amenable to highly specific modification. Therefore, Cys-
scanning mutagenesis has been used in combination with biochemical and biophysical
techniques to reveal membrane topology10, accessibility of intramembrane positions to the
aqueous or lipid phase of the membrane 9; 11-15, and spatial proximity between
transmembrane domains 16-19.

Site-directed sulfhydryl modification by N-[1-14C]ethylmaleimide (NEM), a small,
membrane-permeant alkylating agent (Fig. 1A), has been used to study reactivity of single-
Cys LacY mutants in C-less background in right-side-out (RSO) membrane vesicles, providing
valuable information with regard to structure, function and dynamics of LacY 15; 20-28. The
reactivity/accessibility of Cys residues depends on the surrounding environment and is limited
by close contacts between transmembrane helices and/or the low dielectric of the environment.
Ligand binding increases NEM reactivity of single-Cys replacements located predominantly
on the periplasmic side of LacY and decreases reactivity of those located predominantly on
the cytoplasmic side 28. This pattern suggests that during sugar transport, a periplasmic
pathway opens with closing of the inward-facing cavity so that the sugar-binding site is
alternatively accessible to either face of the membrane. The alternative access model for
lactose/H+ symport is supported further by functional studies 2, single molecule fluorescence
29 and X-ray crystallography 4; 5.

In this study, we first demonstrate that TDG binding increases or decreases labeling of seventy-
one single-Cys mutants with a fluorescent alkylating agent, tetramethylrhodamine-5-
maleimide (TMRM; Fig. 1B), in a pattern that is qualitatively identical to that observed
previously with NEM (see ref 28). We then go on to the major focus of the paper, which is to
investigate the effect of Δμ ̄H + on the reactivity of selected single-Cys replacements in LacY.
Out of the seventy-one mutants tested, Δμ ̄H + increases the reactivity of fourteen, ten of which
are located within the putative periplasmic pathway, indicating that Δμ ̄H + increases the
probability of opening on the periplasmic side of the membrane.

Results
TMRM labeling of single-Cys LacY mutants

A new alkylation method was developed using the hydrophobic fluorescent reagent, TMRM.
Due to the high sensitivity of fluorescence detection, less than one-tenth of materials are used
relative to the previous NEM labeling method 22; 30, and results are obtained much more
rapidly. TMRM is a large molecule compared with NEM (Fig. 1), but labeling of single-Cys
mutants and the effects of ligand binding with this reagent are very comparable to observations
with NEM labeling. For example, almost no labeling with TMRM is observed for mutant T45C
in absence of TDG, while markedly increased reactivity is observed in the presence of the sugar
(Fig. 2A) 25. As with NEM 15, TMRM labels mutant A88C strongly in absence of sugar, and
TDG binding decreases labeling (Fig. 2A). Furthermore, as shown previously 24, lowering the
temperature of the reaction may dramatically enhance the effect of ligand on reactivity, as
shown with mutant N245C (Fig. 2B).
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To further test the methodology, seventy-one single-Cys mutants that showed obvious changes
of NEM labeling induced by TDG binding were examined for the effect of ligand on TMRM
reactivity (Fig. 3). The lactose homologue increases reactivity of Cys mutants mainly on the
periplasmic side of the sugar-binding site (Fig. 3, green spheres), and decreases in reactivity
are observed for the most part with mutants on the cytoplasmic side (Fig. 3; blue spheres). The
pattern observed is virtually identical qualitatively to that observed with NEM 28.

Effect of Δμ̄H + on TMRM reactivity
In order to study the effect of Δμ ̄H + (interior negative and/or alkaline), RSO vesicles were
incubated with ascorbate and phenazine methosulfate (PMS) under oxygen prior to addition
of TMRM 31-33. As a negative control, valinomycin and nigericin were added to
abolish Δμ ̄H +. For each experiment (Fig. 4A-N), samples were labeled for given periods of
time, and the reactions were terminated by addition of excess dithiothreitol (DTT). As
shown, Δμ ̄H + significantly increases TMRM labeling of each mutant (Fig. 4; Table 1), and
valinomycin and nigericin abolishes the effect. However, it is apparent that the rates of labeling
are very likely underestimated because the TMRM concentration rapidly decreases due to
reaction with the plethora of proteins other than LacY in RSO membrane vesicles. In any
case, Δμ ̄H + increases labeling of fourteen out of the seventy-one single-Cys mutants by at least
1.3- to 7.9-fold (Fig. 4; Table 1): L4C, N8C, M11C, F30C and P31C (helix I); K42C, F49C,
S53C and Q60C (helix II); I160C and M161C (helix V), N245C and T248C (helix VII); and
T265C (helix VIII), and no significant effect is observed with the other fifty-seven mutants
studied (data not shown). Since ten of the mutants that exhibit increased reactivity
with Δμ ̄H + are located on the periplasmic side of the sugar-binding site (Fig. 5), the findings
suggest that Δμ ̄H + increases the open probability of LacY on the periplasmic side. Notably,
relative to sugar-induced changes in reactivity, Δμ ̄H + induced changes are fewer and more
restricted to the periplasmic side of LacY (compare Figs. 3 & 5). Furthermore, none of the
mutants tested exhibits decreased reactivity in the presence of Δμ ̄H +.

Discussion
TMRM labeling

Site-directed alkylation studies of single-Cys LacY mutants with NEM in RSO membrane
vesicles have extended over a decade (see 28). Although qualitative, the studies reveal both
static and dynamic aspects of LacY particularly with respect to changes induced by sugar
binding. When considered in light of the X-ray structures of LacY 4; 5; 7, the observations
support a model in which the sugar-binding site is alternatively accessible to either side of the
membrane due to opening of a pathway on the periplasmic side of LacY and closing of the
large cytoplasmic cavity. In this communication, we describe a more sensitive, simpler and
less time consuming method utilizing TMRM fluorescence and use the method to examine the
effect of Δμ ̄H + on reactivity of single-Cys LacY mutants.

Fluorescent alkylation reagents, such as fluorescein 5-maleimide and Oregon Green
maleimide, have been utilized to modify single-Cys mutants in many membrane proteins in
order to study the membrane topology and the accessibility 34-38. TMRM is a highly sensitive
probe, and a protocol was developed based on NEM labeling 22. TMRM labeling has several
advantages relative to NEM labeling: (i) The fluorophore is very sensitive due to the high
quantum yield of rhodamine. Furthermore, sensitivity can be enhanced even further by fine-
tuning the voltage setting of the photomultiplier tube on the imager (see Materials and
Methods) to visualize low levels of fluorescence. The new method is at least 10-times more
sensitive than NEM labeling. (ii) It takes less than 8 hours to obtain data, as opposed to 24
hours or more with NEM labeling. The major time-saving step is capture of fluorescence
directly from wet acrylamide gels without waiting, compared to the 2 h required to dry SDS-
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PAGE gels, followed by exposure to a PhosphorImager screen for up to several days before
scanning with NEM labeling. (iii) Less time and effort are expended to quantify protein. With
NEM labeling, two gels are needed; one for detecting radioactive bands and the other for
quantifying protein by Western blot. With TMRM labeling, the same gel is used to obtain both
sets of data. (iv) Use of radioactive materials is precluded. Utilizing this method, the effect of
TDG on the TMRM reactivity of seventy-one single-Cys replacements were first examined,
and a pattern almost identical to that observed with NEM 28 is observed (Fig. 3).

Effect of Δμ̄H +

Generation of Δμ ̄H + clearly increases the reactivity of fourteen of the seventy-one single-Cys
mutants tested by a factor of at least 1.3 to 7.9 (Table 1; Figs. 4 and 5). Furthermore, ten of the
fourteen mutants [F30C, P31C, K42C, F49C, S53C, I160C, M161C, N245C, T248C and
T265C (Fig. 5)] are on the periplasmic side of LacY and these mutants also exhibit increased
reactivity upon TDG binding (compare Figs. 3 & 5). Therefore, like sugar binding, Δμ ̄H +

appears to increase the open probability of LacY on the periplasmic surface of the membrane,
a conclusion supported by studies with the affinity inactivator methanethiosulfonyl galactose
39. However, the changes observed upon generation of Δμ ̄H + are fewer and less widely
distributed compared to the sugar-induced changes (Figs. 3 and 5). Moreover, none of the
mutants exhibits decreased reactivity upon generation of Δμ ̄H + , and no further change in
reactivity is observed when Δμ ̄H + is generated in the presence of a saturating concentration of
TDG (data not shown).

Previous studies demonstrate that Δμ ̄H + has no effect on equilibrium exchange, counterflow
40; 41 or sugar-binding affinity from either side of the membrane 42. Also, mutations in Glu325
43; 44 or Arg302 45 abolish all H+-coupled translocation reactions (active transport, downhill
influx or efflux) with no effect on equilibrium exchange, counterflow or sugar binding. Taking
the findings presented here in conjunction with other evidence that sugar binding induces
widespread conformational changes 2; 28; 29, it seems likely that the primary driving force
for the global conformational change is sugar binding and dissociation on either side of the
membrane.

Materials and Methods
Materials

Tetramethylrhodamine-5-maleimide (TMRM, T-6027) was obtained from Molecular Probes,
Invitrogen Corp. (Carlsbad, CA). Valinomycin (V0627) was obtained from Sigma (St. Louis,
MO), and nigericin (Cat# 481990) was obtained from Calbiochem (La Jolla, CA). ImmunoPure
immobilized monomeric avidin (Cat # 20228) was obtained from Pierce (Rockford, IL). All
other materials were reagent grade and obtained from commercial sources.

Plasmid construction
Given mutants were from the library of single-Cys LacY mutants encoded by plasmids pT7-5
or pKR35 15; 20-28; 46. For single-Cys replacements at positions 14, 45, 49, 60, 100, 141,
308, 361, 362, 363 or 364, DNA fragments encoding a given mutant were isolated and inserted
by restriction fragment replacement into pT7-5 encoding C-less LacY with a biotin acceptor
domain (BAD) from a Klebsiella pneumoniae oxaloacetate decarboxylase at the C terminus.

Growth of bacteria
E. coli T184 (lacY−Z−) transformed with plasmid pT7-5 or pKR35 encoding a given mutant
was grown aerobically at 37 °C in Luria-Bertani broth containing ampicillin (100 μg/ml). Fully
grown cultures were diluted 10-fold and grown for 2 hours. After induction with 1 mM
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isopropyl 1-thio-β-D-galactopyranoside for 2 h, cells were harvested and used for the
preparation of RSO membrane vesicles.

Preparation of RSO membrane vesicles
RSO membrane vesicles containing single-Cys replacements of C-less LacY at position 2, 3,
4, 5, 8, 11, 12, 15, 21, 22, 25, 27, 29, 30, 32, 34, 42, 44, 70, 71, 81, 84, 86, 87, 88 or 96, were
prepared earlier 15. RSO membrane vesicles from other mutants were prepared form 1 L
cultures of E. coli T184 expressing a given mutant by lysozyme-ethylenediaminetetraacetic
acid treatment and osmotic lysis 47; 48. The vesicles were resuspended to a protein
concentration of 10-20 mg/ml in 100 mM potassium phosphate (KPi; pH 7.5) containing 10
mM MgSO4, frozen in liquid nitrogen and stored at −80 °C until use.

TMRM labeling
TMRM was dissolved in dimethyl sulfoxide (DMSO) and the concentration determined by
measuring absorbance in methanol at 541 nm (extinction coefficient, 95,000 cm−1 M−1). RSO
membrane vesicles [0.1 mg of total protein in 50 μl of 100 mM KPi (pH 7.5)/10 mM
MgSO4] containing a given single-Cys mutant were incubated with 40 μM TMRM in the
absence or presence of 10 mM TDG at 25°C. Where indicated, Δμ ̄H + was generated by adding
20 mM potassium ascorbate and 0.2 mM PMS under oxygen 31. In order to abolish Δμ ̄H +, 250
μM valinomycin and 0.5 μM nigericin were added prior to ascorbate and PMS 32; 33; 49.
Reactions were terminated at the indicated time by adding 10 mM DTT. The membranes were
then solubilized in 50 mM NaPi (pH 7.5)/2% n-dodecyl β-D-maltopyranoside (DDM).
Immobilized monomeric avidin sepharose was equilibrated in column buffer [50 mM NaPi
(pH 7.5)/100 mM NaCl/0.02% DDM] and resuspended in the same buffer to 5% (vol/vol). To
each reaction, 50 μl of 5% (vol/vol) avidin sepharose was added, and the mixture was incubated
at 25°C for 10 min on a rotating platform, centrifuged briefly and loaded onto Wizard columns
(Promega, Madison, WI) on a vacuum manifold. The avidin sepharose on the column was
washed with 3 ml of column buffer, and biotinylated LacY was eluted with 25 μl of column
buffer containing 5 mM D-biotin.

The samples were then subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE). To each sample, 25 μl of 2 × SDS-PAGE loading buffer was added and 10 μl
of each sample was loaded onto 16% SDS-PAGE. The loading volume varied from 5-40 μl
depending on the level of labeling with each single-Cys mutant. Purified C-less LacY protein
was loaded into the first lane of each gel, as a negative control. The gels were run for 1 hr at
60 V followed by 1 hr at 120 V. The wet gels sandwiched between the glass plates were then
imaged directly on an Amersham Typhoon™ 9410 Workstation (Amersham/GE Healthcare,
Piscataway, NJ). The Cy3 laser setting (excitation at 532 nm) with a 580 nm filter (emission
wavelength) were used to capture the rhodamine image and the photomultiplier tube setting
was adjusted manually to obtain the best signals. The SDS-PAGE gels were then silver-stained
and scanned.

The TMRM signal and amount of protein were estimated by measuring the density of each
band by using ImageQuant (Molecular Dynamics, GE Healthcare BioSciences Corp.,
Piscataway, NJ). TMRM labeling at 60 sec in the absence of Δμ ̄H + (control) for each mutant
was estimated by dividing the density of the protein band with TMRM signal, which was then
normalized to 1 (Equation 1).

RelativeTMRMLabeling = TMRMSignal ∕ Protein Signal
TMRMSignal at 60 sec (Control) ∕ Protein Signal at 60 sec (Control) (1)

Relative TMRM labeling of mutants treated for given times was calculated according to
Equation 1. Each data set was fit using equation 2,
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Y = a × (1 − e−bx) (2)

The initial linear portion (within 5 sec) of the fitted data was used to qualitatively estimate the
initial rate of TMRM labeling. For each mutant, the ratio of the estimated initial rate of TMRM
labeling in presence of Δμ ̄H + relative to that observed in the absence of ascorbate/PMS or after
addition of valinomycin and nigericin for each mutant was then approximated.
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Figure 1.
Structures of NEM (A) and TMRM (B).
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Figure 2.
Effect of TDG and/or temperature on TMRM reactivity of single-Cys mutants. RSO membrane
vesicles (0.1 mg of protein in 50 μl) prepared from E. coli with given single-Cys replacements
[(A) mutants T45C and A88C; (B) mutant N245C] were incubated for 15 min at 25 °C or 0 °
C in the absence or presence of TDG with 40 μM TMRM. DTT was added to terminate the
reactions, and DDM was used to solubilize the membrane. Biotinylated proteins were purified,
subjected to SDS-PAGE. TMRM-labeled (upper panels) and silver-stained (lower panels)
bands corresponding to LacY were imaged and measured qualitatively as described in
Materials and Methods.
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Figure 3.
Distribution of single-Cys replacements exhibiting TDG-induced changes in TMRM
reactivity. Seventy-one single-Cys LacY mutants were labeled with TMRM in the absence and
presence of TDG as described in Fig. 2. Positions of Cys replacements that exhibit changes in
TMRM reactivity are superimposed on the backbone of LacY (Protein Data Bank ID code
1PV7; www.pdb.org). LacY is viewed perpendicular to the membrane with the N-terminal
helix bundle on the left and the C-terminal bundle on the right. (A) green spheres, increased
TMRM reactivity at positions 2, 3, 8, 12, 14, 17, 24, 25, 28, 29, 30, 31, 32, 42, 44, 45, 49, 53,
70, 71, 96, 100, 136, 157, 158, 159, 160, 161, 241, 242, 244, 245, 246, 248, 265, 291, 295,
298, 308, 315, 359, 361, 362, 363 and 364; (B) blue spheres, decreased TMRM reactivity at
positions 4, 5, 11, 15, 21, 22, 27, 34, 60, 81, 84, 86, 87, 88, 122, 141, 145, 148, 264, 268, 272,
327, 329, 331, 356 and 357. TDG is shown as a stick model at the apex of the inward-facing
cavity (yellow sticks).
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Figure 4.
Effect of Δμ ̄H + on time-course of TMRM labeling. RSO membrane vesicles (0.1 mg of protein
in 50 μl) prepared from E. coli with given single-Cys replacements, L4C (A), N8C (B), M11C
(C), F30C (D), P31C (E), K42C (F), F49C (G) S53C (H), Q60C (I), I160C (J), M161C (K),
N245C (L), T248C (M) and T265C (N), were incubated for 5, 15, 30, and 60 sec at 25 °C with
40 μM TMRM alone (control), in the presence of 20 mM sodium ascorbate and 0.2 mM PMS
under oxygen (+Δμ ̄H +) or in the presence of 250 μM valinomycin and 0.5 μM nigericin to
abolish Δμ ̄H + (Δμ ̄H + / V+N). After terminating the reactions with DTT at the indicated time,
the samples were treated as described in Fig. 2 and in Materials and Methods. The data
calculated according to eq. 1 are presented as labeling relative to the amount measured at 60
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sec in the absence of Δμ ̄H + for each mutant. Each data set was fit into eq 2. RSO membrane
vesicles with C-less LacY containing the biotin acceptor domain were incubated with 40 μM
TMRM for 15 min at 25 °C and biotinylated C-less LacY was purified and loaded into the first
lane of each gel, as a negative control. ■, no additions; ●, plus ascorbate/PMS; ▲, plus
ascorbate/PMS, valinomycin and nigericin.

Nie et al. Page 14

J Mol Biol. Author manuscript; available in PMC 2008 November 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Effect of Δμ ̄H + on TMRM reactivity of single-Cys mutants. Positions of single- Cys mutants
that exhibit increased TMRM reactivity are superimposed on the backbone of LacY viewed
perpendicular to the membrane. TDG is shown as a stick model at the apex of the inward-
facing cavity (yellow sticks). The Cys replacements that exhibit Δμ ̄H + -induced increases in
TMRM reactivity are L4C, N8C, M11C, F30C, P31C, K42C, F49C, S53C, Q60C, I160C,
M161C, N245C, T248C and T265C (magenta spheres).
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Table 1
Δμ ̄H + increases the rate of TMRM labeling of single-Cys mutants.

Residue Helix Fold of Increase in TMRM labeling
(+Δμ̄H +/control)*

L4C I 1.9
N8C I 5.5

M11C I 1.8
F30C I 2.6
P31C I 1.3
K42C II 2.7
F49C II 2.7
S53C II 2.3
Q60C II 2.4
I160C V 4.1

M161C V 1.9
N245C VII 7.9
T248C VII 3.4
T265C VIII 3.2

*
Relative TMRM labeling of mutants treated for various times was calculated according to eq 1. Each data set was fit using eq 2. The initial linear portion

(within 5 sec) of the fitted data was used to estimate the initial rate of TMRM labeling. For each mutant, ratio of the estimated initial rate of TMRM

labeling in presence of Δμ ̄H + relxative to that observed in the absence of ascorbate/PMS or after addition of valinomycin and nigericin for each mutant
was then calculated (see Materials and Methods).

J Mol Biol. Author manuscript; available in PMC 2008 November 23.


