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ON THE NATURE OF THE AGING PROCESS
By LEo SziLArD*

ENRICO FERMI INSTITUTE OF NUCLEAR STUDIES, UNIVERSITY OF CHICAGO

Communicated by Theodore Shedlovsky, November 24, 1958

Introduction.—This paper represents an attempt to describe a hypothetical bio-
logical process that could conceivably account for the phenomenon of aging. Aging
manifests itself in much the same general manner in all mammals, and we are in a
position to learn enough about the aging of mammals to be able to test the validity
of a theory that leads to predictions of a quantitative kind—as does the theory
here presented.

We know that a gene can be responsible for the synthesis of a specific protein
molecule, which in many cases has a known enzymatic activity. When we speak
later of a mutant, or “incompetent,” form of a gene, we mean an altered form of the
gene, which cannot synthesize the specific protein molecule in its chemically active
form.

Our theory assumes that the elementary step in the process of aging is an ‘‘aging
hit,” which “destroys” a chromosome of the somatic cell, in the sense that it renders
all genes carried by that chromosome inactive. The ‘“hit”” need not destroy the
chromosome in a physical sense. (See note 1 added in proof.)

We assume that the ‘“‘aging hits” are random events and that the probability
that a chromosome of a somatic cell suffers such a “hit” per unit time remains con-
stant throughout life. 'We further assume that the rate at which chromosomes of
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a somatic cell suffer such “hits’’ is a characteristic of the species and does not vary
appreciably from individual to individual.

As a result of an aging process of this nature, the number of the somatic cells of
an individual organism which have “survived” up to a given age (in the sense of
remaining able to fulfil their function in the organism) decreases with age. On the
basis of our assumptions, spelled out below, the “surviving’’ fraction of the somatic
cells decreases with age at an accelerating rate.

Cur theory postulates that when f, the surviving fraction of the somatic cells of an
individual, approaches a certain critical value, f*, then the probability that that
individual may die within a period of one year will come close to 1. On this
basis, the theory establishes a relationship between the surviving fraction of the
somatic cells and the age of death of the individual.

Because the young mammalian organism may be assumed to have a large func-
tional reserve, we shall assume that the surviving fraction of the somatic cells of an
individual may fall substantially before the organism loses its capacity to live, per-
haps to a value somewhere between 1/;and /4.

The precise meaning of the term “critical value,” f*, will shift as we go from the
crudest form of the theory, which we shall discuss first, to a less crude form of the
theory, which we shall discuss thereafter. In the crudest form of the theory, we
shall assume that an adult does not die of natural causes until the surviving fraction
of his somatic cells comes very close to the critical fraction f* and that he dies at
the critical age, i.e., within the year in which this surviving fraction reaches the
critical fraction f*. Thus, in its crudest form, the theory postulates that the age
at death is uniquely determined by the genetic makeup of the individual.

Clearly, this cannot be strictly true, for, if it were true, identical twins would die
within one year of each other. In fact, the mean difference between the ages at
death of female identical twins can be estimated to be about 3.5 years. The
discrepancy arises from the failure of the crude theory to take into account that in a
cohort of identical individuals the number of deaths per year may be expected to
rise as a continuous function with advancing age and that an appreciable number
of deaths may be expected to occur at ages lower than the “critical age.”

If not otherwise stated, our discussion here relates to man and, in particular, to
the female of the species. In the case of man, the somatic cells of the female con-
tain m = 23 pairs of homologous chromosomes. There may be in man perhaps
15,000 genes. There may be a larger number of specific DNA molecules which
are inherited from generation to generation, but we designate as ‘“‘genes” here
only those DNA molecules which would handicap the individual if present in a mu-
tant form. An individual who is a heterozygote for a mutant gene might not
necessarily be handicapped under the conditions prevailing at present in the United
States, where essentially no adult dies for lack of food or shelter and no adult has
a reduced propensity to procreate because of his inability to provide food or shelter
for his offspring. But such a beterozygote would have been handicapped (accord-
ing to our definition of the term ‘“‘gene’’) under conditions which were prevalent in
the past—up to recent times. The present abundance of mutant forms of genes
in the population may not correspond to the steady state under present conditions.

We may assume that the ‘“genes’” somehow affect differentiation and morpho-
genesis during the embryonic development of the individual and that a mutant form
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of a gene may cause, with a certain probability—appreciable even in the hetero-
zygote—a developmental abnormality of the individual.

We assume that among the 15,000 genes, there are perhaps 3,000 genes which
are important for the functioning of the somatic cells of the adult. We shall call
these genes ‘‘vegetative genes,” and a mutant form of such a gene we shall desig-
nate as a “fault.” Of the remainder of the genes, we shall assume that they are
irrelevant for the functioning of the somatic cells of the adult organism.

We postulate that, in the course of aging, a somatic cell remains functional as
long as, out of each pair of homologous vegetative genes, at least one of the two
genes is competent and active and that the cell ceases to be functional when both
genes are out of action. Accordingly when a chromosome suffers an aging hit, the
cell will cease to be functional if the homologous chromosome has either previously
suffered an aging hit or if it carries a fault.

According to the views here adopted, the main reason why some adults live
shorter lives and others live longer is the difference in the number of faults they
have inherited. If we assume that faults are distributed in the population at ran-
dom, then we can compute the distribution of the faults, from the mean value of
faults per person (which we shall designate by n). From the observed distribution
of the ages at death, between seventy and ninety years of age, we shall be led to
conclude that we haven > 2. Forn = 2 we would obtain from the crude theory for
the critical surviving fraction of the somatic cells f* «x /.. For n = 4 we would
obtain f* ¥a 1/;;.  On this basis we shall be led to conclude that we have n < 4.

‘We shall, for the purposes of our discussion, adopt, as a reasonable value, n = 2.5,
and then we obtain f* «a 1/¢, which would seem to be a reasonable value.

The “Surviving’’ Fraction of the Somatic Cells.—We shall now proceed to com-
pute the “surviving” fraction of the somatic cells of a female who has inherited r
faults, as a function of her age.

We designate by & the average number of “aging hits”’ that have been suffered by
a chromosome of a somatic cell, and we may write

) 1)

1 age
¢ 2m T
where 7 is the average time interval between two subsequent aging hits suffered
in toto by the m pairs of homologous chromosomes contained in a somatic cell.
We may call this average time interval 7 the “basic time interval of the aging
process.” _

Let us now consider a female who has inherited r faults. If none of the pairs of
homologous chromosomes contain more than one fault—a condition likely to be
fulfilled if r is small compared to m—then we may write for the “surviving” frac-
tion of her somatic cells at a given age

f=0— @ —efnre™ 2)
or
Inf=m—=—7r)In[l — (1 — e 2] — rt. 3)

Tor ¢ < 1 we may write, from equation (3), neglecting m£* and ré3, ete.,

In —i - m@E — &) + 1 — 8. @)
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Writing
r
- 5
P~ om ®)
we may write
1
ln}=m[5+p]-[1 - E+ 0l (6)
providedr < x < 2m (ie., p < £ — 1)
L= mpa - ), @)
f
wheren = £ 4+ p. In place of equation (7) we may write, in our approximation,
f=01—-@0—=em]" (8)
We may also write inversely
! : ©®
= n —_____v"
" 1= V1=
or, expanding,
1.1 1 1
= S = —In - 10
K ‘/mlnf+2mlnf (19)

According to the assumption of the crude theory, f, the surviving fraction of the
somatic cells, reaches the critical value f* at the age of death, which we designate
by t,. Further, we designate by z, the average number of aging hits suffered in
toto, up to the age of death, by the m pairs of homologous chromosomes of the
somatic cells. Thus we have, at the age of death,

o == om (11)
T
and
n = ot 12)
2m

Accordingly, we may write at the age of death, where we have f = f*, from equation

(8),
2
mli_ @&+ (1—“'+">. (13)
f* 4m 2m
Similarly, we may write at the age of death, from equation (10),
4m 1 1 1 14
T+ r= mnfw*-i-lnF (14)

or
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t 1 1
x = a/4mIn = = 1
T+r Jmn + In —. (15)

For the genetically perfect female, for whom we have r = 0, we shall designate the
age at death by #,. We shall call ¢ the ‘“life-span’’ of the species.
From equation (15) we may write for, the life-span, o,

b +r = b (16)
T T
or
t: =1t — 1 amn
or
r = t°____t£. (18)

T

As may be seen from equation (17), the addition of one fault to the genetic makeup
of an individual shortens the life of that individual by At = 7, so that we may write

At per fault = 7. (19)

This expresses one of the basic results of our theory. According to equation (19),
an individual whose genetic makeup contains one fault more than another individual
has a life-expectancy which is shorter by 7, the basic time interval of the aging proc-
ess. This holds true within the crude theory for individuals who have inherited a
small number of faults.

Concerning the life-span, ¢,, we may write, from equations (11), (13), and (16),

-\ 2 .
mil_ 1 (‘1’) (1 - 1—‘-"), (20)
*  4m\r 2m r
and, from equations (15) and (16), we may write
to 1 1
- = 4 l - . 21
T J " nf* + lnf* ’ @D

The Distribution of the Ages at Death.—The above equations hold within the
framework of the crude form of the theory. In this form of the theory, members
of one cohort would die only in certain years—at the critical ages, {—and thus
the years in which death occurs within one cohort would be separated from each
other by time intervals of = years; no deaths would occur in the intervening years.

Further, if the distribution of the faults in the population is random, then the
number of deaths, P,, occurring at each age, is given by the Poisson distribution:

r,—n
P, =" (22)

r!

where, according to equation (18), we have r = b = b and where 7 stands for the
T

average number of faults per individual.
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The distribution of the ages at death in the population is actually a continuous
function of the age. Even though the probability that an individual may die
within a year may increase rather steeply as the surviving fraction of his somatic
cells approaches the critical value f*, genetically identical individuals do not all die
at the same age. The observed mean age difference at death of identical twins
may be regarded as a measure of the scattering of the ages at death, which is left out
of account by the crude form of the theory and to which we shall refer as the “non-
genetic scattering.”

For the time being, we shall continue to leave this non-genetic scattering out of
account; yet, for the sake of convenience, we shall henceforth describe the distribu-
tion of the ages at death by P(r), a continuous function of r, in place of the discon-
tinuous “Poisson’’ values, P,. For P(r) we may write

n .

e (23)

P(r) =
P(r+l)

where T represents the gamma function (which for integral values of r + 1 assumes
the values of r!) and where we have

(24)

For the number of deaths occurring within a cohort per unit time, we may then
write, according to our theory,

d(theor.) = — dr _n_ (25)
dt T4y
From equation (24) we obtain

a1
A 26
dt T (26)

Thus we may write, from equation (25),
d(theor.) = 1 e~ " per year, 27)
LR YIS

where r is given by equation (24) and where 7 is expressed in years.

The approximation used throughout this paper holds for small values of r, which
correspond to high ages at death. We may say that at high ages of death the dis-
tribution of ages at death in the population is represented by a reversed Poisson
distribution (27), where small values of r correspond to high ages at death.

Lower Limat for n—We shall now proceed to compare the distribution of the
ages at death, as given by our formula (27), with the actually observed distribution
of the ages at death, as given by the U.S. Life Tables, based on the 1949-50 Census.

For the purposes of this comparison, we shall use Table 6 for white females, which
lists the number of deaths per year, in yearly intervals, as a function of age. Ac-
cording to this table, the maximal number of deaths occurs between the eightieth
and eighty-first year; the corresponding maximal number of deaths per year is
0.0344 per person.
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The distribution of the ages at death is not symmetrical around the age at the
maximum, t* = 80.5 years of age; the number of deaths per year fall faster toward
higher ages than toward lower ages. Thus the table lists, for the number of deaths
per year, 0.0230 per person between the ages seventy and seventy-one and 0.0179
per person between the ages of ninety and ninety-one.

We may derive from this table a “normalized” distribution of the ages at death by
forming R(obs.), the ratio of the number of deaths per year and the maximal number
of deaths per year, 0.0344. Thus we obtain R(obs.) = 0.667 at 70.5 years of age;
R(obs.) = 1 at 80.5 years of age; R(obs.) = 0.520 at 90.3 years of age.

We may similarly obtain from the number of deaths per year, given as a function
of age by the theory, a ‘“normalized” distribution of the ages at death, by forming
R(theor.), the ratio of the number of deaths per year given by equation (27) and
the maximal number of deaths per year given by d(theor.) .x.:

d(theor.) max, = le_"{ . }

T 1-'(r+1), max..

(28)

If we designate by r* the value of » for which this expression becomes maximal,
we may write, forn = 2,

r* an — 0.5. (29)
Accordingly, we may write

d(theor.) n Tetos

R(theor.) = = )
( ) d(theor.)mex, 21T T, 4

(30)

We may now ask for what value of n would the normalized Poisson distribution,
R(theor.), fit R(obs.), both above and below 80.5 years of age so that we have for a
suitably chosen value of Ar, for r= r* 4 Ar, R(theor.) = 0.667 (the value of R(obs.)
at 70.5 years of age) and that we also have, for r = r* — Ar, R(theor.) = 0.520
(the value of R(obs.) at 90.5 years of age).

It turns out that such a fit is possible only for a value of n which is very close to
n = 2. For the corresponding value of Ar we obtain Ar = 1.4. For the corre-
sponding value of r we may write

10
= — years. 31
=Y (31)

Forn = 2and with Ar = 1.4, we obtain r = 7.15 years.

For values of n which are substantially larger than 2, it is not possible to fit the
normalized Poisson distribution R(theor.) to R(obs.) in this manner. If R(theor.)
is made equal to 0.520 (the value of R(obs.) at 90.5 years of age) for r = r* — Ar,
then, for r = r* 4 Ar, we have R(theor.) < 0.667 (the value of R(obs.) at 70.5
years of age).

Because there is reason to believe that, below 80.5 years of age, the crude theory
gives too low values for R(theor.), we cannot exclude the possibility that we have
n > 2. Therefore, from the fact that RE(theor.) derived from the crude theory fits
R(obs.) for n = 2 between the ages of 70.5 and 90.5, we may not conclude that we
actually have n = 2, and we may only conclude that we have
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n = 2. (32)

Approximation of the Poisson Distribution by a Gaussian Relalionship between T
and n.— R (theor.) given by equation (30) goes over into a Gaussian for n > 1.
For a Gaussian, the value of R(theor.) = 0.667 (the value of R(obs.) at 70.5 years
of age) corresponds to a distance from the maximum of 0.9 ¢, where o is the stand-
ard deviation of the Gaussian. Similarly, R(theor.) = 0.520 (the value of R(obs.)
at 90.5 years of age) corresponds to a distance from the maximum of 1.14¢. Thus
the time interval of 20 years around the maximum corresponds to 2.04¢, and hence
we have

20
7 = 504 Years 98 years (33)

Because the variance of a Poisson distribution is given by its mean, n, we may
write (forn > 1)

o=1Vn (39
or
T = 77_1” (35)

and thus we obtain 7 = \7— years.
n

While equation (34) holds, strictly speaking, only for large values of n, the error
is small even forn = 2.

For n = 2 from equation (35) we obtain » = 6.82 in place of the previously given
value of 7 = 7.15.

Forn = 2.5 from (35) we obtain 7 = 6.2 years in place of the “correct’’ value of 7
= 6.3 years, which we find by fitting the “normalized” Poisson distribution, as
well as possible, to R(obs.).

Thus, for most of our purposes we may use equation (35) for values of n forn = 2.

From equation (35) we obtain

nr = o\/n, (36)

where nr represents the average life-shortening caused by the “load of faults,”
n. Since the value of ¢ is empirically fixed, the higher we assume n to be, the
higher is the life-shortening effect which we must attribute to it. In this sense, the
life-shortening effect of the mutation load increases with \/z.

Correction of t for the Non-genetic Scattering of the Ages at Death.—Because the
non-genetic scattering of the ages at death has so far not been taken into account
by us, the observed distribution of the ages at death may be expected to be actually
somewhat broader, and, accordingly, the actual value of r may be expected to be
somewhat lower than the values given above.

The mean age difference at death between female identical twins has been re-
ported by Franz J. Kallman to be about 2.6 years for twins dying above the age
of 60. From this value we may estimate, on the basis of the Life Tables, the mean
age difference at death of female identical twins who die as adults above the age
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of 40 to be 3.4 years. If the distribution of the ages at death of genetically identi-
cal individuals resembled a Gaussian, then the variance of the distribution of the
ages at death in the population would be equal to the sum of the variance of this
Gaussian and that of our theoretical distribution of the ages at death. By making
such an assumption, for the purposes of this computation, we may then correct
the values of 7, given above, as follows:

From the fact that the mean age difference at death of female identical twins may
be taken to be about 3.4 years, it follows that the standard deviation of the distribu-
tion of their ages at death is about 3 years. Using this value, we find that the non-
genetic scattering increases the variance of the distribution of the ages at death by
a factor of about 1.1 and, accordingly, the previously given values of r must be
reduced by 5 per cent.

Thus we may now write, for the corrected values of 7, forn = 2, r = 6.8 years;
and forn = 2.5, r = 6 years.

We may also write on this basis—within the limits of the approximation—for
n> 2
T = —9—3_ years. 37)

n

\/

Substituting this value of = in equation (16), we obtain

to t — .
1_93Vn+h (38)

The Value of the Critical Surviving Fraction of the Somatic Cells f*—Upper Limit
for n.—In order to compute the critical surviving fraction of the somatic cells, f*,
we shall now make use of the fact that (for white females) the maximal number of
deaths per year occurs at 80.5 years of age. Our theory demands (29) that the
maximal number of deaths per year should occur for individuals for whom we have
r =n — 0.5. Accordingly, we may write {, = 80.5 and r = n — 0.5. We thus
obtain, from equation (38),

2 =""4/n+n—-05 (39)
,

and, from equation (20),

11 (805 - 2 1 (805 -
m L _ 1 (805 —o0s5)|1- L —05)|. o
" Mia3v%+" >[ %X93V%+n )] (40

From this equation we may now compute for a given value of n the corresponding
value of f*. Thus we obtain for n = 2, f* «a 1/,;forn = 2.5, f* «a 1/¢; forn = 4,
f* [ 1/12_

On this basis we may then write, by assuming f* > 1/,

n < 4 (41)

A value of f* va /¢ would seem to be rather reasonable and, therefore, we shall
adopt, as a reasonable value for n, the value of

n A 2.5, (42)
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and, as a reasonable value for 7, the corresponding value of ,
T = 6 years. (43)

We shall in the remainder of the paper base all our discussions on these values of
n and r. We cannot exclude, of course, the possibility that n might be somewhat
larger and that 7 might be somewhat lower.

The “Physiological Age.”—The general physiological age may be deﬁned for a
given population on the basis.of its age-specific death rate; according to our theory,

it may be defined as the age of the genetically perfect female who has the same . -

surviving fraction of the somatic cells, f. Accordingly, we may say that two fe-
males, whose genetic makeup differs by A faults, differ from each other in their
physiological age by rA years at sufficiently high ages as demanded by the approxi-
mation used.

Changing the Load of Faults.—If, as a result of living under “modern” conditions,
our load of faults should, in time, be doubled, then the average adult woman would
live nr years less than she does today.

Forn = 2.5 we have nt = 15 years. Thus the physiological age of the average
female at 65 would be the same as that of the average 80-year-old woman today.

If we were to assume that n > 2.5, then nr would amount to more than 15 years
because nr increases, according to equation (36), with /7.

A doubling of our load of faults might conceivably occur, in time, through the
exposure of the population, generation after generation, to ionizing radiation, in an
intensity that doubles-the mutation rate.

Such an increase in eur load of faults might perhaps occur also as a result of the
current practice of controlling the family size. As spelled out below this practice
might conceivably eliminate one of the selection pressures which have tended to
keep our load of faults low.

We may, on this occasion, also ask how much advantage the genetically perfect
(faultless) female would have over the average female of today. Assuming n =
2.5, we may say, on the basis of considerations similar to those presented above,
that the genetically perfect female would at 50 years of age have the same phys-
iological age as the average female of 35 today. Her most probable age at death
would be 92 instead of 80. If n were larger than 2.5, the advantage of the geneti-
cally perfect female would be greater.

Life-Shortening Effect of Ionizing Radiation on the Adult Offspring of the Exposed
Population.—Experiments of W. L. Russell have shown that the offspring of mice
which have been exposed to a dose of fast neutrons have a reduced life-expectancy.
This has generally been interpreted to mean that exposure of the parents to ionizing
radiation induces mutations in the germ cells of the gonads and thus ‘“reduces the
viability’’ of the offspring.

From the point of view of our theory, however, we have to distinguish between
that reduction of the life-expectancy of the offspring which is due to an increased
mortality of young animals and that reduction which is due to a decrease in the life-
expectancy of the adults. All the mutations induced by ionizing radiation may
contribute to the former, but only the “faults’’ contribute to the latter.

In the case of man, at least, it should be possible to make a fairly clean separation
between these two categories of life-shortening. In the case of man the U.S. Life
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Tables show that the number of deaths per year falls, from an initial high value in
the first year of life, to about 40 per 100,000 per year at the age of 10. Moreover,
of the few deaths occurring at 10 years of age, a substantial fraction is due to acci-
dents. Thus we are led to believe that, in the heterozygous individual, mutant
(incompetent) forms of genes may cause the death of the embryo, or of the infant
below 10 years of age, while they do not cause death with an appreciable probability
after the tenth year of age, unless they represent ‘“faults.” Faults increase the age-
specific death rate above 10 years of age only in conjuction with aging hits, and they
increase it appreciably only above 40.

If we observe the life-shortening of the adult animal in the offspring of an ir-
radiated population, resulting from the induction of faults by ionizing radiation in
one species, we may be able to predict, on the basis of our theory, the life-shortening
for another species. This may be seen as follows:

We obtain from equations (19) and (21) for the relationship between the life-
shortening, At per fault and for the life-span of the species, t,

At per fault 7 ( )_1
o . T (efdmIn = +ln— 44
w2 (i (a4

The right-hand side of the equation contains only the chromosome number m

and the critical value f*. Therefore, if two species of mammals have the same
value of f* and the same chromosome number m, their life-shortening per fault
caused by exposure of their parents to ionizing radiation amounts to the same frac-
tion of their life-span. We may call the ratio the “specific life-shortening” of a
fault. :
If the two species of mammals may be assumed to have also the same number of
vegetative genes and if the sensitivity of their genes to the ionizing radiation em-
ployed may be assumed to be the same, then the number of faults produced by a
given dose of radiation will be the same for the two species. Thus, according to
equation (44), the radiation exposure will shorten the lives of the two species by the
same fraction of the life-span.

If m, the number of their chromosome pairs, is different for the two species, then
the “specific life-shortening” will be larger for the species which has the smaller
chromosome number. According to (44), the specific life-shortening increases
about inversely with /m. The number of chromosome pairs is 11 for the Chinese
hamster and 39 for the dog. Therefore, according to (44), the specific life-shortening
per fault induced may be expected for the Chinese hamster to be higher than for
the dog by a factor of about 2.

The mouse has m = 20 pairs of homologous chromosomes and we may therefore
estimate the life-shortening of man from the life-shortening of the mouse and vice
versa, by postulating that the life-shortening per rep in man and in the mouse
amount to about the same fraction of their life-span. (Some authors believe that
man is about twice as sensitive to X-rays as the mouse and, if they are correct, then
our estimated value for the life-shortening of man would be low by a factor of about
two.)

W. L. Russell found that an X-ray dose of 300, as well as a dose of 600 rep, in-
duces 25 X 10— gene mutations per rep per locus in the spermatogonia of mice. As-
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suming 15,000 loci, we may conclude that an X-ray dose of 667 rep would induce 5
mutations in the diploid offspring of exposed mice. If we assume that one-fifth
of the genes are vegetative genes, then 667 rep of X-rays induce on the average one
fault in the offspring. Assuming r = 6 years for man, we may thus expect in man
a life-shortening of the adult offspring of * = 3.3 days per rep.

The number of faults induced in the offspring per rep depends on the nature of
the ionizing radiation, and may be assumed higher for fast neutrons than for X-rays.
Also, in the case of X-rays, the number of faults induced might conceivably depend
not only on the total dose but also on the dose rate and be lower for lower dose rates.

The actual value of 8* ought to be determined experimentally, for the different
kinds of ionizing radiations which are of interest, by direct observation of the life-
shortening of the adult offspring. Experimental data so far available are inade-
quate.

If the average mutation rate per gene per generation is 1/60,000 and if we assume
for N,, the number of vegetative genes, N, = 3000, and for N, the total number of
genes, N, = 15,000 then we obtain for u,, the spontaneous mutation rate of the hap-
loid set of vegetative genes, u; = 0.05, and for u,, the total spontaneous mutation
rate of all genes, uz = 0.25. We shall use these values for the purposes of our dis-
cussion below.

The Life-Shortening Effect of Ionizing Radiation on the Exposed Population.—
We may expect ionizing radiation to produce gene mutations in the chromosomes
of the somatic cells of an exposed individual and we shall assume that the sensitiv-
ity of the genes of the somatic cells is about the same as that of the genes in the
spermatogonia and the oogonia. Because a certain fraction of these mutations, per-
haps one-fifth of them, affect vegetative genes, faults are induced in the chromo-
somes of the somatic cells of the exposed individual. It can be shown that an ex-
posure to ionizing radiation which induces on the average one fault per somatic

cell must reduce—on this score along—the life-expectancy of the exposed individual
" by about r years. If exposure to ionizing radiation had no other life-shortening
effect, the life-shortening, 8, of the individual in the exposed population would be
equal to 8*, the life-shortening of the adult offspring of the exposed population (see
note 2 added in proof).

Maternal Selection Pressure against Faults?—It is conceivable that a woman who
carries a particular fault in her genetic makeup ceases to be capable of bearing
children r = 6 years earlier, on the average, than her counterpart who lacks that
particular fault. This is what one would expect on the assumption that the ter-
mination of a woman’s reproductive period is determined by her physiological age—
if all other factors are equal. If this assumption is correct, then a powerful selection
has operated in the past that has tended to keep the load of faults low.

In the past, infant mortality was high, the birth rate was high, and women kept
on having children until the end of their childbearing period. Clearly, the ma-
ternal selection mentioned above is switched off when women have two or three
children between the ages of 18 and 25 and then avoid having further children.

If such a “maternal” selection was the predominating selection of the past, then
we may expect that, when this selection ceases to operate, our load of faults may
double, in time. As diseussed before, senescence would then set in about 15 years
earlier.
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However, even if we assume the worst in this respect, our load of faults still can-
not increase by more than 2u; = 0.1 per generation. This means that—at the
worst—it would take 25 generations for our load of faults to double.

The effect of the ‘“maternal” selection here discussed might be estimated as
follows:

Let us single out one vegetative gene. If a woman carries, as a heterozygote,
this particular gene in a mutant form, her physiological age is r = 6 years higher
than that of another women who does not carry this particular “fault’” but who
is otherwise identical in her genetic makeup. We now assume that the ‘“phys-
iological age” sets the termination of the reproductive period, and we take for the
“most probable duration” of the reproductive period 30 years. Thus the fault
singled out “most probably’ shortens the reproductive period by one-fifth of its
length. The fertility of younger women is higher than that of older women. Near
the end of the reproductive period, the (average) time interval between two suc-
cessive pregnancies might be by a factor k£ > 1 (of perhaps 2 or 3) longer, than the
interval between two successive pregnancies, averaged over the whole reproductive
period.

If we postulate that this ‘“maternal” selection constitutes essentially the sole
selection pressure against faults, then we may write for the mutation equilibrium
of the fault, singled out:

ﬂ n

2N, T I X B RN, (45)

and, for the value of u; = 0.05 per generation, we thus obtain k = n. Forn = 2.5
we have

k= 25. (46)

Under “natural” conditions, for young women the average time interval between
two successive pregnancies might be about 1 year; toward the end of the repro-
ductive period it might be about 5 years; and, averaged over the whole reproductive
period of about 30 years, it might be about 2 years. These values correspond to
k = 2.5. This coincidence might, of course, turn out to be fortuitous.

Refinements of the Theory—Specialized Vegetative Genes.—It appears likely that
there exist genes which are not essential for the functioning of most of the somatic
cells of the adult but each of which is essential for the functioning of one particular
kind of specialized somatic cell. We shall call these genes ‘‘specialized vegetative”
genes, and mutant forms of such genes we shall call “specialized faults.”

We shall now single out, for the purposes of our discussion, specialized cells which
synthesize a gene product, a particular enzyme, for instance, that serves not the
needs of these cells themselves but rather those of the organism as a whole. Such
specialized cells might in some cases fulfill their function in the organism by releasing
the enzyme into the circulation.

We may in general assume that the normal young person has a considerable re-
serve of such enzymes, and we shall specifically assume, for the purposes of this
particular discussion, that the maximal output of a normal young person is higher
than the need of the organism by a factor of about 6.

The maximal output of enzyme by such a specialized cell may be assumed to be
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lower by a factor of 1/, in the heterozygous individual, who has inherited a mutant
form of the specialized vegetative gene. Further, it may be shown that, for an
individual who has inherited n = 2.5 faults, the surviving fraction of the somatic
cells is about one-third at 54 years of age. Since, in the heterozygote, the special-
ized cells under discussion carry one additional fault, the surviving fraction of the
specialized cells will reach one-third about 6 years earlier. Thus, at 48 years of
age, the maximal output of the enzyme of the surviving specialized cells of the
heterozygote will be lower, by a factor of about !/, than for a normal young person.

On this basis we may then expect that around 50 years of age there may become
manifest, in such heterozygotes, symptoms of disease due to the insufficiency of the
output of one kind of specialized cell. The inheritance of diseases of this class may
be expected to show a marked degree of dominance.

Speaking more generally, we may expect to see in certain heterozygotes, late in
life, narrowly circumscribed degenerative phenomena which are caused by special-
ized faults they have inherited.

The Number of “Segments”’ per Chromosome.—Instead of assuming that a whole
chromosome is ‘“‘destroyed’” in one aging hit, we might choose to assume that the
elementary step in the process of aging consists in the random destruction of one-
half of a chromosome. The formulas given above then remain unchanged, except
that we have to write 2m in place of m. As one may see from equation (40), we
then obtain, for the same value of n, a higher value for f*. Thus for n = 2.5 we
obtain f* «& 1/;.  Apart from this, the general character of the theory remains un-
changed.

However, one might ask at this point whether one could not generalize the theory,
presented above, by assuming that each chromosome consists of g segments and
that the elementary step in the process of aging consists in the random destruction
of such segments, independently of each other. By choosing the value of g larger
and larger, we might then graduaily change the character of the theory and might
end up with a theory which postulates that the aging process consists in a sequence
of gene mutations of the chromosomes of the somatic cell.

A theory of this kind would, bowever, come up against difficulties, which are as
follows:

As may be seen from equation (40) (where we now have to write gm in place of
m), for a fixed value of f* n goes up roughly parallel with increasing g. A very
large value of n might, however, be incompatible with the known fertility of con-
sanguinous matings.

Further, as we increase g, we would also increase the difference of the life-expec-
tancy of the female and the male. The male of the species has only one X chromo-
some, while the female has two. Let us disregard here the possibility that a sub-
stantial piece of the X chromosome might be covered, in the male, by genes con-
tained in the Y chromosome. Let us also assume, for the sake of argument, that
f* has the same value for the male as it has for the female. On the basis of these
assumptions, we may then identify the male, from the point of view of his life-
expectancy, with a female who has suffered g aging hits, prior to birth. Accord-
ingly, we may expect the adult male to live a shorter time, by gr years, than the
adult female.

Actually, according to the 1949-50 Census, the maximal number of deaths for the
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white male occurs between the ages of 77 and 78, i.e., three years earlier than for
the white female. This difference is three years less than what we would expect on
the basis of our theory, which assumes ¢ = 1 and which gives an estimate for 7 of
7 = 6 years. This discrepancy indicates that perhaps the value of f* is somewhat
larger for the male than for the female.

Because of the possibility that this might be the case, we conceivably have
g = 2 (g = 2 would mean that the elementary process of aging consists in the
“destruction’ of one-half of a chromosome rather than a whole chromosome).

However, there is no reason to believe that f* may be very much larger for the
male than for the female. Therefore, the observed small difference between the
life-expectancy of the female and that of the male may rule out a modification of
the theory that assumes g > 1.

Experimental Test of the Theory.—The most stringent experimental test of the
validity of our theory is likely to come from experiments in which one observes a
reduction in the life-expectancy of the adult offspring of, say, an irradiated mouse
population. Experiments of this sort are needed in order to determine the value
of 6*. Experiments of this sort will also show whether among the different phe-
nomena which generally accompany senescence, such as the graying of the hair,
the loss of accommodation of the eye, etec., there are any which are determined by
the general physiological age, defined on the basis of the age-specific death rate.
Arrangements for experiments along these lines are now under discussion.

I am grateful to Dr. Gertrud Weiss and to Dr. N. Conant Webb, Jr., of the Medical
School, University of Colorado, for detailed criticism of some of the computations
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auxiliary computations I am also grateful to Mrs. Dorothy Lathrop, Office of
Mathematical Research, National Institutes of Health, and to Mrs. Norma French,
Section on Theoretical Statistics and Mathematics, Biometrics Branch, National
Institute of Mental Health.
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NOTATIONS

fis the fraction of the somatie cells which “‘survive,” in the sense of remaining functional up to a
given age.

f*isthe “surviving’’ fraction of the somatic cells at the age of death.

r is the number of inherited faults.

p is the number of inherited faults per chromosome.

n is the average number of faults per person in the population.

7 is the basic time interval of the aging process, defined as the average time interval between two
successive aging hits suffered by the chromosomes of the somatic cell.

m is the number of pairs of homologous chromosomes of the female of the species.

z, is the number of aging hits suffered, on the average, by the chromosomes of the somatic cells up
to the age of death, by an individual who has inherited r faults.

1, is the age, at death, of an individual who has inherited r faults.
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1y is the life-span of the species, defined as the age at death of the genetically perfect female who
did not inherit any faults.

d(theor.) is the number of deaths per year that will occur in a cohort, as given by the theory.

d(theor.)max. is the highest number of deaths per year that will occur in a cohort, as given by the
theory.

R(theor.) is the ratio of the number of deaths per year and the maximal number of deaths per year
in a cohort, as given by the theory.

R(obs.) is the ratio of the number of deaths per year and the maximal number of deaths per year
in a cohort, as given by the U.S. Life Tables for white females.

o is the standard deviation of the Gaussian that approximates the observed distribution of the

number of deaths per year, between the ages of 70.5 and 90.5 .

7/t 18 the specific life-shortening per fault of the species.

§ is the life-shortening per rep for a population that has been exposed to ionizing radiation.

5* is the life-shortening per rep of the adults in the offspring of a population that has been exposed
to ionizing radiation.

w1 is the spontaneous mutation rate of the haploid set of vegetative genes per generation.

ue is the total spontaneous mutation rate of all genes in the haploid set.

N, is the haploid number of vegetative genes of the species.

N, is the haploid number of all genes of the species.

g is the postulated number of ‘“‘segments’ per chromosome.

NoTtes ADDED IN PROOF

1. When we say that an aging hit “‘destroys’’ a chromosome of the somatic cell, we mean that
that chromosome has been rendered inactive as far as its vegetative functions are concerned, i.e.,
the genes which the chromosome contains will fail to produce the corresponding gene products.
The question whether the chromosome is inactivated in any other sense is left open for the present.
Thus it is left open whether, if a cell containing an inactivated chromosome were to duplicate, the
inactivated chromosome would or would not duplicate and whether or not it would remain inac-
tive after such a duplication. One might, for instance, imagine that the chromosomes of the
somatic cell contain NNA strands which fulfil a vegetative function in the somatic cell by produc-
ing the specific gene products but do not duplicate when the cell duplicates. Aging hits would
then inactivate these vegetative ‘‘copies’’ rather than the genetic copies. The latter would dupli-
cate when the cell duplicates and would then produce fresh vegetative copies. This is just one of
several assumptions which one may make concerning the nature of the aging hits. For the pres-
ent, we are free to choose among several such ad hoc assumptions.

2. In the case of exposed animals it is conceivable that their life is shortened, not only through
the induction of gene mutations in the chromosomes of their somatic cells by the ionizing radia-
tion, but perhaps also through some other effects of the ionizing radiation on their somatic cells,
which may involve the chromosomes or some other components of the cell. Among such effects
might be the breakage of chromosomes which may lead to the loss of a chromosome. However,
the theory here presented does not cover the life-shortening effect of ionizing radiation which is
due to causes other than the induction of gene mutations in the somatic cells of the chromosomes.
Disregarding such other effects, the ‘‘surviving’’ fraction of the somatic cells of an exposed female
may be computed on the basis of the faults induced in the chromosomes of her somatic cells by the
ionizing radiation. For a genetically perfect female who is exposed to a dose of ionizing radiation
“;hich induce?i on the average, p faults per somatic cell, we may write for the “surviving’’ fraction
of somatic cells:

f=[2e"%#2™(1 — ¢t) + e,
for p/2m<< 1 and p/z<< 1 we may write, in analogy to (13)

1 _ 1 (% Tyl (b ])

lnf*_4m('r+p)[l 2m 'r+p ’

where ¢, is the age of death of a genetically perfect female exposed to a dose of ionizing radiation
that induced an average of p faults in the chromosomes of her somatic cells.



