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Abstract
Recent studies have uncovered important cross talk between inflammation, generation of reactive
oxygen and nitrogen species, and lipid metabolism in the pathogenesis of cardiovascular aging.
Inhibition of the endocannabinoid anandamide metabolizing enzyme, the fatty acid amide hydrolase
(FAAH), is emerging as a promising novel approach for the treatment of various inflammatory
disorders. In this study, we have investigated the age-associated decline of cardiac function and
changes in inflammatory gene expression, nitrative stress, and apoptosis in FAAH knockout
(FAAH−/−) mice and their wild-type (FAAH+/+) littermates. Additionally, we have explored the
effects of anandamide on TNF-α-induced ICAM-1 and VCAM-1 expression and monocyte-
endothelial adhesion in human coronary artery endothelial cells (HCAECs). There was no difference
in the cardiac function (measured by the pressure-volume conductance catheter system) between 2-
to 3-mo-old (young) FAAH−/− and FAAH+/+ mice. In contrast, the aging-associated decline in
cardiac function and increased myocardial gene expression of TNF-α, gp91phox, matrix
metalloproteinase (MMP)-2, MMP-9, caspase-3 and caspase-9, myocardial inducible nitric oxide
synthase protein expression, nitrotyrosine formation, poly (ADP-ribose)polymerase cleavage and
caspase-3/9 activity, observed in 28- to 31-mo-old (aging) FAAH+/+ mice, were largely attenuated
in knockouts. There was no difference in the myocardial cannabinoid CB1 and CB2 receptor gene
expression between young and aging FAAH−/− and FAAH+/+ mice. Anandamide dose dependently
attenuated the TNF-α-induced ICAM-1 and VCAM-1 expression, NF-κB activation in HCAECs,
and the adhesion of monocytes to HCAECs in a CB1-and CB2-dependent manner. These findings
suggest that pharmacological inhibition of FAAH may represent a novel protective strategy against
chronic inflammation, oxidative/nitrative stress, and apoptosis associated with cardiovascular aging
and atherosclerosis.
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Modulation of the endocannabinoid system is emerging as a novel approach for the therapy of
various inflammatory, metabolic, cardiovascular, gastrointestinal, liver, and
neurodegenerative disorders (reviewed in Refs. 32,35,47). The natural ligands
[endocannabinoids: arachidonoyl ethanolamide or anandamide (AEA) and 2-
arachidonoylglycerol (2-AG)], similarly to their synthetic analogs, exert various anti-
inflammatory and other effects mediated through the activation of two known cannabinoid
(CB) receptors: the CB1 receptor, which is highly expressed in the brain (40) but is also present
in peripheral tissues including vascular tissues (25,34), heart (5,49), and liver (3,22,45,65), and
the CB2 receptor, previously thought to be expressed primarily in immune and hematopoietic
cells (reviewed in Ref. 47). However, more recent studies have also identified CB2 receptors
in brain (67), myocardium (43), cardiomyoblasts (43,58), and endothelial cells of various
origins (6,26,42,71; reviewed in Refs. 32,35,47).

Recent studies have revealed important cross talk between inflammation, generation of reactive
oxygen and nitrogen species, and lipid metabolism in the pathogenesis of cardiovascular aging
and atherosclerosis (13–16,27,50). Fatty acid amide hydrolase (FAAH), the enzyme
responsible for the degradation of anandamide and related fatty acid amides in vivo, has
emerged as a promising target for modulating endocannabinoid signaling, with a therapeutic
potential in anxiety, pain, and various inflammatory disorders (e.g., colitis, arthritis,
neurodegenerative disorders, atherosclerosis, etc.; reviewed in Refs. 11,32,35,47). Excitingly,
a recent study has demonstrated that analogs of the nonsteroidal anti-inflammatory drugs
indomethacin and ibuprofen are inhibitors of FAAH, suggesting that the combined FAAH-
cyclooxygenase inhibitors may have therapeutic potential in various inflammatory disorders
(29).

In this study, we have characterized the age-dependent decline of cardiac function and
associated changes in myocardial inflammatory gene expression, nitrative stress, and apoptosis
in FAAH knockout (FAAH−/−) mice and their wild-type (FAAH+/+) littermates. We have also
investigated the effects of anandamide on TNF-α-induced intercellular adhesion molecule-1
(ICAM-1) and vascular adhesion molecule-1 (VCAM-1) expression and monocyte-endothelial
adhesion in human coronary artery endothelial cells (HCAECs). These results indicate that 28-
to 31-mo-old aging mice lacking FAAH have less myocardial oxidative/nitrative stress,
inflammation, and apoptosis and better preservation of the cardiac function compared with
their wild-type littermates. Furthermore, anandamide attenuates TNF-α-induced ICAM-1 and
VCAM-1 expression, NF-κB activation in HCAECs, and the adhesion of monocytes to
HCAECs in a CB1- and CB2-dependent manner.

MATERIALS AND METHODS
All protocols were approved by the National Institute on Alcohol Abuse and Alcoholism
(NIAAA) Animal Care and Use Committee and were performed in accordance with the
National Research Council’s Guide for the Care and Use of Laboratory Animals.

Materials
1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-moepholinyl-1H-pyrazole-3-
carboxamide (AM281), 6-iodo-2-methyl-1-[2-(4-morphoninyl)ethyl]-1H-indol-2-yl-(4-
methoxyphenyl)methanone (AM630), and AEA were purchased from Tocris Bioscience
(Ellisville, MO). Human recombinant TNF-α was obtained from R&D Systems. Unless
otherwise specified, all other chemicals were purchased from Sigma (St. Louis, MO). Sources
of antibodies are mentioned below, as appropriate.
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Cell culture
HCAECs and growth medium were purchased from Cell Applications (San Diego, CA).
HCAECs were used for the experiments between passages 3 and 7. The human monocytic cell
line THP-1 was obtained from American Type Culture Collection and grown in RPMI 1640
medium supplemented with 2 mM L-glutamine, 10 mM HEPES, 10% FBS, 100 units/ml
penicillin, and 100 μg/ml streptomycin, respectively. The cells were maintained at 37°C in a
5% CO2 incubator as described previously (55).

Hemodynamic measurements
Young [2- to 3-mo-old male FAAH−/− (n = 20) and FAAH+/+ (n = 21)] and aging [28- to 31-
mo-old male FAAH−/− (n = 18) and FAAH+/+ (n = 17)] mice weighing 22–36 g were used for
the study. Left ventricular performance was analyzed in mice anesthetized with 2% isoflurane.
The animals were placed on controlled heating pads, and core temperature measured via a
rectal probe was maintained at 37°C. The trachea was cannulated, and the animals were
artificially ventilated using a MiniVent respirator (Harvard Apparatus, Holliston, MA) at rates
and tidal volumes adjusted to the body weights. A microtip pressure-volume catheter
(SPR-839; Millar Instruments, Houston, TX) was inserted into the right carotid artery and
advanced into the left ventricle as described previously (43,48,51). After stabilization for 20
min, the signals were continuously recorded at a sampling rate of 1,000 s−1 using an ARIA
pressure-volume conductance system (Millar Instruments) coupled to a Powerlab/4SP analog-
to-digital converter (AD Instruments, Mountain View, CA) and stored and displayed on a
computer. All pressure-volume loop data were analyzed using a cardiac pressure-volume
analysis program (PVAN3.5, Millar Instruments), and the heart rate, maximal left ventricular
systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximal slope of
systolic pressure increment (+dP/dt), diastolic decrement (−dP/dt), cardiac output, cardiac
index, and stroke work were computed. The relaxation time constant (τ), an index of diastolic
function, was also calculated by two different methods [Weiss method, regression of log
(pressure) vs. time; Glantz method, regression of dP/dt vs. pressure]. All hemodynamic
parameters were calculated and corrected according to in vitro and in vivo volume calibrations
(43,48,49,51).

Real-time PCR analyses
Total RNA was isolated from tissue (heart) homogenate using Trizol LS reagents (Invitrogen,
Carlsbad, CA) according to the manufacturer’s instructions. The isolated RNA was treated
with RNase-free DNase (Ambion, Austin, TX) to remove traces of genomic DNA
contamination. Total RNA of 1 μg was reverse transcribed to cDNA using Super-Script II
(Invitrogen). The target gene expression was quantified with iTaq SYBR Green mix (Bio-Rad,
Hercules, CA), using the Bio-Rad Chromo 4/Opticon system. Each amplified sample in all
wells was analyzed for homogeneity using melting curve analysis. Relative quantification was
calculated using the comparative threshold cycle (CT) method. Lower ΔCT values and lower
ΔΔCT reflect a relatively higher amount of gene transcript. Statistical analyses were carried
out for at least 6 –15 replicate experimental samples in each set.

The primers used were as follows: caspase-3, 5′-TGGACTGTGGCATTGAGACAG-3′ and
5′-CGACCCGTCCTTTGAATTTC-3′; caspase-9, 5′-GGATGCTGTGTCAAGTTTGCC-3′
and 5′-CTTTCGCAGAAACAGCATTGG-3′; gp91phox, 5′-
GACCATTGCAAGTGAACACCC-3′ and 5′-AAATGAAGTGGACTCCACGCG-3′; matrix
metalloproteinase-2 (MMP-2), 5′-CAAGGACCGGTTTATTTGGC-3′ and 5′-
ATTCCCTGCGAAGAACACAGC-3′; MMP-9, 5′-TCTTCTGGCGTGTGAGTTTCC-3′ and
5′-CGGTTGAAGCAAAGAAGGAGC-3′; TNF-α, 5′-GCCTGTAGCCCACGTCGTA-3′ and
5′-GGTACAACCCATCGGCTGG-3′; CB1 receptor, 5′-TCATGTGAAGGCACTGCGC-3′
and 5′-CAGCCACAAAAGCAGCAGG-3′; CB2 receptor, 5′-
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CCTTGCTTCGGTTTCCTTCTC-3′ and 5′-CACAAAGGTCTCCATGGTTGC-3′; and actin,
5′-TGCACCACCAACTGCTTAG-3′ and 5′-GGATGCAGGGATGATGTTC-3′.

Western immunoblot analyses
Protein was extracted from tissue homogenates using RIPA lysis buffer containing protease
inhibitor cocktail set III (Calbiochem, EMD Biosciences, San Diego, CA) and phosphatase
inhibitor cocktail set I (Calbiochem, EMD Biosciences). Protein was measured by the DC
protein assay kit (Bio-Rad), and equal amounts (40 μg/lane) were fractionated on NuPAGE 4–
12% Bis-Tris gel (Invitrogen) and transferred onto nitrocellulose membrane (Invitrogen) using
a semidry transfer apparatus (Bio-Rad). The blocking was carried out for 2 h in 5% nonfat dry
milk prepared in PBS. The primary antibodies were added according to the manufacturer’s
recommendation in 5% nonfat dry milk containing 0.1% Tween-20 for overnight at 4°C. After
three washes in PBS containing 0.1% Tween-20, secondary horseradish peroxidase conjugate
(Pierce Biotechnology, Rockford, IL) was added, followed by three washes with PBS
containing 0.1% Tween-20. The blots were detected with Supersignal West Pico
chemiluminescent substrate (Pierce Biotechnology) and developed using Kodak Biomax film
(PerkinElmer, Wellesley, MA). Immunoblots were scanned with an Epson V750 Pro scanner,
and quantification following background correction was carried out by ImageQuant5.1
software (Molecular Dynamics). All quantitative values were normalized to β-actin.
Antibodies used were anti-actin mAb (Chemicon, Temecula, CA), anti-PARP (Cell Signaling),
and anti-cleaved PARP and anti-inducible nitric oxide synthase (anti-iNOS) mAb (BD
Biosciences).

Nitrotyrosine ELISA
Nitrotyrosine was quantified with an HBT Nitrotyrosine ELISA kit according to the
manufacturer’s instructions (Cell Sciences). Samples and standards were incubated in
microtiter wells coated with antibodies recognizing nitrotyrosine. During this incubation,
nitrotyrosine was captured by the solid bound antibody. Unbound material present in the sample
was removed by washing. Biotinylated second antibody (tracer) to nitrotyrosine was added to
the wells. Excess tracer was removed by washing. Streptavidin-peroxidase conjugate was
applied to the wells; this conjugate reacts specifically with the biotinylated tracer antibody
bound onto the detected nitrotyrosine. Excess streptavidin-peroxidase conjugate was removed
by washing, and a substrate, tetramethylbenzidine (TMB), was added to the wells. Color
developed proportionally to the amount of nitro-tyrosine present in the sample. The enzyme
reaction was stopped by the addition of citric acid, and absorbance at 450 nm was measured
with a spectrophotometer. A standard curve was obtained by plotting the absorbance vs. the
corresponding concentrations of the nitrotyrosine standards. The nitrotyrosine concentration
of samples with unknown concentrations, which were run concurrently with the standards, was
determined from the standard curve.

Caspase-3/7 activity from myocardial tissue was determined as previously described (13,43).

Cell surface ICAM-1 and VCAM-1 expression assay
Cell surface expression of ICAM-1 and VCAM-1 was measured using in situ ELISA as has
been described (55). In brief, HCAECs were grown in 96-well plates coated with 0.2% gelatin.
After treatments, cells were washed with PBS three times and fixed in 4% formaldehyde in
PBS (pH 7.4) for 30 min at 4°C. After being washed, the cells were blocked with PBS
containing 1% bovine serum albumin and 0.1 M glycine for 2 h at 4°C. The fixed monolayer
was incubated with either ICAM-1 or VCAM-1 monoclonal antibodies (R&D systems) at
1:1,000 dilutions for 1 h at 37°C. Next, the cells were incubated with peroxidase-conjugated
anti-mouse secondary antibody (1:5,000; Pierce, IL) for 1 h at 37°C. After being washed, cells
were incubated with 100 μl of developing substrate solution (3,3′,5,5′-tetramethylbenzidine)
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for 10 min, and the reaction was terminated with 2 N H2SO4. Finally, the absorbance was
measured at 450 nm using an ELISA reader (Molecular Devices). Each treatment was
performed in duplicate, and the experiments were repeated three times.

Monocyte adhesion assay
Determination of monocyte adhesion to the endothelial cells was conducted using human
THP-1 cells as previously described (55). In brief, HCAECs were grown to confluence in 24-
well plates and treated with agonists/antagonists plus or minus TNF-α (see legend to Fig. 6 for
description). THP-1 cells were labeled with 1.5 μM calcein-AM (Molecular Probes,
Invitrogen) for 1 h at 37°C in RPMI 1640 containing 1% FBS. The cells were then washed two
times with RPMI 1640 containing 1% FBS to remove the excess stain. Subsequently, the cells
were re-suspended in HCAEC basal medium containing 2% FBS. HCAECs were washed twice
with HCAEC basal medium and covered with 400 μl of HCAEC basal medium. Then, 105/100
μl labeled THP-1 cells were added to HCAECs and incubated for 1 h at 37°C in a 5% CO2
incubator. After incubation, the medium containing monocytes was aspirated, and the
monolayer was gently washed with PBS three times to remove the unbound monocytes. The
adherent monocytes were documented using an Olympus IX 81 fluorescent microscope with
×10 objective. Three fields were documented per experimental condition. Individual treatments
were performed in duplicate, and the set of experiments was repeated three times. The number
of adherent THP-1 cells was counted using National Institutes of Health (NIH) Image J
software, and the values were expressed as cells adhered per field.

NF-κB activation
NF-κB activation by TNF-α was determined by immunofluorescence assays by evaluating the
nuclear translocation of p-65 (NF-κB). In brief, cells were grown in 0.2% gelatin-coated
chamber slides (Labtek, Nalge Nunc). After treatments, cells were fixed in 4%
paraformaldehyde for 30 min, followed by washing with PBS. Then they were permeabilized
with 0.2% Triton X-100 (in PBS) for 20 min. Subsequently, cells were incubated with mouse
anti-human NF-κB (p-65) (1:1,000 dilution, BD Biosciences) for 1 h at room temperature (RT).
They were then probed with rabbit anti-mouse-FITC conjugate (1:1,000 dilution, Pierce
Biotechnology) for 1 h at RT.

Statistical analyses
Strain- and time-dependent variables were analyzed by two-way ANOVA. Adjusted Student’s
t-test was used after ANOVA for pairwise comparisons, using GraphPad Prism (San Diego,
CA). Significance was assumed if P < 0.05.

RESULTS
Cardiac function

Cardiac function was not significantly different in anesthetized young FAAH−/− and
FAAH+/+ mice, consistent with our previous report (Ref. 49; Fig. 1). Aging FAAH+/+ mice
had decreased indexes of systolic contractile function (LVSP, +dP/dt, cardiac output, cardiac
index, and stroke work). In contrast, LVEDP and τ values were increased in aging FAAH+/+

animals, and −dP/dt was decreased, indicating diastolic dysfunction (Fig. 1). The aging-
associated systolic and diastolic dysfunction was less pronounced in aging FAAH−/− mice
compared with FAAH+/+ littermates (Fig. 1).

Cannabinoid CB1 and CB2 receptor gene expression was not different in the myocardial
samples from young and aging FAAH−/− or FAAH+/+ mice (Fig. 2, A and B). TNF-α and
gp91phox (Fig. 2, C and D), MMP-2 and -9 (Fig. 3, C and D), and caspase-3 and -9 (Fig. 4,
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C and D) gene expressions were markedly increased in myocardia of aging FAAH+/+ mice but
only moderately so in aging FAAH−/− mice (compared with corresponding young controls and
with each other).

Myocardial iNOS protein expression (Fig. 3A), nitrotyrosine formation (Fig. 3B), cleaved
PARP (Fig. 4A), and caspase-3/7 activity (Fig. 4B) were increased in myocardia of aging
FAAH+/+ mice but only moderately so in aging FAAH−/− mice (compared with corresponding
young controls and with each other).

AEA mitigates TNF-α-induced ICAM-1 and VCAM-1 expression
TNF-α (50 ng/ml) treatment of HCAECs for 6 h led to marked upregulation of ICAM-1 (Fig.
5, A and B) and VCAM-1 (Fig. 5, C and D) expression. AEA pretreatment (0 –20 μM) dose
dependently reduced ICAM-1 (Fig. 5A) and VCAM-1 (Fig. 5C) expressions. These effects
were attenuated by AM281 and AM630 (CB1 and CB2 receptor antagonists), respectively (Fig.
5, B and D).

AEA mitigates TNF-α-induced monocyte adhesion to HCAECs
As shown in Fig. 6, TNF-α (50 ng/ml) treatment of HCAECs for 6 h led to a dramatic increase
in monocyte adhesion when compared with controls. Pretreatment of cells with AEA (15 μM;
starting from 1 h before and continuously present during the TNF-α exposure) inhibited TNF-
α-induced monocyte adhesion to endothelial cells. This effect was attenuated by both AM281
and AM630 (Fig. 6).

AEA mitigates TNF-α-induced NF-κB activation in HCAECs
As depicted in Fig. 7, TNF-α induced marked activation of NF-κB in endothelial cells,
mitigated by pretreatment with AEA, an effect that could be attenuated by CB1 and CB2
antagonists.

DISCUSSION
We demonstrate that mice lacking FAAH are more resistant to the age-associated decline in
cardiac function compared with their wild-type littermates. Furthermore, the aging-associated
increased myocardial gene expression of TNF-α, gp91phox, MMP-2, MMP-9, and caspase-3
and -9, myocardial iNOS protein expression, nitrotyrosine formation, PARP cleavage, and
caspase-3/9 activity are also decreased in FAAH knockouts. We also show that anandamide
dose dependently attenuates the TNF-α-induced ICAM-1 and VCAM-1 expression, NF-κB
activation in HCAECs, and the adhesion of monocytes to HCAECs in a CB1- and CB2-
dependent manner.

The existence of an anandamide-hydrolyzing enzyme was proposed by several groups (18,
21,28,66) shortly after the discovery of anandamide in 1992 (19). Consequently, the enzyme
was purified and cloned (9,12), and FAAH knockout mice were developed (8). These mice
have increased endogenous concentrations of anandamide and related fatty acid amides in the
brain, liver, heart, and numerous other organs (8,41,49). FAAH−/− mice are characterized by
increased CB1-dependent hypoalgesia and hypersensitivity to the cannabinoid-like behavioral
responses to exogenous anandamide (8), which can also be achieved by potent FAAH inhibitors
(31). Importantly, neither pharmacological inhibition nor genetic deletion of the enzyme affects
CB1-regulated functions such as core body temperature and locomotion (8,31), suggesting that
FAAH may represent an appealing therapeutic target for treating pain and related neurological
disorders as well as anxiety, without the abuse potential of directly acting CB1 agonists
(reviewed in Refs. 10,20,47). Therefore, it is not surprising that there is considerable interest
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in the development of novel potent FAAH inhibitors for various inflammatory disorders and
other therapeutic indications (10,20,32,47).

FAAH−/− mice are protected against 2,4-dinitrobenzene sulfonic acid-induced colitis and
develop a less severe inflammatory response and tissue injury (12a,37). This and recent studies
with pharmacological inhibitors of cellular reuptake of anandamide (17) strongly suggest that
upregulation of anandamide levels as an endogenous mechanism may be a feasible
pharmacological strategy to limit inflammatory organ injury (reviewed in Refs. 20,32,47).
There is also emerging evidence from in vitro studies suggesting that anandamide may inhibit
NF-κB-dependent pivotal inflammatory pathways (induced by various inflammatory stimuli
such as endotoxin and TNF-α) through cannabinoid receptor-dependent and -independent
mechanisms (44,56). Consistent with these reports, we demonstrate for the first time that
anandamide dose dependently attenuates TNF-α-induced adhesion molecule ICAM-1 and
VCAM-1 expression, NF-κB activation in HCAECs, and the adhesion of monocytes to
HCAECs in a CB1- and CB2-dependent manner.

Proinflammatory cytokines such as TNF-α play an important role in the cardiovascular aging
process and mediate, at least in part, their proatherogenic effects by eliciting NF-κB activation
in endothelial cells (13,27). The activation of this pathway leads to induction of adhesion
molecules and chemokines, e.g., VCAM and ICAM-1 (69), which promote monocyte
adhesiveness to the endothelium, and the release of a variety of factors that facilitate smooth
muscle migration and proliferation to synthesize and deposit the extracellular matrix (27).
There is considerable evidence suggesting that disruption of the cytokine-induced NF-κB
signaling pathway confers a significant vasculoprotective effect by attenuating vascular
inflammation (36,61), which delays or prevents atherogenesis in animal models (7,30,64) of
disease. Disruption of this pathway with various cannabinoids may also exert significant
protective effects by attenuating the endothelial cell activation, adhesion and activation of
neutrophils and other inflammatory cells to the endothelium, and consequent inflammatory
damage (4,36,55,56,62). These beneficial effects of cannabinoids could be therapeutically
exploited in numerous cardiovascular disorders associated with increased inflammatory
response, such as atherosclerosis, myocardial infarction, cardiac transplantation, and
cardiovascular aging, to mention a few (reviewed in Refs. 32,33,46,47).

Numerous recent studies underscore the importance of the complex interplay between
generation of reactive oxygen and nitrogen species, lipid metabolism, and inflammation in
cardiovascular dysfunction associated with aging (reviewed in Refs. 14,50). TNF-α-induced
superoxide generation might also favor increased expression of iNOS through the activation
of NF-κB, which increases the generation of nitric oxide (NO). Superoxide anion reacts with
NO to form the potent cytotoxin peroxynitrite, which attacks various biomolecules in the
myocardium, vascular endothelium, and vascular smooth muscle, leading to cardiovascular
dysfunction via multiple mechanisms including nitration of contractile proteins, impairment
of mitochondrial function, activation of MMPs, and the nuclear enzyme poly(ADP-ribose)
polymerase (to mention a few), eventually leading to cell death by apoptosis or necrosis and
ultimately organ dysfunction (reviewed in Refs. 50,53,57). Consistent with previous mouse
and rat studies, we show aging-associated decline of myocardial function (both systolic and
diastolic) in aging FAAH+/+ mice and increased gene expression of TNF-α, gp91phox, MMP-2,
MMP-9, and caspase-3 and -9, myocardial iNOS protein expression, nitro-tyrosine formation,
PARP cleavage, and caspase-3/9 activity (markers of oxidative/nitrative stress, inflammation,
and apoptosis; Refs. 1,15,52,54,70). Remarkably, all the above-mentioned aging-associated
changes were attenuated in FAAH−/− mice. It is tempting to speculate that increased
anandamide levels might contribute (at least in part) to the above-mentioned anti-inflammatory
phenotype observed in FAAH−/− mice by suppressing inflammatory pathways and interrelated
oxidative/nitrative stress. It is noteworthy that anandamide may exert both proapoptotic (in

Bátkai et al. Page 7

Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2008 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stellate cells and hepatocytes; Refs. 59,60) and anti-apoptotic effects (against serum
deprivation in N18TG2 murine neuroblastoma cells; Ref. 38), determined by FAAH activity;
however, this is a very controversial issue requiring further clarification. The myocardial levels
of oleoylethanolamide are also increased in FAAH−/− mice (49), which could also be
responsible for various protective effects in the cardiovascular system via multiple mechanisms
[e.g., activation of Ras-Raf-1-Mek-Erk signaling pathway (63) and peroxisome proliferator-
activated receptor-α (23), and direct antioxidant effects (2)]. It is important to note, however,
that in addition to enzymatic hydrolysis, endocannabinoids are also susceptible to oxidative
metabolism by a number of fatty acid oxygenases [e.g., cyclooxygenase, lipooxygenase,
cytochrome P450 (68); reviewed in Ref. 39], and some of these metabolites are potent
cardiovascular modulators (24). The effects of pharmacological inhibition or genetic
inactivation of FAAH may thus be confounded by the activation of such alternative pathways
of anandamide metabolism, particularly in the cardiovascular system, a possibility that needs
to be explored in future studies.

Collectively, these findings suggest that pharmacological inhibition of FAAH may be of
significant benefit in protecting against chronic inflammatory processes associated with
cardiovascular aging and atherosclerosis, regardless of whether its beneficial effects are
mediated by increased anandamide or oleoylethanolamide levels (or possibly other yet-
unidentified biological substances metabolized by FAAH).
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Fig. 1.
Hemodynamics in young (2- to 3-mo-old) and aging (28-to 31-mo-old) mice measured by the
Millar pressure-volume conductance catheter system. Values are means ± SE of 7–11
experiments in each group. LVEDP, left ventricular end-diastolic pressure; LVSP, left
ventricular systolic pressure; −dP/dt, diastolic decrement; tau (τ), relaxation time constant;
FAAH, fatty acid amide hydrolase. *P < 0.05 vs. young mice; #P < 0.05 vs. aging FAAH+/+

mice.
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Fig. 2.
Myocardial cannabinoid CB1 and CB2 receptors, gp91phox, and TNF-α gene expression.
Values are means ± SE of 6–15 experiments in each group. *P < 0.05 vs. young mice; #P <
0.05 vs. aging FAAH+/+ mice.
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Fig. 3.
Myocardial inducible nitric oxide synthase (iNOS) protein expression, nitrotyrosine formation,
and matrix metalloproteinase (MMP)-2 and -9 gene expression. Values are means ± SE of 5–
15 experiments in each group. *P < 0.05 vs. young mice; #P < 0.05 vs. aging FAAH+/+ mice.
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Fig. 4.
Myocardial markers of apoptosis (PARP cleavage, caspase-3/7 activity, and caspase-3 and -9
gene expression). Values are means ± SE of 5–15 experiments in each group. *P < 0.05 vs.
young mice; #P < 0.05 vs. aging FAAH+/+ mice.
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Fig. 5.
Effect of anandamide (AEA) on TNF-α-induced ICAM-1 and VCAM-1 expression in human
coronary artery endothelial cells (HCAECs). Values are means ± SE; n = 6. Cells were treated
with either TNF-α (50 ng/ml) or AEA (15 μM) for 6 h or pretreated with AEA with the indicated
concentrations followed by treatment with TNF-α for 6 h, and then cell surface ELISA was
performed as described in MATERIALS AND METHODS (A and B). VC, vehicle control.
A: ICAM-1 expression. *P < 0.05 vs. controls; #P < 0.05 vs. TNF-α. B: VCAM-1 expression.
*P < 0.05 vs. controls; #P < 0.05 vs. TNF-α. Cells were pretreated with CB1/CB2 antagonists
(1 μM) from 1 h before and during the treatment with TNF-α ± AEA (15 μM) as indicated for
6 h, and cell surface ELISA was performed (C and D). C: ICAM-1 expression. *P < 0.05 vs.
control; #P < 0.05 vs. TNF-α. Paragraph symbol: Pg< 0.05 vs. AEA + TNF-α. D: VCAM-1
expression. *P < 0.05 vs. control; #P < 0.05 vs. TNF-α. Paragraph symbol: P < 0.05 vs. AEA
+ TNF-α.
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Fig. 6.
Effect of AEA on TNF-α-induced monocyte adhesion to HCAECs. HCAECs were treated as
described in legend to Fig. 5. Top: representative images depicting monocytes adhered to the
endothelial cells. Bottom: quantification of monocyte adhesion to endothelial cells. Values are
means ± SE; n = 6. *P < 0.05 vs. control; #P < 0.05 vs. TNF-α. Paragraph symbol: P < 0.05
vs. AEA + TNF-α.
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Fig. 7.
Effect of AEA on TNF-α-induced NF-κB activation in HCAECs. Representative
immunofluorescence images of NF-κB activation in endothelial cells. TNF-α markedly
activated NF-κB (note the intense nuclear staining). AEA significantly inhibits TNF-α-induced
activation of NF-κB. Images shown are representative of 3 independent experiments yielding
identical results.
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