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Abstract
Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated
in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject
of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-
ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human
mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated
with/without the AR inhibitor fidarestat (F, 16 mg kg−1 day−1) for 6 weeks starting from induction
of diabetes. Glucose, sorbitol, and fructose concentrations were significantly increased in the renal
cortex of D vs C (p < 0.01 for all three comparisons), and sorbitol pathway intermediate, but not
glucose, accumulation, was completely prevented in D + F. F at least partially prevented diabetes-
induced increase in kidney weight as well as nitrotyrosine (NT, a marker of peroxynitrite-induced
injury and nitrosative stress), and poly(ADP-ribose) (a marker of PARP activation) accumulation,
assessed by both immunohistochemistry and Western blot analysis, in glomerular and tubular
compartments of the renal cortex. In vitro studies revealed the presence of both AR and PARP-1 in
human mesangial cells, and none of these two variables were affected by high glucose or F treatment.
Nitrosylated and poly(ADP-ribosyl)ated proteins (Western blot analysis) accumulated in cells
cultured in 30 mM D-glucose (vs 5.55 mM glucose, p < 0.01), but not in cells cultured in 30 mM L-
glucose or 30 mM D-glucose plus 10 μM F. AR inhibition counteracts nitrosative stress and PARP
activation in the diabetic renal cortex and high-glucose-exposed human mesangial cells. These
findings reveal new beneficial properties of the AR inhibitor F and provide the rationale for detailed
studies of F on diabetic nephropathy.
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Introduction
Diabetes accounts for at least ~35% of all new cases of end-stage renal disease in the United
States [1], and diabetic patients make up the fastest growing group of renal dialysis and
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transplant recipients. The Diabetes Control and Complications Trial [2] and the U.K.
Prospective Diabetes Study [3] strongly suggest the importance of hyperglycemia in the
pathogenesis of chronic complications of diabetes mellitus including diabetic renal disease.
Hyperglycemia leads to diabetic nephropathy (DN) via multiple mechanisms, and among them
increased aldose reductase (AR) activity [4,5], nonenzymatic glycation and glycooxidation
[6,7], activation of protein kinase C (PKC) and hexosamine pathway [8–10], arachidonic acid
metabolism via 12/15-lipoxygenase pathway [11,12], and triose phosphate accumulation [13]
are the best studied. Growing evidence obtained in diabetic animals (primarily, STZ
(streptozotocin)-diabetic rats and mice) [14–17] as well as cell culture models [18–20]
implicates free radicals and the potent oxidant peroxynitrite (a product of superoxide anion
radical reaction with nitric oxide) in both hemodynamic and metabolic abnormalities leading
to DN.

Oxidative stress affects all three compartments of the renal cortex, i.e., glomeruli [21], tubulo-
interstitium [22], and vasculature [23]. Renal hydrogen peroxide overproduction and lipid
peroxide accumulation occur at a very early stage of STZ-diabetes [24] and are associated with
clearly manifest impairment of antioxidative defense and, in particular, GSH and ascorbate
(AA) depletion, changes in glutathione and ascorbate redox states reflecting in increased
oxidized glutathione(GSSG)/GSH and dehydroAA/AA ratios, and upregulated superoxide
dismutase, GSH peroxidase, GSH transferase, and GSSG reductase activities [14,25].
Enhanced lipid peroxidation and GSH depletion have also been documented in the model of
advanced DN [15]. Evidence for the presence of peroxynitrite-induced injury in the diabetic
kidney is emerging [17,26].

Oxidative-nitrosative stress triggers several important downstream mechanisms, i.e., activation
of mitogen-activated protein kinases [20,27], the nuclear transcription factor NF-κB [28,29],
and upregulation of growth factors such as transforming growth factor-β (TGF-β) [14,15],
cytokines [30,31], and vascular endothelial growth factor [32] implicated in diabetic renal
disease [12,27–29,33,34]. In vitro and in vivo studies in nondiabetic models of oxidative injury
as well as animal and cell culture models of diabetic complications revealed that free radical
and peroxynitrite-induced DNA single-strand breakage is also responsible for activation of the
nuclear enzyme poly (ADP-ribose) polymerase (PARP) and resultant energy failure, profound
metabolic imbalances, and changes in transcriptional regulation and gene expression [35–37].
Recent studies including those from our group generated evidence of an important role of PARP
activation in diabetic endothelial [38] and myocardial [39] dysfunction, peripheral neuropathy
[40,41], and retinopathy [42,43]. We have also demonstrated (1) tubular PARP activation
manifested by increased poly(ADP-ribose) immunoreactivity, and (2) the key role of PARP in
upregulation of endothelin-1 and endothelin (A) and (B) receptors, known to play an important
role in DN, in the renal cortex of STZ-diabetic rats with 4-week duration of diabetes [44].

The interactions among various hyperglycemia-initiated mechanisms are not completely
understood, and the relation between increased AR activity and oxidative-nitrosative stress/
PARP activation in the renal cortex has never been explored. The present study was designed
to evaluate the effect of pharmacological AR inhibition with the potent and highly specific AR
inhibitor (ARI) fidarestat [45–47] on nitrosative stress and PARP activation in diabetic rat
kidney and high-glucose-exposed human mesangial cells. Our animal studies performed in the
STZ-diabetic rat model as well as in vitro studies in high-glucose-exposed human mesangial
cells provide evidence of the major contribution of increased AR activity to diabetes- and
hyperglycemia-associated nitrosative stress and PARP activation in the renal cortex, and,
specifically, the key cell target in DN, i.e., glomerular mesangial cells. Furthermore, they
identify abundant AR protein expression and early high-glucose-induced peroxynitrite
formation and PARP activation in human mesangial cells, thus suggesting the importance of
these mechanisms in human DN.
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Methods
Reagents

Unless otherwise stated, all chemicals were of reagent-grade quality, and were purchased from
Sigma Chemical Co. (St. Louis, MO). Methanol (HPLC grade), perchloric acid, hydrochloric
acid, and sodium hydroxide were obtained from Fisher Scientific (Pittsburgh, PA). Reagents
for immunohistochemistry were purchased from Vector Laboratories, Inc., Burlingdale, CA
and Dako Laboratories, Inc. (Santa Barbara, CA) as specified in the procedures. Monoclonal
anti-nitrotyrosine (NT) antibody, clone 1A6 was purchased from Upstate Biotechnology Inc.
(Lake Placid, NY). Monoclonal anti-PARP antibody, clone C-2-10, and monoclonal anti-poly
(ADP-ribose) antibody were obtained from Biomol (Plymouth Meeting, PA). Polyclonal anti-
AR 2 antibody and AR 2 protein were obtained from Santa Cruz (Santa Cruz, CA). Three other
AR antibodies were obtained from Drs. D. Carper, R.L. Sorenson, and J.M.Petrash, and human
AR protein was from Dr. J.M. Petrash. Human mesangial cells and mesangial cell medium
were purchased from ScienCell Research Laboratories (San Diego, CA).

Animals
The experiments were performed in accordance with regulations specified by the National
Institutes of Health Principles of Laboratory Animal Care, 1985 Revised Version, and
University of Michigan Protocol for Animal Studies. Male Wistar rats (Charles River,
Wilmington, MA), body weight 250–300 g, were fed a standard rat chow (PMI Nutrition Int.,
Brentwood, MO) and had access to water ad libitum. STZ-diabetes was induced as we described
previously [25,32,40,41,43]. Blood samples for glucose measurements were taken from the
tail vein ~48 h after the STZ injection and the day before the animals were killed. The rats with
blood glucose ~13.8 mM were considered diabetic. The experimental groups comprised control
and diabetic rats treated with or without fidarestat (16 mg kg−1 day−1, in the diet). The
treatments were started immediately after induction of diabetes. The duration of treatment was
6 weeks.

Anesthesia, euthanasia, and tissue sampling
The animals were sedated by CO2 and immediately killed by cervical dislocation. Both kidneys
were rapidly isolated, blotted with fine filter paper to remove any accompanying blood, and
weighed. The left kidney was frozen in liquid nitrogen for subsequent measurements of
glucose, sorbitol pathway intermediates, and nitrosylated and poly(ADP-ribosyl)ated protein
abundance. The right kidney was fixed in formalin and later used for assessment of
nitrotyrosine and poly(ADP-ribose) by immunohistochemistry.

Human mesangial cell culture
Human mesangial cells were cultured in the commercial mesangial cell medium containing
5.55 mM glucose, according to manufacturer's instructions. Passages 4 and 5 were used for all
experiments.

Specific methods
Metabolic studies—Glucose, sorbitol, and fructose concentrations in renal cortex were
assessed spectrofluorometrically, by enzymatic procedures with hexokinase/glucose 6-
phosphate dehydrogenase, sorbitol dehydrogenase, and fructose dehydrogenase as described
[25,41,43].

Immunohistochemical studies—All immunohistochemical samples were coded and
examined by a single investigator in a blinded fashion. Microphotographs of stained kidneys
were taken with a Zeiss Axiolab microscope equipped with a Fuji HC-300C digital camera.
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NT immunoreactivity: Kidneys were fixed in 4% paraformaldehyde in PBS and 5 μm sections
were prepared from paraffin embedded tissues. Endogenous peroxidase was quenched with
0.3% H2O2 in 60% methanol for 15 min. The sections were incubated overnight with 1:1000–
1:2000 dilution of primary anti-NT antibody. In control measurements, tissues were incubated
with the primary antibody in the presence of 10 mM NT. Specific labeling was detected with
a biotin-conjugated goat anti-rabbit IgG and avidin-biotin peroxidase complex both supplied
in the Vector Elite kit (Vector Laboratories, Burlingame, CA). Color was developed using Ni-
diaminobenzidine substrate kit (Vector Laboratories). The sections were counterstained with
hematoxylin-eosin, dehydrated, and mounted in Permount. The photomicrographs shown are
representative sections (n = 4–12) for each experimental group. The intensity of staining was
graded from 1 to 4 (1, no staining; 2, faint; 3, moderate; 4, intense). Average
immunohistochemistry scores were calculated for each group.

Poly(ADP-ribose) immunoreactivity: Paraffin sections (5 μm) were loaded onto polylysine-
coated slides (Fisher, Atlanta, GA), deparaffinized, and rehydrated. Optimal staining was
achieved with an antigen retrieval method which was performed in 10 mmol/L citric acid for
15 min. Endogenous peroxidase was quenched with 0.3% H2O2 in 60% methanol for 15 min.
Sections were blocked with 2% normal goat serum at room temperature for 1–2 h, and were
incubated overnight with 1:250–1:500 dilution of primary anti-poly(ADP)-ribose antibody
(generous gift from Tulip Biolabs Inc.). Specific labeling was detected with a biotin-conjugated
goat anti-chicken IgG and avidin–biotin peroxidase complex (Vector Laboratories, Inc.). The
enzymatic reaction product was enhanced with nickel cobalt to give a black precipitate, and
the sections were counterstained with hematoxylin-eosin, dehydrated, and mounted in
Permount. Positive controls included formalin-fixed, paraffin-embedded tissues from LPS-
treated rats. Negative controls included elimination of the primary antibody. The
photomicrographs shown are representative sections (n = 4–10) for each experimental group.
The intensity of staining was graded from 1 to 4 (1, no staining; 2, faint; 3, moderate; 4, intense).
Average immunohistochemistry scores were calculated for each group.

Western blot analysis
Western blot analyses of nitrosylated and poly(ADP-ribosyl) ated proteins in the
renal cortex—To assess nitrosylated and poly(ADP-ribosyl)ated proteins by Western blot
analysis, 50 mg of renal cortex samples was transferred to an extraction buffer (1:10 wt/vol)
containing 50 mM Tris-HCl, pH 7.2, 150 mM NaCl, 0.1% sodium dodecyl sulfate, 1% NP-40,
5 mM EDTA, 1 mM EGTA, 1% sodium deoxycholate, and the protease/ phosphatase inhibitors
leupeptin (10 μg/ml), aprotinin (20 μg/ml), benzamidine (10 mM), phenylmethylsulfonyl
fluoride (1 mM), and sodium orthovanadate (1 mM), and homogenized on ice. The homogenate
was sonicated (3 × 5 s) and centrifuged at 14,000g for 20 min. All the afore-noted steps were
performed at 4°C. The lysates (20 μg protein) were mixed with equal volume of 2× sample-
loading buffer containing 62.5 mM Tris-HCl, pH 6.8, 2% sodium dodecyl sulfate, 5% β-
mercaptoethanol, 10% glycerol, and 0.025% bromophenol blue and fractionated in 5–17%
SDS-PAGE in an electrophoresis cell (Mini-Protean III; Bio-Rad Laboratories, Richmond,
CA.). Electrophoresis was conducted at 15 mA constant current for stacking, and at 25 mA for
protein separation. Gel contents were electrotransferred (250 mA, 2 h) to nitrocellulose
membranes using Mini Trans-Blot cell (Bio-Rad Laboratories) and Western transfer buffer (25
mM Tris-HCl, pH 8.3, 192 mM glycine, and 20% (v/v) methanol) [48]. Free binding sites were
blocked in 2% (w/v) BSA in 20 mM Tris-HCl buffer, pH 7.5, containing 150 mM NaCl and
0.05% Tween 20, for 1 h, after which nitrotyrosine or poly(ADP-ribose) antibodies were
applied for 2 h, for detection of nitrosylated and poly(ADP-ribosyl)ated proteins, respectively.
The horseradish peroxidase-conjugated secondary antibody was then applied for 1 h. After
extensive washing, protein bands detected by the antibodies were visualized with the BM
Chemiluminescence Blotting Substrate (POD) (Roche, Indianapolis, IN). The total content of
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all nitrosylated and poly(ADP-ribosyl)ated proteins was quantified by densitometry (Quantity
One 4.5.0 software, Bio-Rad Laboratories). Membranes were then stripped in the 62.5 mM
Tris-HCl, pH 6.7, buffer containing 2% SDS and 100 mM β-mercaptoethanol, and reprobed
with β-actin antibody to confirm equal protein loading.

Western blot analyses of AR, PARP-1, and nitrosylated and poly(ADP-ribosyl)
ated proteins in human mesangial cells—To assess AR and PARP-1 proteins by
Western blot analysis, human mesangial cells were cultured for 24 h in commercial media
containing (1) 5.55 mM D-glucose; (2) 30 mM D-glucose; (3) 30 mM D-glucose plus 10 μM
fidarestat. Cells were lysed in the 2× sample buffer containing 62.5 mM Tris-HCl, pH 6.8, 2%
sodium dodecyl sulfate, 5% β-mercaptoethanol, 10% glycerol, and 0.025 % bromophenol blue.
Western blot analyses of cell lysates (100 μg protein) were performed as described above. AR
expression was verified with four different antibodies and two AR proteins (see Materials and
methods).

To assess nitrosylated and poly(ADP-ribosyl)ated proteins, human mesangial cells were
cultured for 24 h under the conditions described above. An additional group of cells cultured
in commercial media containing 30 mM L-glucose has been added. Cells lysates containing
100 μg protein were used for Western blot analyses.

Statistical analysis
The results are expressed as means ± SE. Data were subjected to equality of variance F test,
and then to log transformation, if necessary, before one-way analysis of variance. Where overall
significance (p < 0.05) was attained, individual between-group comparisons were made using
the Student-Newman-Keuls multiple range test. Significance was defined at p < 0.05. When
between-group variance differences could not be normalized by log transformation (datasets
for body weights and plasma glucose), the data were analyzed by the nonparametric Kruskal-
Wallis one-way analysis of variance, followed by the Bonferroni/Dunn test for multiple
comparisons.

Results
The final body weights were comparably lower in untreated and fidarestat-treated diabetic rats
than in the control group (Table 1). The final blood glucose concentrations were similarly
elevated in untreated and fidarestat-treated diabetic rats compared with the control rats.

Kidney weights were increased in diabetic rats compared with controls (2.41 ± 0.059 vs 1.79
± 0.061 g, p < 0.01), and this increase was slightly, but significantly, reduced by fidarestat (2.2
± 0.088 g, p < 0.01 vs controls, and p < 0.05 vs untreated diabetic group).

Renal cortex glucose, sorbitol, and fructose concentrations were increased in diabetic rats
compared with controls (Table 2). Fidarestat treatment did not affect glucose concentrations,
but essentially normalized sorbitol and fructose concentrations in diabetic rats.

NT immunoreactivities were increased in glomeruli and tubuli of the renal cortex of diabetic
rats compared with controls, and this increase in both compartments was markedly reduced by
fidarestat treatment (Fig. 1, Table 3). In a similar fashion, diabetes-associated increase in poly
(ADP-ribose) immunoreactivity in glomeruli and tubuli of the renal cortex was less manifest
in the diabetic rats treated with fidarestat compared with untreated diabetic rats (Fig. 2, Table
3).

Renal cortex nitrosylated protein abundance assessed by Western blot analysis was increased
~2-fold in the untreated diabetic group compared with control group (Figs. 3A and B), and this

Drel et al. Page 5

Free Radic Biol Med. Author manuscript; available in PMC 2008 February 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increase was reduced by fidarestat to the levels that were not significantly different from those
in either control (p = 0.16) or diabetic rats (p = 0.11). In a similar fashion, renal cortex poly
(ADP-ribosyl)ated protein abundance was increased 1.8-fold in the untreated diabetic group
compared with control group (p < 0.01, Figs. 4A and B). This increase was essentially prevented
in diabetic rats treated with fidarestat (p < 0.05 vs untreated diabetic group).

Both AR and PARP-1 were abundantly expressed in human mesangial cells, and none of these
variables were affected by either hyperglycemia or fidarestat treatment (Fig. 5). Nitrosylated
protein abundance was increased in human mesangial cells cultured in 30 mM D-glucose
compared with those cultured in 5.55 mM glucose, but not in cells cultured in 30 mM L-glucose,
or 30 mM D-glucose plus 10 μM fidarestat (Figs. 6A and B). Poly(ADP-ribosyl)ated protein
content was increased in human mesangial cells cultured in 30 mM glucose compared with
those cultured in 5.55 mM glucose (Figs. 7A and B). No accumulation of poly(ADP-ribosyl)
ated proteins was found in human mesangial cells cultured in 30 mM L-glucose, or 30 mM D-
glucose plus 10 μM fidarestat.

Discussion
Our results provide evidence of clearly manifest nitrosative stress in early experimental DN.
Increased immunoreactivity of NT (a marker of peroxynitrite-induced injury) in both
glomerular and tubular compartments of the renal cortex of STZ-diabetic rats in the present
study is consistent with elevated renal nitrosylated protein content (assessed by Western blot
analysis) in another report [49]. Furthermore, increased NT immunoreactivity has also been
documented in vasculature of diabetic rats [50] as well as kidneys, myocardium, and
vasculature of human subjects with diabetes mellitus [51–53]. Studies of the contribution of
two components needed for peroxynitrite formation, i.e., superoxide anion radicals and nitric
oxide, to diabetes-associated nitrosative stress generated contradictory data [49,54]. One group
found that the early (2-week) stage of STZ-induced diabetes provokes accelerated rat renal
cortical superoxide anion production in a setting of normal nitric oxide synthase isoform protein
level and distribution [49]. Others reported increased immunoreactivities of the enzymes
generating both superoxide (p47phox component of NAD(P)H oxidase) and nitric oxide
(endothelial, but not neuronal nitric oxide synthase) in the renal cortex of rats with similar
duration of STZ-diabetes [54].

The present study also revealed clearly manifest poly(ADP-ribose) accumulation in both
glomerular and tubular compartments of the renal cortex of STZ-diabetic rats with a 6-week
duration of diabetes. Furthermore, PARP appeared abundantly expressed in human mesangial
cells that displayed increased levels of poly(ADP-ribosyl)ated proteins at the early (24 h) stage
of exposure to high glucose. These findings suggest an important role of PARP activation in
diabetic renal disease, e.g., in human subjects.

Oxidative-nitrosative stress and PARP activation in tissue sites for diabetic complications are
caused primarily by hyper-glycemia [36,55], although other factors, e.g., elevated fatty acid
[56] and angiotensin II [18,20] concentrations may also contribute to free radical and
peroxynitrite generation and downregulation of antioxidative defense. Oxidative-nitrosative
stress and resultant PARP activation are interrelated with several other hyperglycemia-initiated
mechanisms. In particular, advanced glycation end-products (AGE) generate free radicals
during interaction with their receptors [57]. PKC activation promotes phosphorylation/
activation of NAD(P)H oxidase [58], a superoxide-generating enzyme, which is particularly
important in the vasculature, thus leading to oxidative-nitrosative stress and consequent PARP
activation [59]. In turn, oxidative-nitrosative stress and PARP activation divert the glycolytic
flux toward the formation of diacylglycerol, an activator of PKC, and methylglyoxal, an AGE
precursor [36]. The afore-noted interactions among glycation, oxidative-nitrosative stress, and
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protein kinase C activation are supported by several lines of evidence, i.e., (1) induction of free
radical generation by AGE [57]; (2) inhibition of systemic oxidative stress by the PKC β
isoform inhibitor LY333531 [59]; and (3) inhibition of endothelial methylglyoxal formation
and PKC activation by inhibitors of mitochondrial superoxide formation as well as the PARP
inhibitor PJ34 [36].

The relation between oxidative-nitrosative stress/PARP activation and the most important
“upstream” mechanism in the pathogenesis of diabetic complications, i.e., increased AR
activity, is less clear. On the one hand, neither antioxidants including the most potent
superoxide scavenger dihydrolipoic acid (formed intracellularly from DL-α-lipoic acid) nor
PARP inhibitors decrease sorbitol pathway intermediate accumulation in the diabetic retina
[32,43] and peripheral nerve [41,60]. On the other hand, structurally diverse ARIs counteract
oxidative-nitrosative stress in diabetic lens [61,62], nerve [55,63], retina [45], aorta [55,64],
and vasa nervorum [55] as well as high-glucose-exposed endothelial cells [55,65].
Furthermore, our group has recently demonstrated that AR inhibition counteracts PARP
activation in the diabetic nerve and retina as well as high-glucose-exposed Schwann cells
[55]. All these findings suggest that sorbitol pathway hyperactivity precedes and provides a
major contribution to oxidative-nitrosative stress and resultant PARP activation in, at least,
several tissue sites for diabetic complications.

The only study addressing a relation between diabetes-associated renal sorbitol pathway
hyperactivity and oxidative injury suggests that AR plays a protective role in neutralization of
the lipid peroxidation products 4-hydroxyalkenals, and, therefore, AR inhibition in the diabetic
kidney exacerbates, rather than counteracts, oxidative injury [66]. However, this contradicts
numerous reports of (1) alleviation, rather than aggravation, of oxidative-nitrosative stress by
AR inhibitors in other tissues of diabetic animals as discussed above, and (2) beneficial effects
of both AR inhibitors and antioxidants on experimental DN [4,5,14,15]. Furthermore, several
groups demonstrated that prevalence of DN depends on (1) erythrocyte AR content, and/or (2)
frequency of the z-2 allele of the AR gene, in human subjects with diabetes mellitus [4,67,
68]. Homozygosity for the z-2 allele in Type 1 (insulin-dependent) diabetes is associated with
an increased expression of the AR gene and DN [67]. In Type 2 (non-insulin-dependent
diabetes), the z-2 allele is also associated with an increased AR activity and nephro-retinopathy
[68]. Furthermore, homozygosity for the z-2 allele was recently reported to be associated with
classic diabetic glomerulopathy manifested by overexpression of TGF-β1, mesangial cell
transdifferentiation by expression of α-smooth muscle actin, and aberrant deposition of
collagen type IY, fibronectin, and laminin [69]. These findings agree with (1) clearly manifest
AR protein expression in human mesangial cells in the present study, and (2) reduction of high-
glucose-induced TGF-β overexpression by two structurally diverse ARIs, epalrestat and
sorbinil, in cultured human mesangial and methothelial cells in two other reports [70,71]. Note
that AR has also been localized in several other cell types playing an important role in DN,
i.e., glomerular podocytes and endothelial cells and tubular cells [72].

Our findings provide the first evidence of the key role of increased AR activity in diabetes-
associated nitrosative stress and PARP activation in both glomerular and tubular compartments
of the renal cortex. Furthermore, AR is involved in high-glucose-induced accumulation of poly
(ADP-ribosyl)ated proteins in human mesangial cells. The latter occurs due to increased PARP
catalytic activity, but not protein expression which remained unchanged by either
hyperglycemia or fidarestat treatment. The latter is consistent with the current knowledge on
PARP as an abundant constitutively expressed nuclear enzyme with very minor, if any,
transcriptional regulation [37].

Increased AR activity can lead to diabetes-associated oxidative-nitrosative stress via several
mechanisms (Fig. 8). Studies in other tissues indicate that increased AR activity and resulting
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osmotic stress and/or NADPH deficiency are responsible for downregulation of antioxidative
defense provided by both nonenzymatic antioxidants, i.e., GSH, ascorbate [55,61–63], and
taurine [73], and antioxidative defense enzymes (superoxide dismutase, catalase, glutathione
peroxidase, glutathione reductase, glutathione transferase) [45]. In addition, increased AR
activity contributes to oxidative-nitrosative stress indirectly, via other pathways, such as
nonenzymatic glycation and activation of PKC. In particular, AR is involved in generation of
fructose, a 10 times more potent glycation agent than glucose, as well as other AGE precursors,
i.e., methylglyoxal and 3-deoxyglucosone [74,75]. ARI treatment suppresses formation of the
AGE pentosidine and carboxymethyllysine [76,77] known to generate oxidative stress via
interaction with their receptors [57]. Taking into consideration that diabetic kidney
accumulates AGE [13], it is quite plausible that increased AR activity contributes to renal
oxidative stress by promoting nonenzymatic glycation. Several groups have reported that
increased AR activity leads to PKC activation in glomerular mesangial cells [78] and
vasculature [79,80]. The latter probably occurs due to AR-dependent decrease in free cytosolic
NAD+/NADH ratio and associated diversion of the glycolytic flux toward the increased
formation of α-glycerophosphate and diacylglycerol, a PKC activator. As discussed above,
PKC is required for phosphorylation (activation) of NAD(P)H oxidase, the superoxide
generating enzyme [58]. Therefore, increased AR activity can also contribute to superoxide
formation via activation of PKC. Furthermore, as we have recently demonstrated, AR-mediated
PARP activation exacerbates oxidative-nitrosative stress by contributing to superoxide
production, and lipid peroxidation, probably via NF- κB-mediated upregulation of inducible
nitric oxide synthase, endothelin-1, and inflammatory cytokines [59]. However, the
mechanisms linking increased AR and oxidative-nitrosative stress in the kidney require
detailed specific studies.

In conclusion, our experiments generated evidence of the important role of increased AR
activity in diabetes-associated oxidative-nitrosative stress and PARP activation in both
glomerular and tubular compartments of the renal cortex of rats with early STZ-diabetes. We
also revealed the presence of both AR and PARP in human mesangial cells, a key cell target
in human diabetic glomerulopathy and DN in general. Furthermore, early accumulation of poly
(ADP-ribosyl)ated proteins in response to high glucose in these cells was blunted by an ARI
treatment, thus suggesting that increased AR activity can be implicated in the pathogenesis of
human DN via PARP activation. The results reveal new beneficial properties of fidarestat, thus
justifying a detailed study of this specific, potent, and low-toxic ARI in experimental, and,
potentially, human DN.
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Fig. 1.
Representative microphotographs of immunohistochemical staining of nitrotyrosine in
glomerular and tubular compartments of the renal cortex in control rats, diabetic rats, and
diabetic rats treated with fidarestat (n = 4–12 per group). Magnification ×400.
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Fig. 2.
Representative microphotographs of immunohistochemical staining of poly(ADP-ribose) in
glomerular and tubular compartments of the renal cortex in control rats, diabetic rats, and
diabetic rats treated with fidarestat (n = 4–5 per group). Magnification ×400.
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Fig. 3.
(A) Representative Western blot analysis of renal cortex nitrosylated proteins. Equal protein
loading was confirmed with β-actin antibody. Lane 1, control group; lane 2, diabetic group;
lane 3, diabetic group treated with fidarestat. (B) Total nitrosylated protein content in renal
cortex of control rats (1, n = 6), diabetic rats (2, n = 6), and diabetic rats treated with fidarestat
(3, n = 4). The data are expressed as means ± SE. Total nitrosylated protein content in control
rats is taken as 100%. *p < 0.05 vs control group.
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Fig. 4.
(A) Representative Western blot analysis of renal cortex poly(ADP-ribosyl)ated proteins.
Equal protein loading was confirmed with β-actin antibody. Lane 1, control group; lane 2,
diabetic group, lane 3, diabetic group treated with fidarestat. (B) Total poly(ADP-ribosyl)ated
protein content in renal cortex of control rats (1, n = 5), diabetic rats (2, n = 5), and diabetic
rats treated with fidarestat (3, n = 5). The data are expressed as means ± SE. Total nitrosylated
protein content in control rats is taken as 100%. ** p < 0.01 vs control group; #p < 0.05 vs
diabetic group.
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Fig. 5.
(A) Representative Western blot analyses of human mesangial cell AR protein expression.
Equal protein loading was confirmed with β-actin antibody. Lane 1, 5.55 mM glucose; lane 2,
30 mM glucose; lane 3, 30 mM glucose + 10 μM fidarestat, lane 4, human AR. (B) AR protein
content in human mesangial cells cultured in 5.55 mM glucose, 30 mM glucose, and 30 mM
glucose + 10 μM fidarestat (mean ± SE, n = 5 per condition). AR protein content in cells
cultured in 5.55 mM glucose is taken as 100%. (C) Representative Western blot analysis of
human mesangial cell PARP-1 protein expression. Equal protein loading was confirmed with
β-actin antibody. Lane 1, 5.55 mM glucose; lane 2, 30 mM glucose; lane 3, 30 mM glucose
+10 μM fidarestat; lane 4, PARP-1 positive control. (D) Total PARP-1 protein content in human
mesangial cells cultured in 5.55 mM glucose (1), 30 mM glucose (2), and 30 mM glucose +
10 μM fidarestat (3, mean ± SE, n = 5 per condition). Total poly(ADP-ribosyl)ated protein
content in cells cultured in 5.55 mM glucose is taken as 100%.
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Fig. 6.
(A) Representative Western blot analysis of human mesangial cell nitrosylated proteins. Equal
protein loading was confirmed with β-actin antibody. Lane 1, 5.55 mM glucose; lane 2, 30 mM
D-glucose; lane 3, 30 mM L-glucose; lane 4, 30 mM D-glucose + 10 μM fidarestat. (B) Total
nitrosylated protein content in human mesangial cells cultured in 5.55 mM glucose (1), 30 mM
D-glucose (2), 30 mM L-glucose (3), and 30 mM glucose + 10 μM fidarestat (4, mean ± SE,
n = 4 per condition). Total nitrosylated protein content in cells cultured in 5.55 mM glucose is
taken as 100%. *p < 0.05 vs cells cultured in 5.55 mM glucose; #p < 0.05 vs cells cultured in
30 mM D-glucose.
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Fig. 7.
(A) Representative Western blot analysis of human mesangial cell poly(ADP-ribosyl)ated
proteins. Equal protein loading was confirmed with β-actin antibody. Lane 1, 5.55 mM glucose;
lane 2, 30 mM glucose; lane 3, 30 mM L-glucose; and lane 4, 30 mM glucose + 10 μM fidarestat.
(B) Total poly(ADP-ribosyl)ated protein content in human mesangial cells cultured in 5.55
mM glucose (1), 30 mM glucose (2), 30 mM L-glucose (3), and 30 mM glucose + 10 μM
fidarestat (4, mean ± SE, n = 4 per condition). Total poly(ADP-ribosyl)ated protein content in
cells cultured in 5.55 mM glucose is taken as 100%. **p < 0.01 vs cells cultured in 5.55 mM
glucose; ##p < 0.01 vs cells cultured in 30 mM glucose.
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Fig. 8.
Links among increased AR activity, oxidative-nitrosative stress, poly(ADP-ribose) polymerase
activation, and its downstream consequences in the pathogenesis of diabetic nephropathy.
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Table 1
Body weights and blood glucose concentrations in control and diabetic rats with and without fidarestat treatment

Body weight (g) Blood glucose
(mmol/L)

Initiala Final

Control (n = 10) 285 ± 7 483 ± 10 5.08 ± 0.21
Diabetic (n = 15) 288 ± 7 350 ± 7 ** 18.8 ± 0.56 **
Diabetic + Fidarestat (n = 10) 293 ± 6 342 ± 12 ** 19.4 ± 0.62 **

Data are means ± SE.

a
Before induction of STZ diabetes.

**
Significantly different from controls (p < 0.01).
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Table 2
Sorbitol pathway intermediate concentrations a in renal cortex of control rats and diabetic rats with and without
fidarestat treatment

Glucose Sorbitol Fructose

C (n = 8) 5.12 ± 0.41 0.24 ± 0.03 0.41 ± 0.06
D (n = 10) 32.0 ± 3.2 ** 0.77 ± 0.03 ** 1.21 ± 0.1 **
D + F (n = 10) 34.5 ± 4.2 ** 0.32 ± 0.03 ## 0.56 ± 0.1 ##

Mean ± SE. C, control; D, diabetic; F, fidarestat.

a
 Expressed in μmol/g wet weight.

**
Significantly different from controls (p < 0.01).

##
Significantly different from untreated diabetic rats (p < 0.01).
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Table 3
Immunohistochemistry scores for nitrotyrosine and poly(ADP-ribose) immunoreactivities in renal cortex of
control rats and diabetic rats with and without fidarestat treatment

Nitrotyrosine Poly(ADP-ribose)

Glomeruli
C 1.0 ± 0.0 (n = 6) 2.25 ± 0.63 (n = 4)
D 3.3 ± 0.17 (n = 9) 3.75 ± 0.22 (n = 5)
D + F 1.5 ± 0.19 (n = 12) 2.25 ± 0.25 (n = 4)
Tubuli
C 1.8 ± 0.3 (n = 4) 2.0 ± 0.41 (n = 4)
D 3.3 ± 0.22 (n = 9) 2.8 ± 0.58 (n = 5)
D + F 2.4 ± 0.16 (n = 10) 1.8 ± 0.20 (n = 5)

Mean ± SE. C, control; D, diabetic; F, fidarestat. The number of stained slides per group is indicated in parentheses.
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