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Abstract
Pulmonary fibrosis represents the sequelae of a variety of acute and chronic lung injuries of known
and unknown etiologies. Tissue specimens obtained from patients with pulmonary fibrosis,
regardless of the etiology, consistently show evidence of an ongoing wound-repair response.
Epithelial–mesenchymal interactions have critical roles in normal lung development, tissue repair
processes, and fibrosis. Current hypotheses propose that dysregulated function of, and impaired
communication between, epithelial and mesenchymal cells prevent resolution of the wound-repair
response and contribute to the pathobiology of pulmonary fibrosis. This hypothesis is supported by
abundant evidence from patients, animal models, and cell-culture studies demonstrating
abnormalities in epithelial cell and mesenchymal cell activities including proliferation,
differentiation, and survival. This article reviews the aberrant epithelial and mesenchymal cellular
phenotypes found in the context of pulmonary fibrosis and discusses the mechanisms that perpetuate
these cellular phenotypes.
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EPITHELIAL–MESENCHYMAL INTERACTIONS IN LUNG DEVELOPMENT,
WOUND REPAIR, AND FIBROSIS

Epithelial and mesenchymal cell interactions have a critical role in lung development, and the
precise temporal and spatial regulation of epithelial and mesenchymal cell functions is
necessary for normal alveolarization.1 The importance of these interactions is exemplified by
studies demonstrating that normal alveolarization requires lung epithelial cell secretion of
soluble growth factors such as platelet derived growth factor A (PDGF-A), which provide
survival signals to myofibroblasts during alveolar septation.2 Mice deficient in PDGF-A
develop emphysema associated with excessive loss of myofibroblasts. During later stages of
lung development, however, apoptosis of myofibroblasts is essential for alveolar wall thinning
and remodeling to achieve the delicate alveolar structure seen in normal lung.3,4 Thus aberrant
“cross-talk” between epithelial and mesenchymal cells can lead to profound abnormalities in
lung development.

The repair response to injury in adult lung recapitulates several aspects of embryonic lung
development.5,6 As in normal lung development, physiological wound-repair requires
spatially and temporally regulated epithelial and mesenchymal cell responses to reestablish an
intact epithelium. Epithelial cell proliferation, migration, and differentiation must be

Address for correspondence and reprint requests: Jeffrey C. Horowitz, M.D., Division of Pulmonary and Critical Care Medicine,
University of Michigan Medical Center, 6301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109. E-mail:
jchorow@umich.edu.
Idiopathic Pulmonary Fibrosis; Guest Editor, Victor J. Thannickal, M.D.

NIH Public Access
Author Manuscript
Semin Respir Crit Care Med. Author manuscript; available in PMC 2008 February 4.

Published in final edited form as:
Semin Respir Crit Care Med. 2006 December ; 27(6): 600–612.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



coordinated with mesenchymal cell recruitment, proliferation, differentiation with
extracellular matrix (ECM) remodeling, and subsequent apoptosis of myofibroblasts.7–9
Dysregulation of this orchestrated wound-repair response can result in pathological scar
formation due to myofibroblast accumulation and ECM remodeling.10

Pulmonary fibrosis can result from a variety of acute and chronic causes of lung injury.11 At
the cellular level, pulmonary fibrosis—regardless of the etiology—represents an ongoing
repair response to some form of persistent or recurrent injury, or perhaps a dysregulated or
inappropriate repair response to a past stimulus of lung injury.11,12 This article reviews the
aberrant epithelial and mesenchymal cellular phenotypes found in the context of pulmonary
fibrosis, with a focus on idiopathic pulmonary fibrosis (IPF), and discusses the mechanisms
that perpetuate these cellular phenotypes and contribute to disease pathobiology.

EPITHELIAL–MESENCHYMAL INTERACTIONS IN PULMONARY FIBROSIS
Current hypotheses propose that progressive lung fibrosis results from dysregulated function
of, and/or communication between, epithelial and mesenchymal cells leading to a “vicious
cycle” of epithelial cell injury and mesenchymal cell responses.11,13–15 Myofibroblasts, key
effector cells in fibrogenesis, aggregate within fibroblastic foci of usual interstitial pneumonia
(UIP), the histopathologic correlate of IPF.16 These foci are thought to represent the
organization of focal areas of acute lung injury, and the presence/extent of fibroblastic foci
correlates with poor outcomes in IPF.17–19 Overlying the fibroblastic foci are areas of
damaged basement membrane and denuded epithelium.20,21 Additionally, alveolar epithelial
cells (AECs) that are in close association with myofibroblasts have phenotypic changes that
suggest the activation of a stereotypic wound-repair response.22 Supporting this concept,
studies of IPF tissue have reported evidence of AEC proliferation and regenerative hyperplasia,
21,23 bronchiolar and squamous metaplasia,24–26 and apoptosis.27–29

Our understanding of the direct interactions between epithelial and mesenchymal cells in the
context of pulmonary fibrosis is quite limited. An ultrastructural examination of specimens
from patients with pulmonary fibrosis identified epithelial cell extensions through “apertures”
in the underlying basement membrane.20 Further studies suggested that, during lung repair
responses, dynamic interactions between epithelial and mesenchymal cells allow for reciprocal
regulation of proliferation and differentiation.30,31 A recent report demonstrated that the
fibroblast “link” between the alveolar epithelium and endothelium is disrupted in emphysema
specimens, providing further support for the important role of epithelial–mesenchymal
interactions in a broader context of lung disease.32 The mechanism(s) underlying dysregulated
epithelial and mesenchymal cell phenotypes in pulmonary fibrosis remain poorly understood.
Evidence suggests that these complex cellular interactions are mediated by soluble factors
acting through autocrine and paracrine mechanisms. Additionally, the ECM itself likely
contributes both directly and indirectly to the aberrant cellular phenotypes seen in pulmonary
fibrosis (Figure 1).

EPITHELIAL CELL PHENOTYPES IN PULMONARY FIBROSIS
Regeneration of a damaged epithelium following injury is required for the reestablishment of
normal tissue architecture and function. Failure to establish an intact epithelium may induce a
persistent wound-repair response. In the context of pulmonary fibrosis, evidence from human
disease, animal models, and cell-culture studies has identified abnormalities in epithelial cell
survival/apoptosis, proliferation, and migration, which likely contribute to disease
pathobiology.

Horowitz and Thannickal Page 2

Semin Respir Crit Care Med. Author manuscript; available in PMC 2008 February 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Increased Epithelial Cell Apoptosis
Excessive AEC apoptosis is likely to play a key role in the pathobiology of IPF. Studies of IPF
tissue have shown type II AEC apoptosis at the ultrastructural level and demonstrated that AEC
apoptosis is increased in cells adjacent to fibroblastic foci.28,33 Moreover, Kuwano et al
reported increased expression of the proapoptotic p53 and p21 tumor suppressor proteins
associated with alveolar and bronchial epithelial cell apoptosis in a majority of IPF specimens
but found no such apoptosis in emphysema specimens or normal lung tissue.27 In another
study, p53 nuclear accumulation was identified in epithelial cells from IPF, but not other
idiopathic interstitial pneumonia specimens.26 A recent study reported similar findings of
excessive AEC apoptosis associated with increased expression of proapoptotic proteins
(caspase-3 and Bax) and decreased expression of the anti-apoptotic Bcl-2 protein in IPF
specimens.34

Further supporting the role of AEC apoptosis in the pathogenesis of pulmonary fibrosis are
animal models showing that inhibition of AEC apoptosis attenuates pulmonary fibrosis,
whereas the induction of AEC apoptosis promotes fibrotic responses. Studies have reported
that inhibiting caspases, which are key components of intracellular apoptotic signaling
cascades, lead to decreased fibrotic responses to intratracheal bleomycin.35,36 Moreover,
several studies suggest that induction of AEC apoptosis may be sufficient for the development
of pulmonary fibrosis. In one study, pulmonary fibrosis followed epithelial cell apoptosis
induced by transient overexpression of the profibrotic mediator, transforming growth factor-
β1 (TGF-β1).37

The Fas-Fas ligand pathway, a proapoptotic signaling cascade that is upregulated in patients
with IPF, has also been investigated in the pathogenesis of pulmonary fibrosis.29,38 Inhaled
Fas-activating antibodies induce pulmonary fibrosis and AEC apoptosis in mice.39,40
Additionally, Fas-mediated epithelial cell apoptosis is potentiated by TGF-β1.40 Studies in the
bleomycin model of pulmonary fibrosis, however, have reported conflicting results. One study
reported decreased fibrosis in transgenic mice deficient in Fas or Fas-ligand, whereas another
study, using similar transgenic mice on a different background strain, found that deficiencies
in the Fas-Fas ligand system did not reduce bleomycin-induced pulmonary fibrosis.41,42 A
third study recently reported that bleomycin-induced pulmonary fibrosis was dependent on
reactive oxygen species (ROS)-mediated epithelial cell apoptosis that is independent of the
Fas pathway.43 Collectively, these animal models support a role for AEC apoptosis in the
pathogenesis of pulmonary fibrosis but fail to define a specific mechanism for AEC apoptosis.
Strain-dependent differences in the effects of bleomycin on lung epithelial cells and
susceptibility to pulmonary fibrosis are well described in murine models.44,45 Thus it is likely
that variable and overlapping mechanisms of AEC apoptosis may be induced in different
contexts, depending on the stimulus for lung injury and genetic factors of the host.

Impaired Epithelial Cell Regeneration and Migration
Impaired epithelial cell regeneration and migration following injury may contribute to the
development of pulmonary fibrosis.14 Several studies have reported abnormalities in epithelial
cell proliferation in patients with IPF, although mechanisms remain unclear.18,22,26,46 In
animal models, epithelial cell mitogens and motogens, such as hepatocyte growth factor (HGF)
and keratinocyte growth factor (KGF) have been shown to attenuate pulmonary fibrosis.47,
48 Similarly, granulocyte-monocyte colony stimulating factor (GM-CSF) induces epithelial
cell migration, and mice deficient in GM-CSF develop increased fibrosis following lung injury.
49–51 Paracrine interactions between epithelial cells and fibroblasts may also contribute to
impaired epithelial regeneration because TGF-β1 can block the mitogenic effects of KGF on
AECs.52
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The plasminogen activation system has been shown to have an important role in the
pathogenesis of bleomycin-induced murine pulmonary fibrosis. Activation of plasminogen to
plasmin is mediated by urokinase or tissue plasminogen activators (uPA or tPA), both of which
are inhibited by PAI-1 (plasminogen activator-inhibitor 1). Plasmin, in turn, is a serine protease
that participates in fibrinolysis, extracellular matrix regulation, angiogenesis, cell signaling,
and cell migration.53 Activation of the plasminogen system protects mice from bleomycin-
induced pulmonary fibrosis, whereas inhibition of this system promotes fibrosis.54–56
Additional studies have established that these antifibrotic effects are not a function of
fibrinolysis, suggesting that alternative mechanisms mediate antifibrotic effects of
plasminogen activation.57,58

The plasminogen-activation system has been shown to modulate epithelial cell migration and
wound closure.59–62 For example, plasminogen activator inhibitor (PAI)-1 deficient mice
exhibit accelerated wound healing60 and the presence of PAI-1 inhibits epithelial cell
migration.61 Consistent with these findings, uPA and plasmin promote epithelial cell
migration.59 Thus it is plausible that the antifibrotic effects of the plasminogen activation
system are related, at least in part, to facilitation of epithelial cell migration.

MESENCHYMAL CELL PHENOTYPES
Fibroblasts are the most versatile of the mesenchymal cells and participate in the stereotypic
repair and regenerative processes in virtually every human organ and tissue.7,8,10
Myofibroblasts are differentiated, contractile fibroblasts with characteristics intermediate
between fibroblasts and smooth muscle cells.10,63–65 In response to injury, fibroblasts
infiltrate the wound, differentiate into myofibroblasts, and secrete ECM proteins that form a
provisional matrix, which serves as a “scaffold” for tissue repair.64 Myofibroblast contraction
of the provisional matrix facilitates repair by bringing healthy epithelial cells at the wound
margin into close approximation. Collagen secretion stabilizes the contracted matrix
surrounding myofibroblasts and provides tensile strength to granulation tissue.10 Recent
studies have shown that the mesenchymal cells in the lung following injury may be derived
from different sources, including the interstitial fibroblasts,63 circulating fibrocytes,66–69
bone marrow–derived mesenchymal stem cells,70 and epithelial cells.71–73 It is not known
if specific mesenchymal cell phenotypes are determined by the site of origin, the tissue
microenvironment, or both. Interestingly, mesenchymal cells derived from different sites may
contribute to different aspects of wound repair.70 Moreover, mesenchymal cells isolated from
different tissue microenvironments manifest phenotypic heterogeneity and “positional
memory,” which may be maintained for extended periods in ex vivo cell culture.74,75

Mesenchymal Cell Survival and Apoptosis
Myofibroblast apoptosis is a normal event during the resolution of wound-repair responses.
76 Failure of apoptosis leads to myofibroblast accumulation, persistent ECM contraction,
secretion, and remodeling that results in pathological scar formation.10,77 Consistently,
several studies have reported that both normal and fibrotic lung fibroblasts are resistant to
apoptotic stimuli through several mechanisms.78–84 Unlike epithelial cells, Fas activation is
not sufficient to induce fibroblast apoptosis, although susceptibility to Fas-mediated apoptosis
is increased in the presence of inflammatory cytokines.78,79,81,82,85,86 Additionally, the
profibrotic mediator, TGF-β1, confers fibroblast resistance apoptosis induced by serum-
deprivation and interleukin-1β.87,88 Contextual signals transmitted from the ECM may be
important in the regulation of myofibroblast survival/apoptosis. A recent study, for example,
showed that IPF-derived fibroblasts, compared with normal lung fibroblasts, had increased
resistance to apoptosis imparted by expression the collagen binding receptor tyrosine kinase,
discoidin domain receptor 1 (DDR1).84 In contractile collagen gels, however, myofibroblasts
undergo apoptosis associated with biomechanical unloading.89,90 This stimulus for apoptosis
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is overcome by activation of antiapoptotic signaling pathways involving focal adhesion kinase
(FAK) and protein kinase B (PKB/Akt), both of which are activated by TGF-β1 in fibroblasts.
83,87,91,92 Paradoxically, a recent study reported that TGF-β1 may increase fibroblast
apoptosis in a contractile collagen gel model.93 Thus apoptotic susceptibility of myofibroblasts
may be dependent on integrated soluble and matrix-associated signals within the cellular
microenvironment.

Few studies have assessed the role of myofibroblast survival in the pathogenesis of pulmonary
fibrosis in vivo. Pharmacological inhibition of prosurvival signaling proteins, focal adhesion
kinase (FAK), and protein kinase B (PKB/Akt), activated in lung myofibroblasts, attenuates
the fibrogenic response to bleomycin-induced lung injury.94 Inhibition of p38 mitogen
activated protein kinase (MAPK), which mediates TGF-β1-induced Akt activation and
proliferative responses in myofibroblasts, similarly reduces bleomycin-induced pulmonary
fibrosis.87,95,96 Studies in humans support deficient mesenchymal cell apoptosis in fibrotic
disease states. One study showed decreased apoptosis of myofibroblasts in UIP/IPF tissue in
comparison with cryptogenic organizing pneumonia, an idiopathic interstitial pneumonia (IIP)
that is more responsive to therapy and has better outcomes than UIP/IPF.97 Furthermore,
alveolar mesenchymal cells isolated from patients with nonresolving, or “fibroproliferative”
acute respiratory distress syndrome (ARDS) are more resistant to apoptosis when compared
with cells derived from patients with “resolving” ARDS.83 Together, these studies suggest
that mesenchymal cell resistance to apoptosis may be associated with persistent and progressive
fibrotic diseases that respond poorly to current interventions, and that promoting myofibroblast
apoptosis may be an effective strategy to halt the progressive nature of these forms of fibrotic
lung disease.

Myofibroblast Proliferation
The accumulation of fibroblasts and myofibroblasts may be due to decreased apoptosis,
increased proliferation, or both. Investigations of fibroblast proliferation in IPF have produced
conflicting results. An early study showed increased proliferation in fibroblasts from
pulmonary fibrosis compared with normal controls.98 Among the fibrosis-derived clones,
however, there was significant heterogeneity in proliferative rates, suggesting that a
subpopulation of highly proliferative cells may account for the fibroblast accumulation.98 In
another study, fibroblasts from specimens with “early fibrosis” had increased rates of
proliferation, whereas fibroblasts from specimens with “dense” fibrosis had decreased
proliferation compared with normal fibroblasts.99 Two other studies failed to find increased
proliferation in IPF fibroblasts.100,101 Fibroblast and myofibroblast proliferation is likely
influenced by soluble fibroblast mitogens within the alveolar microenvironment.95,102 IPF
fibroblasts may possess enhanced, and sometimes divergent, mitogenic responses to certain
soluble mediators103 while being resistant to other antiproliferative signals.100 Thus the
variability in reported proliferative phenotypes of IPF fibroblasts/myofibroblasts may be
explained, in part, by their derivation from heterogeneous fibrotic lesions of varying “maturity”
and the presence of specific soluble factors within the cellular microenvironment.

SOLUBLE FACTORS MEDIATE EPITHELIAL AND MESENCHYMAL CELL
PHENOTYPES
Transforming Growth Factor-β1

TGF-β1 is a dimeric polypeptide that is implicated in the pathogenesis of fibrotic disease in
multiple organs and tissues, including IPF.104 Moreover, polymorphisms in the gene encoding
TGF-β1 are associated with accelerated progression of IPF.105 Bronchoalveolar lavage (BAL)
fluid from IPF patients contain increased concentrations of TGF-β1 compared with normal
controls or patients with hypersensitivity pneumonitis (HP).40,106 Furthermore, BAL fluid
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from IPF patients, but not normal controls or HP patients, induces epithelial cell apoptosis, an
effect that is blocked by the presence of TGF-β1 blocking antibodies.40 In animal models,
lung-specific overexpression of TGF-β1 induces pulmonary fibrosis, whereas blockade of
TGF-β1 or its downstream signaling pathways attenuates bleomycin-induced pulmonary
fibrosis.107–109 The cellular sources of TGF-β1 in the context of IPF have not been
conclusively demonstrated, and there is evidence to suggesting that both myofibroblasts and
damaged/aberrant epithelial cells may contribute.110–117

The biological activities of TGF-β1 vary depending on cell type and context. As a general
paradigm, TGF-β1 mediates divergent effects on epithelial and mesenchymal cell phenotypes.
As a tumor suppressor, TGF-β1 induces cell-cycle arrest and promotes apoptosis in epithelial
cells.40,118 TGF-β1 also antagonizes the mitogenic effects of KGF and enhances Fas-
mediated apoptosis in lung epithelial cells.40,52,119,120 In contrast, TGF-β1 activates
fibroblasts by inducing myofibroblast differentiation,92 survival,87,88 and proliferation95,
101,102; moreover, TGF-β1 induces ECM production and remodeling101,121,122 and
generation of extracellular ROS.123

Hepatocyte Growth Factor
HGF is an epithelial cell mitogen and motogen124,125 that is secreted by myofibroblasts and
opposes certain TGF-β1 actions.126 HGF has antifibrotic activity in animal models of renal,
hepatic, pulmonary, and myocardial fibrosis.48,127–129 IPF fibroblasts secrete decreased
levels of HGF compared with normal lung fibroblasts,130 and TGF-β1 decreases HGF
expression by fibroblasts.131 The mechanisms by which HGF exerts its antifibrotic effects are
likely related to its divergent effects on epithelial and mesenchymal cell phenotypes. HGF
promotes proliferation and migration of epithelial cells, facilitating reepithelialization.61 In
contrast, HGF induces apoptosis of myofibroblasts and mediates antifibrotic effects in vivo.
128

Studies show that the antifibrotic effects of other mediators may be mediated through enhanced
activation or responsiveness of cells to HGF. For example, the protective effects of
plasminogen activation in animal models are mediated, at least in part, by HGF.132
Additionally, prostaglandin E2 (PGE2), an arachidonic acid metabolite that inhibits several
aspects of myofibroblast function, increases HGF secretion by IPF-derived myofibroblasts to
normal levels.130 Interferon gamma (IFN-γ), a cytokine with potential antifibrotic properties,
133 upregulates HGF receptor expression on AECs.134

Keratinocyte Growth Factor
KGF is another fibroblast-secreted epithelial cell mitogen/motogen that attenuates pulmonary
fibrosis in animal models.47,135–137 KGF confers resistance to Fas-mediated apoptosis in
lung epithelial cells.138 Furthermore, KGF induces the secretion of PGE2 by fibroblasts in
coculture with AECs.139 The proliferative effects of KGF on AECs, however, are antagonized
by TGF-β1.52 Moreover, a recent study shows that IPF-fibroblasts secrete decreased amounts
of KGF following stimulation with IL-1β than normal fibroblasts.140 Collectively, these
studies suggest that impaired regulation of KGF, through decreased fibroblast secretion,
decreased epithelial cell responsiveness, or a disruption in homeostatic epithelial–
mesenchymal interactions may contribute to the pathogenesis of pulmonary fibrosis.

Angiotensin II
Angiotensin II (AII) is a fibroblast-derived soluble mediator implicated in the pathogenesis of
pulmonary fibrosis. In animal models, pharmacologic inhibition of angiotensin converting
enzyme (ACE) and inhibition of the type 1 angiotensin receptor (by pharmacological and
genetic approaches) have been shown to abrogate bleomycin-induced pulmonary fibrosis.35,
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141,142 IPF-derived fibroblasts secrete AII, and AII induces epithelial cell apoptosis.33
Moreover, Fas-mediated epithelial cell apoptosis requires both AII and the angiotensin
receptor.143,144 Inhibition of ACE blocks Fas-mediated epithelial cell apoptosis.145 In
fibroblasts, however, AII promotes proliferation.102,146 These autocrine effects may be
indirect, however, because AII can induce the synthesis of TGF-β1 in several cell systems.
147,148

Reactive Oxygen Species
Oxidant-mediated injury to epithelial cells has been implicated in the pathobiology of IPF.
149 Epithelial lining fluid from IPF patients contains increased levels of myeloperoxidase, and
inflammatory cells from IPF patients generate increased levels of ROS.149 Levels of the
antioxidant, glutathione (GSH), are decreased in the epithelial lining fluid of IPF patients, and
this increases following treatment with oral N-acetylcysteine (NAC).150–152 Recent clinical
trials have supported a role for antioxidant therapy as an adjunct to standard therapy in IPF;
the effects of NAC monotherapy have yet to be determined.153,154

Although generally thought of in the context of leukocyte biology and inflammation, reactive
oxygen species are also important mediators of intra- and intercellular signaling.155 In IPF,
extracellular oxidants are generated not only by inflammatory cells but by myofibroblasts as
well.123,149,156 Recent studies demonstrate that paracrine secretion of hydrogen peroxide
(H2O2) by IPF myofibroblasts induces epithelial cell death in ex vivo coculture, demonstrating
another potential mechanism of epithelial cell injury/apoptosis in IPF.157

Arachidonic Acid Metabolites
The balance between arachidonic acid metabolites, pros-taglandins and leukotrienes has been
shown to have a role in the pathobiology of pulmonary fibrosis.158 IPF patients have an
imbalance in these mediators characterized by decreased PGE2 in BAL fluid,159 decreased
epithelial expression of cyclooxygenase-1 and -2 (COX-1 and COX-2),160 and increased
levels of leukotrienes in lung tissue.161 In animal models, COX-2 deficient mice develop
increased fibrosis following intratracheal bleomycin, whereas leukotriene-deficient mice are
protected from fibrosis.162,163

PGE2 suppresses several fibroblast activities, including proliferation,164–166 chemotaxis and
migration,167,168 differentiation,169 and collagen production.170 PGE2 is secreted by lung
epithelial cells and lung fibroblasts, suggesting that homeostatic suppression of myofibroblast
function may be mediated through both autocrine and paracrine mechanisms.165,168–171
Moreover, recent studies show that KGF can enhance alveolar epithelial cell secretion of
PGE2.139 Thus the decreased expression of COX in IPF epithelial cells suggests that a
decreased capacity for PGE2 synthesis/secretion may contribute to pulmonary fibrosis through
impaired suppression of myofibroblast activation.

Endothelin-1
Secreted by alveolar epithelial cells, vascular endothelial cells, and macrophages,172
endothelin-1 promotes fibroblast proliferation, contraction, differentiation, and ECM
production.173–176 AECs from IPF specimens express high levels of endothelin-1.177,178
In animal models, overexpression of endothelin-1 leads to progressive pulmonary fibrosis,
179 and an endothelin-1 receptor antagonist attenuates bleomycin-induced pulmonary fibrosis.
180
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THE EXTRACELLULAR MATRIX MEDIATES EPITHELIAL–MESENCHYMAL
INTERACTIONS AND AFFECTS CELLULAR PHENOTYPES

The ECM provides a dynamic and biologically active substrate for epithelial–mesenchymal
interactions; the composition of the ECM regulates cellular phenotypes in the context of lung
injury and repair.181,182 As an example, adhesion to an intact basement membrane (epithelial
cells) or the ECM (mesenchymal cells) provides survival signals for these cells; the loss of
adhesion-mediated signaling leads to a form of apoptosis termed anoikis.183,184 Moreover,
the ECM itself may promote or perpetuate aberrant cellular phenotypes. Adhesion-mediated
signaling pathways activated by cell–matrix interactions are required for myofibroblast
differentiation induced by TGF-β1 and promote myofibroblast survival.91,92 Additionally,
extra domain-A (ED-A) containing fibronectin has been shown to be necessary for
myofibroblast differentiation, and myofibroblasts in fibroblastic foci of UIP/IPF colocalize
with ED-A containing fibronectin.16,185 Finally, the biomechanical properties of the ECM
are also likely to regulate fibroblast/myofibroblast phenotypes.10,186–188

The composition and biomechanics of the ECM, in turn, are affected by mesenchymal and
epithelial cells. Myofibroblast and epithelial cell–derived mediators interact with proteolytic
pathways to regulate ECM remodeling.189–192 Additionally, myofibroblast secretion of ROS
induces posttranslational modifications in ECM proteins.193 The dynamic composition and
interactions between ECM components may lead to further changes in biomechanics and
adhesion-mediated signaling, thereby promoting and perpetuating epithelial and mesenchymal
cell phenotypes.

Epithelial–Mesenchymal Transition
Epithelial–mesenchymal transition (EMT) is a well-conserved cellular process by which
epithelial cells acquire the morphological and molecular characteristics of mesenchymal cells;
this process plays an important role in embryonic morphogenesis and cancer metastasis.194,
195 Recent studies report that alveolar epithelial cells are capable of TGF-β1-mediated EMT
in vitro,72,73,196 and one report found that epithelial and mesenchymal markers colocalize
in UIP/IPF tissue.71 Although there is evidence to suggest that EMT contributes to the
development of renal fibrosis in murine models, the role of EMT in lung fibrosis remains
undefined and requires further study.194,197

CONCLUSION
The regulation of epithelial–mesenchymal interactions is a key control point in normal and
pathological wound-repair responses. In the context of tissue injury, coordinated and regulated
interactions between epithelial cells, mesenchymal cells, and the ECM are required for the
reestablishment of normal tissue architecture and function. In fibrotic disease, this delicate
balance becomes dysregulated, as evidenced by inappropriate loss of epithelial architecture,
persistent myofibroblast activation, and accumulation within fibroblastic foci. The causes of
this dysregulation remain undefined but are likely due to a combination of genetic and
environmental factors within the context of persistent or recurrent lung injury leading to
aberrant autocrine and paracrine signaling between epithelial and mesenchymal cells.
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Figure 1.
Schematic representation of epithelial and mesenchymal cell phenotypes and their interactions
in the context of pulmonary fibrosis. Epithelial cells overlying damaged basement membrane
and fibroblastic foci demonstrate phenotypes suggestive of a dysregulated wound-repair
response, including excessive apoptosis, dysregulated proliferation, and impaired migration
and regeneration. In contrast, underlying mesenchymal cells demonstrate myofibroblast
differentiation, resistance to apoptosis, proliferation and secretion of soluble factors,
extracellular matrix (ECM) proteins, and oxidants. Both epithelial and mesenchymal cells
secrete soluble mediators that function through paracrine and autocrine mechanisms to regulate
cell phenotypes. Additionally, the ECM provides a substrate for epithelial–mesenchymal
interactions and may also directly regulate epithelial and mesenchymal cell phenotypes.
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