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Most ion channels consist of several different subunits,
and figuring out the exact role that each subunit
polypeptide plays in channel regulation is a daunting
and rewarding task. The challenge is to find out (a)
which subunits coassemble to form the native channel
protein, (b) how many copies of each individual poly-
peptide are contained in the channel, (c) which sub-
units contribute to the lining of the conducting pore
and which just stick to the internal or external face of
the channel, and (d) which of the subunits are neigh-
bors in the native channel. The reward has two equally
exciting aspects: the studies can yield glimpses into the
mechanisms for fine tuning nearly all functional pa-
rameters, including ion selectivity, regulation of open
probability (gating), and channel expression. In addi-

 

tion, a modular system of channel assembly may be-
come apparent in which a cell chooses from a repertoire
of subunits to build the channel it needs. The report by
Hackos and Korenbrot (1999) in this issue is an excel-
lent case in point: cyclic nucleotide–gated (CNG) chan-
nels display a fascinating dynamic fine tuning of Ca

 

2

 

1

 

selectivity and this phenomenon depends on the pres-
ence of a modulatory 

 

b

 

 subunit.
CNG channels work as transducer channels in photo-

receptors of the vertebrate retina and in olfactory sen-
sory neurons (OSNs) of the nose. In the light-sensitive
outer segment of rod and cone photoreceptors, CNG
channels conduct a steady inward current in the dark,
the “dark current.” Activated by cGMP, the second mes-
senger of visual transduction, the channels have an open
probability in the dark of just 1–5%, and they close when
cGMP is hydrolyzed upon illumination. Thus, photo-
receptor channels always work at very low activation lev-
els, prompting Hackos and Korenbrot to study their
conducting properties during low activation. The clos-
ing of CNG channels in light not only hyperpolarizes
the membrane, it also induces a Ca

 

2

 

1

 

 signal that plays a
pivotal role in phototransduction. The dark current is a
mixed cation current with a Ca

 

2

 

1

 

 fraction between 12
and 21% (Nakatani and Yau, 1988; Perry and McNaugh-
ton, 1991). Steady Ca

 

2

 

1

 

 influx in the dark is balanced
by Ca

 

2

 

1

 

 extrusion through Na

 

1

 

/Ca

 

2

 

1

 

,K

 

1

 

 exchangers,
resulting in a stable free Ca

 

2

 

1

 

 concentration of 

 

z

 

500
nM. When CNG channels close in light, [Ca

 

2

 

1

 

] drops
to 

 

z

 

50 nM due to continuous extrusion by the ex-

changers, a signal that is sensed by a set of Ca

 

2

 

1

 

-regu-
lated proteins that help the photoreceptor recover
after the stimulus (Gray-Keller and Detwiler, 1994). Let-
ting Ca

 

2

 

1

 

 into the outer segment is thus an essential
part of CNG channel function in photoreceptors.

In OSNs, CNG channels are activated by cAMP,
which acts as second messenger during odor stimula-
tion in the sensory cilia. Although our understanding
of olfactory signal transduction is by far not as detailed
as our concept of phototransduction, it is becoming
clear that the ability of CNG channels to conduct Ca

 

2

 

1

 

determines both the rise time and the amplitude of the
olfactory receptor current, as well as its termination af-
ter the stimulus. Ca

 

2

 

1

 

-gated Cl

 

2

 

 channels are triggered
by odor-induced Ca

 

2

 

1

 

 influx through CNG channels
and cause a depolarizing Cl

 

2

 

 efflux that amplifies the
receptor current (Lowe and Gold, 1993). And among
the various processes that terminate the receptor cur-
rent, probably the most rapid is the negative feedback
inhibition of CNG channels by Ca

 

2

 

1

 

/calmodulin (Chen
and Yau, 1994; Kurahashi and Menini, 1997). Thus, Ca

 

2

 

1

 

signals generated by CNG channels are at the heart of
sensory transduction in vision and olfaction.

How the channels interact with Ca

 

2

 

1

 

 depends on the
set of subunits that coassemble to form the channel
protein. CNG channels can form heteromeric proteins
containing at least two types of subunits: principal 

 

a

 

subunits and modulatory 

 

b

 

 subunits. Three homolo-
gous genes encode distinct 

 

a

 

 subunits in rods, cones,
and OSNs, and a fourth gene supplies two different

 

splice forms of 

 

b

 

 subunits in rods and OSNs (Chen et al.,
1993, 1994; Körschen et al., 1995; Sautter et al., 1998;
Bönigk et al., 1999). In addition, a second type of mod-
ulatory subunit is part of the olfactory channels (Brad-
ley et al., 1994; Liman and Buck, 1994; Shapiro and
Zagotta, 1998). Consequently, three different subunits
form the transduction channels of OSNs, and the rod
photoreceptor channels have at least two different sub-
units. It is not clear whether 

 

a

 

 and 

 

b

 

 subunits are coas-
sembled in the channels of cone photoreceptors.

All known subunits of CNG channels are integral
membrane proteins and appear to contribute to the
formation of the channel pore. This is particularly
important for cation permeation because the 

 

a

 

 sub-
units contribute negatively charged amino-acid resi-
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dues (glutamate or aspartate) to an intrapore cation-
binding site. 

 

b

 

 subunits, on the other hand, have an
uncharged glycine in the respective position and atten-
uate cation binding. The report by Hackos and Koren-
brot (1999) now reveals a link between ion selectivity
and open probability conferred on the photoreceptor
channel by the 

 

b

 

 subunit. The authors show that the
relative Ca

 

2

 

1

 

 permeability of heteromeric channels dis-
plays a pronounced dependence on the cGMP concen-
tration, with unexpectedly small values at low (physio-
logical) activation levels. This is a surprising result be-
cause selectivity and gating are traditionally thought of
as independent and associated with different parts of
the channel protein. The selectivity filter is determined
by geometry and charge density of the intrapore ion-
binding site, which is regarded as a fixed feature of the
channel (with the notable exception of purinergic re-
ceptor channels, which change selectivity with time af-
ter activation; Khakh et al., 1999). But this view, as well
as the textbook notion that sees the channel gate sim-
ply as a plug in the pore, controlled in an all-or-nothing
fashion by a voltage sensor or a ligand-binding site, is
obviously inappropriate for CNG channels. Apparently,
changes of ion selectivity with open probability reflect
the ability of photoreceptor CNG channels to adopt
more than a single conducting state: at low cGMP con-
centration, partially liganded channels may open into a
subconductance state with relatively low Ca

 

2

 

1

 

 perme-
ability. Fully liganded channels switch at elevated cGMP
into a different state, which is characterized by higher
conductance and increased Ca

 

2

 

1

 

 permeability. A simi-
lar dependence of ion selectivity on distinct conductance
states recently was demonstrated for mutant 

 

Shaker

 

 K

 

1

 

channels (Zheng and Sigworth, 1997) and for an NMDA-
receptor channel mutant (Schneggenburger and Ascher,
1997). To my knowledge, the report by Hackos and
Korenbrot (1999) is the first evidence for such a phe-
nomenon in a native channel, and it has immediate sig-
nificance for CNG-channel research: physiologically
meaningful studies of Ca

 

2

 

1

 

 permeation have to be
done at the right activation level!

To most people, relative Ca

 

2

 

1

 

 permeability is a some-
what cryptic parameter. It is usually interpreted as the
relative ease with which two ion species (here Ca

 

2

 

1

 

 and
Na

 

1

 

) can enter a channel, but it doesn’t tell you how ef-
ficiently a channel conducts Ca

 

2

 

1

 

 into the cell. Recent
studies of Ca

 

2

 

1

 

 interaction with CNG channels have
yielded a concept for Ca

 

2

 

1

 

 permeation that may help us
appreciate the results presented by Hackos and Koren-
brot (1999). Interaction of CNG channels with extra-
cellular Ca

 

2

 

1

 

 is determined by the Ca

 

2

 

1

 

 affinity of the
intrapore binding site. This site is formed by a set of
four negatively charged residues in channels consisting
of only 

 

a

 

 subunits or by a combination of charged and
uncharged residues in channels containing 

 

a

 

 and 

 

b

 

subunits. The 

 

a

 

 subunits of rods, cones, and OSNs
show marked intrinsic differences in Ca

 

2

 

1

 

 affinity, and
coassembly with 

 

b

 

 subunits reduces Ca

 

2

 

1

 

 affinity (Dzeja
et al., 1999; Seifert et al., 1999). Consequently, a variety
of CNG channels with quite diverse affinities for extra-
cellular Ca

 

2

 

1

 

 results from the combinations of the vari-
ous 

 

a

 

 and 

 

b

 

 subunits. When Ca

 

2

 

1 

 

enters a high-affinity
CNG channel, it is tightly bound, blocks the passage of
monovalent cations, and stays in the pore for a rela-
tively long time. Therefore, Ca

 

2

 

1

 

 blockage of monova-
lent currents is very effective in high-affinity channels,
but the rate of Ca

 

2

 

1

 

 permeation is low. In contrast, low-
affinity CNG channels show a less efficient Ca

 

2

 

1

 

 block
of monovalent current but allow higher rates of Ca

 

2

 

1

 

permeation (a larger Ca

 

2

 

1

 

 influx) because Ca

 

2

 

1

 

 ions
move through the pore more easily.

Thus, Ca

 

2

 

1

 

 influx is inversely related to Ca

 

2

 

1

 

 affinity
in these channels. But how is the relative Ca

 

2

 

1

 

 perme-
ability (as determined by Hackos and Korenbrot from
reversal potentials with intracellular Ca

 

2

 

1

 

) related to
Ca

 

2

 

1

 

 affinity (as determined from the blockage of
monovalent currents by extracellular Ca

 

2

 

1

 

)? Earlier
studies have shown that the higher the Ca

 

2

 

1

 

 affinity of a
CNG channel, the lower is its relative Ca

 

2

 

1

 

 permeability
(Frings et al., 1995). Consistent with this result, Hackos
and Korenbrot (1999) show that recombinant rod
photoreceptor channels containing both 

 

a

 

 and 

 

b

 

 sub-
units have a higher relative Ca

 

2

 

1

 

 permeability than 

 

a

 

homomers; and the Ca

 

2

 

1

 

 affinity in rod 

 

ab

 

 channels is
lower than in 

 

a

 

 homomers (Körschen et al., 1995). Fur-
thermore, the reduced relative Ca

 

2

 

1

 

 permeability at
low activation levels found by Hackos and Korenbrot
(1999) is associated with an increase of Ca

 

2

 

1

 

 affinity, as
reported by Colamartino et al. (1991).

Taken together, high values of relative Ca

 

2

 

1

 

 perme-
ability suggest high levels of Ca

 

2

 

1

 

 influx and low Ca

 

2

 

1

 

affinity in CNG channels. As permeability and flux
rates are not necessarily linked (one reflecting the ac-
cess to the pore, the other the binding strength), this
phenomenological correlation is food for thought and
may stimulate further investigations into Ca

 

2

 

1

 

 perme-
ation in these channels. But it already gives some in-
sight into how the dark current is shaped in such a way
that current amplitude and Ca

 

2

 

1

 

 influx maintain just
the right balance necessary for phototransduction: at
the low cGMP concentrations in photoreceptors, rela-
tive Ca

 

2

 

1

 

 permeability of CNG channels is low, implying
that Ca

 

2

 

1

 

 affinity is high. This means that Ca

 

2

 

1

 

 effi-
ciently suppresses Na

 

1

 

 influx and that Ca

 

2

 

1

 

 influx is re-
tarded by strong binding. The result is a small dark cur-
rent (approximately 

 

2

 

40 pA) with a relatively high
Ca

 

2

 

1

 

 fraction (12–21%). At higher cGMP levels (which
apparently don’t occur in photoreceptors), CNG chan-
nels would decrease their Ca

 

2

 

1

 

 affinity. This would lead
to larger currents (exceeding the increment caused by
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increased open probability) with a relatively smaller
Ca

 

2

 

1

 

 component, but a larger overall Ca

 

2

 

1

 

 influx. These
relations between Ca

 

2

 

1

 

 affinity, fractional Ca

 

2

 

1

 

 current,
and Ca

 

2

 

1

 

 influx govern the physiological functions of
CNG channels and should be kept in mind when pre-
dicting effects of the fine-tuning of Ca

 

2

 

1

 

 permeation
described Hackos and Korenbrot (1999).

Interestingly, the authors demonstrate that both rod
and cone CNG channels show cGMP dependence of
relative Ca

 

2

 

1

 

 permeability. Since this property is con-
ferred to the rod channel by its 

 

b

 

 subunit, maybe cone
channels also possess a 

 

b

 

 subunit. This is particularly in-
teresting because the 

 

b

 

 subunit contains a calmodulin-

binding site (Weitz et al., 1998), which may mediate
regulatory effects by Ca

 

21/calmodulin in rods and
cones. The relative Ca21 permeability at low activation
levels is much higher in cones than in rods. Such a pro-
nounced difference in Ca21 permeation is expected to
cause differences in the dynamics of Ca21 handling be-
tween the two photoreceptor types and may be one of
the reasons why cones show faster recovery after a light
stimulus. Finally, in cells where CNG channels can
reach high levels of activity, the dynamic tuning of Ca21

permeation may constitute a regulatory mechanism
that becomes effective as Ca21 affinity changes with
open probability.

Original version received and accepted 26 April 1999.
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