
 

783

 

J. Gen. Physiol.

 

 © The Rockefeller University Press 

 

•

 

 0022-1295/99/06/783/5 $2.00
Volume 113 June 1999 783–787
http://www.jgp.org

 

Perspective

 

Ionic Hopping Defended

 

Christopher Miller

 

From the Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02254-9110

 

In the whirlwind of cloning, mutagenesis, and, sud-
denly, structure that the ion channel field has been
riding for the past 15 yr, it is easy to forget that we still
don’t have a satisfactory view of that most basic task car-
ried out by these proteins: ion permeation. The diffu-
sion of ions through the aqueous pores of ion channels
(a process much simpler than gating) is being treated
in two different ways by two increasingly polarized
schools of thought. For want of terms that are both
precise and concise, I refer to these as the “chemical-
kinetic” and “continuum” descriptions of channel-
mediated electrodiffusion—both of which treat ions
as stumbling through one-dimensional random walks
along the pore. In chemical-kinetic descriptions, ions
hop along a small number of binding sites (Hille, 1991);
in continuum theories, they diffuse in continuous space
along the pore under the influence of local electro-
chemical gradients (Sten-Knudsen, 1978). This distinc-
tion may seem the stuff of academic hairsplitting, but it
is not—it is fundamental, and the vituperation spent
on these models in recent years attests to their current
irreconcilability.

For the present discussion, I assume a qualitative un-
derstanding of the basic ideas behind the two compet-
ing views of ion conduction (but not necessarily the
details of their implementation) and will offer some
reasons why I consider the chemical-kinetic approach
to be of greater practical utility. Rather than making
general arguments about electrodiffusion to defend
this position, I will illustrate the current clash of these
theories by examining one particular case.

 

An Experimental Example

 

The subject we will look upon is calcium channel per-
meation, models of which have been described in lucid
detail (Almers and McCleskey, 1984; Hess and Tsien,
1984; McCleskey, 1997; Nonner and Eisenberg, 1998).
This case serves to bring out essential differences in a
palpable and physiologically important context. I deal
with just one small corner of this subject—the key ob-
servation that launched calcium channel permeation as
a rich area of investigation. This is the remarkable fact
that under physiological conditions the channel is
strongly selective for Ca

 

2

 

1

 

, but when bath [Ca

 

2

 

1

 

] is re-

duced below 1 

 

m

 

M this selectivity is lost and monova-
lent cations easily permeate. In the well-known classical
experiment, inward current through calcium channels
is measured as a function of external Ca

 

2

 

1

 

 concentra-
tion in a conventional physiological bath medium at a
fixed holding voltage of, say, 

 

2

 

30 mV. At very low Ca

 

2

 

1

 

(

 

,

 

0.1 

 

m

 

M) there is a large inward current carried by
Na

 

1

 

. As [Ca

 

2

 

1

 

] is raised up to 

 

z

 

100 

 

m

 

M, the current
decreases to near zero. But then, as [Ca

 

2

 

1

 

] increases
farther into the 1–10 mM range, inward current rises
again, with Ca

 

2

 

1

 

 as the charge carrier, and the reversal
potential shifts positive towards E

 

Ca

 

. This nonmonotonic
variation in current with external [Ca

 

2

 

1

 

], sometimes
termed the “anomalous mole-fraction effect”

 

 

 

(AMFE),
is explained in vastly different ways by the two opposing
viewpoints.

 

Chemical Kinetic Viewpoint: Multiple Occupancy on
Discrete Sites

 

According to the canonical model, the observed AMFE
is a direct reflection of the binding of two Ca

 

2

 

1

 

 ions in
a single-filing pore. The idea is simple, proceeding from
the postulate that the channel is designed to coordi-

 

nate Ca

 

2

 

1

 

 at specific anionic sites. In the absence of
Ca

 

2

 

1

 

, when these are electrostatically hungry, the pore
is merely charge selective, allowing virtually any mono-
valent cation to permeate as long as it is physically small
enough to squeak through. Thus, at low [Ca

 

2

 

1

 

], the
Na

 

1

 

 conductance is high. In the presence of micromo-
lar Ca

 

2

 

1

 

 concentrations, the pore’s selectivity region
now becomes occupied by a single Ca

 

2

 

1

 

 a significant
fraction of the time (which varies according to the bath
concentration). Because of its intimate coordination by
protein groups, this bound ion’s dissociation rate from
the channel is low, 

 

z

 

10

 

3

 

 s

 

2

 

1

 

, some three to four orders
of magnitude slower than the throughput of Na

 

1

 

 ions.
Under these conditions, Na

 

1

 

 roars through the pore
when Ca

 

2

 

1

 

 is absent; but whenever a Ca

 

2

 

1

 

 binds, the
flow of Na

 

1

 

 current is fully blocked. This block lasts on
the order of 0.1–1 ms, and it is due directly to the sin-
gle-filing property: the impossibility of a Na

 

1

 

 ion diffus-
ing “around” a bound Ca

 

2

 

1

 

. Only after the Ca

 

2

 

1

 

 vacates
the binding site can the flow of Na

 

1

 

 through the chan-
nel resume. This effect, averaged over many channels
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in a macroscopic experiment (or over time in a single-
channel experiment), leads to the “falling phase” of
the AMFE; i.e., the decrease of inward current as Ca

 

2

 

1

 

increases through the micromolar range. If Ca

 

2

 

1

 

 con-
centration is pushed up into the millimolar range, a
new phenomenon appears. Now a second Ca

 

2

 

1

 

 can
bind and, as a result of this double occupancy, the exit
rate of Ca

 

2

 

1

 

 from the pore increases 

 

z

 

1,000-fold. This
huge increase in Ca

 

2

 

1

 

 off rate is usually explained by
invoking electrostatic repulsion between the two ions,
but other mechanisms could be involved (McCleskey,
1997). In any case, as a result of this double occupancy,
Ca

 

2

 

1

 

 now flows through the channel at rates high enough
to show up as current, which increases with Ca

 

2

 

1

 

 con-
centration to produce the “rising phase” of the AMFE.

To quantify these effects, the chemical-kinetic ap-
proach makes an explicit distinction between four dif-
ferent occupancy forms of the channel: a Na

 

1

 

-conduct-
ing form with no bound Ca

 

2

 

1

 

 [O, O], two nonconduct-
ing forms, each with one Ca

 

2

 

1

 

 bound on either side
[O, X] and [X, O], and a Ca

 

2

 

1

 

-conducting form with two
Ca

 

2

 

1

 

 bound [X, X]. The average current and Ca

 

2

 

1

 

/Na

 

1

 

selectivity are given by the kinetic transitions among
these various forms of the channel; i.e., by a set of rate
constants between explicit chemical intermediates, ex-
actly as in any conventional chemical kinetic problem.
The values of the rate constants cannot be estimated
from first principles, but must be derived by fitting ex-
perimental data to a kinetic model, a straightforward
but rarely unambiguous procedure.

 

Continuum Viewpoint: A Nanoscale Ion Exchanger

 

Much of the present controversy centers on the use of
Poisson-Nernst-Planck electrodiffusion models in bio-
logical channels. Such models have been in use for a
long time, both as qualitative handles for the classical
squid axon channels and as more intricate frameworks
for permeation in ion-selective channels with firm
structural foundations (Levitt, 1982, 1986). For this dis-
cussion, I will focus on a recent application to calcium
channels termed PNP2 (Nonner and Eisenberg, 1998),
which views the pore as a continuum containing several
negatively charged groups smeared out over a reason-
able pore volume; this represents a very high concen-
tration of fixed charge (

 

z

 

10 M). Both Ca

 

2

 

1

 

 and Na

 

1

 

have free access to this forest of negative charge, where
they act as gegenions, cations that are not chemically
coordinated by the fixed charge, but rather are held
nonspecifically by the demands of electroneutrality (or,
more properly, the Poisson equation), as in an ion-
exchange resin. The system is described by the simulta-
neous solutions of three equations in which the three
crucial variables, ion concentration, electrical poten-
tial, and distance along the pore, are nonlinearly en-

twined. The solutions lead to mathematically self-consis-
tent predictions of ionic current as a function of trans-
membrane voltage and bath ion concentrations.

In modeling the AMFE, PNP2 is a theory of ionic
cleansing. With no Ca

 

2

 

1

 

 present, the pore conducts
well because Na

 

1

 

 ions dwell there at high concentra-
tion, this being the only cation available for electroneu-
trality. But when a little Ca

 

2

 

1

 

 is added to the bath, these
divalent intruders, with their heavy artillery in the form
of a 

 

1

 

2 valence, take over, displacing the numerous but
poorly armed Na

 

1

 

 ions. In electrostatics, divalents
always beat monovalents. Thus, as Ca

 

2

 

1

 

 is increased,
the pore, initially Na

 

1

 

 rich, becomes loaded with Ca

 

2

 

1

 

,
and the conductance goes down because the Ca

 

2

 

1

 

 dif-
fusion coefficient is assumed to be lower than that of
Na

 

1

 

. By the time bath Ca

 

2

 

1

 

 concentration reaches, say,
100 

 

m

 

M, all the Na

 

1

 

 has been expelled from the pore,
and the current is carried solely by Ca

 

2

 

1

 

. Thus, the fall-
ing phase of the AMFE.

But why does the channel conductance rise again as
Ca

 

2

 

1

 

 is raised further? The surprising answer provided
by the PNP2 treatment is that it doesn’t! The conduc-
tance is predicted to remain essentially flat as Ca

 

2

 

1

 

 rises
to high levels because electroneutrality forbids admit-
tance to additional Ca

 

2

 

1

 

 over and above the fixed nega-
tive charge; but the current measured at a given voltage
(e.g., 

 

2

 

40 mV) does increase to produce the AMFE for
a simple reason: the reversal potential keeps moving
positive as external Ca

 

2

 

1

 

 is increased. It’s the driving
force that goes up, not the conductance. In other words,
this analysis asserts, everyone in the field has been
dunderheaded all these years on a most elementary
point, having apparently forgotten that current equals
the product of conductance and driving force! (I am
oversimplifying a little here; a small rise in conductance
with [Ca

 

2

 

1

 

] is predicted by PNP2, but this is a second-
order effect having to do with surface polarization.)

 

Evaluation and Conclusions

 

So here we have two very different ways of interpreting
a fundamental set of facts about ion permeation in cal-
cium channels. I will state my opinion bluntly. First, no
theory, however mathematically sophisticated, that re-
jects specific ionic coordination by protein moieties,
dismisses the finite size of ions, and ignores the single-
filing effects necessarily arising from the small spaces in
the molecular structures of ion channels can have
much worthwhile to say about selective ion permeation.
Second, a ubiquitous feature of continuum theory—
the mean-field assumption—invalidates, or at least
greatly vitiates, its application to channels in which only
a small number of ions reside at any one time. Third,
PNP2 is inadequate to understand the particular cal-
cium channel problem under examination here. Fourth,
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the undoubted quantitative weaknesses of the chem-
ical-kinetic approach do not undercut its value in cap-
turing the mechanistic essence of permeation in ion-
selective channels.

 

(1) The continuum approach ignores ion channel chemis-
try.

 

For many years, indirect experiments have sug-
gested that ions permeate selective channels by bind-
ing to localized sites at which protein functional groups
replace waters of hydration, and that ion selectivity
mainly reflects the energetics of the switch from water
solvation to protein coordination (Hille, 1991). In sol-
uble proteins, it is hardly a radical notion that binding
of dehydrated inorganic ions lies at the basis of a mul-
titude of functions (Falke et al., 1994), and now, with
the structure of KcsA (Doyle et al., 1998), this idea has
been confirmed directly for a strongly selective ion
channel. The KcsA structure dramatically confirms for
a K

 

1

 

 channel the multi-ion single-filing assumption,
long known also to be valid for the peptide channel
gramicidin A (Finkelstein and Andersen, 1981). For
permeation, the qualitative consequences of localized,
structured binding sites and single-filing are profound;
they lead naturally and necessarily to familiar phenom-
ena seen in many channels: strong, concentration-
dependent selectivity, discrete ionic block of perme-
ation, and anomalously high ratios of unidirectional
ionic fluxes.

It is not surprising that the continuum theories pres-
ently under discussion have been unable to satisfacto-
rily reproduce these “enzyme-like” phenomena, since
they (a) disregard the close-up chemistry of ionic coor-
dination, (b) explicitly permit ions to move through
one another within the pore, and (c) treat permeation
mainly in terms of electric fields acting at a distance.
This approach asserts the virtue of pristine, mathemati-
cally tractable physical principles, but it commits the
vice of ignoring the messy parts: the prominent, ob-
vious structural characteristics of channel proteins. To
be sure, continuum theories have traditionally endeav-
ored to include chemistry by superimposing upon the
electrical potential a position-dependent free energy
profile that may differ for different ions (Levitt, 1986)
or by assigning to each ion its own diffusion coefficient.
These are worthy additions to otherwise “featureless”
electrodiffusion theories, but they are simply not
enough; nobody has yet figured out how to weld single-
file arrangements of binding sites to continuum theo-
ries in a general manner, although Levitt (1982, 1986,
1991a,b) has achieved impressive success in incorpo-
rating these features in particular cases, and Nonner et
al. (1998) similarly have modeled a subset of K

 

1

 

 chan-
nel behaviors with a selective binding “region.” Con-
quest of this analytical impediment would represent
a major advance in modeling permeation; in such a
case, the entire channel field would unhesitatingly

embrace continuum electrodiffusion as the preferred
approach to the problem.

 

(2) The mean-field assumption is inapplicable in small
spaces.

 

To obtain solutions for the ionic fluxes, contin-
uum treatments must use concentration and electrical
potential as continuous spatial variables in the coupled
differential equations. The concentration at a given po-
sition determines the net charge density, which in turn
influences the value of potential at that and nearby po-
sitions. Concentration is an intrinsically probabilistic
quantity—the average number of ions per unit volume.
For a macroscopic object such as a worm of ion-exchange
gel, the number of ions present is sufficiently large that
this average can be taken within each cross-sectional
slab of the object at each moment in time. The concen-
tration at each position will fluctuate with time, but, if
the object is large enough, these fluctuations will be
negligible and the concentration, and therefore the po-
tential, will be a time-invariant spatial average. This is
the “mean-field” assumption: this average potential
may be validly used in the three crucial equations. In
an object of molecular dimensions, however, a huge
problem arises. For something the size of a calcium
channel selectivity filter, a concentration of 10 M rep-
resents on average only one or two ions in the entire
volume. “Concentration” is still defined as a statistical
average, but in this case the average must be taken over
time; i.e., by sitting at a given position in the pore and
asking what fraction of the time an ion is present. This
is a perfectly good stochastic definition of concentra-
tion, but when you try to use it to relate concentration
to potential via the Poisson equation, a fundamental
difficulty asserts itself. A channel containing, say, one
Ca

 

2

 

1

 

 on average will be fluctuating in occupancy among
0, 1, or 2 ions (0, 5, and 10 M concentration). The
mathematics represents the channel as having a time-
invariant potential equivalent to the average situation:
single Ca

 

2

 

1

 

 occupancy. But this is a severe misrepresen-
tation of the potential that a Ca

 

2

 

1

 

 approaching an
empty channel, or a Ca

 

2

 

1

 

 about to leave a doubly occu-
pied channel, actually sees, and these events are often
rate determining for permeation. It is as if the I.R.S. ap-
plied to every taxpayer a uniform exemption calculated
for 2.6 children, the mean number of children per
American family. Described another way, a Ca

 

2

 

1

 

 aspir-
ing to enter an empty channel at a given moment is
treated by the electrodiffusion equations as though it
experiences the repulsive electric field that existed, say,
a microsecond before this moment, when the channel
had one ion in residence; since occupancy-dependent
changes in field are enormous and are established in-
stantaneously, large errors in predicted behavior will
arise from using an average potential. Thus, while valid
for macroscopic objects and large, wide channels, the
mean-field assumption applied to physically small chan-
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nels yields solutions to the electrodiffusion equations that
are mathematically chaste but physically debauched.

The chemical-kinetic treatment avoids this problem
by explicitly assigning distinct properties to the differ-
ent occupancy forms of the channel. It asserts, for ex-
ample, that the probability per unit time (i.e., the rate
constant) of a Ca

 

2

 

1

 

 entering an unoccupied channel is
very different from the probability of entering a singly
or doubly occupied channel precisely because of the
very different electric fields in the three situations. This
description deliberately avoids doing what continuum
theory, for mathematical reasons, must do: treating the
channel as a single entity with properties averaged over
the different occupancy forms.

 

(3) PNP2 misrepresents calcium channel behavior.

 

The
single example in the literature of a continuum treat-
ment of calcium channel behavior, PNP2 (Nonner and
Eisenberg, 1998), does not achieve the goal it sets for
itself. The analysis is very similar to that of the classical
macroscopic ion-exchange membrane, where electro-
diffusion is well understood (Teorell, 1953). Empha-
sized in the analysis is that only the channel current at a
fixed voltage, and not the conductance, is expected to
show AMFE. Nonner and Eisenberg (1998) claim that
published calcium channel experiments have demon-
strated an AMFE only in current at fixed voltage, and
that proponents of the standard view have merely as-
sumed without evidence that the AMFE also applies to
conductance, as chemical-kinetic theory says it must.
This claim, if correct, would be a deadly criticism of the
chemical-kinetic approach.

But the claim is false. The original papers on calcium
channel permeation (Figure 7 in Kostyuk et al., 1983;
Figure 3 in Almers et al., 1984; Figure 2 in Almers and
McCleskey, 1984) reported strong AMFE in current at
fixed voltage as well as in conductance, based on mac-
roscopic I–V curves over a [Ca

 

2

 

1

 

] range from 60 nM to
10 mM. The conductance minimum is unambiguously
observed at the single-channel level as well, in both
Ca

 

2

 

1

 

 and Ba

 

2

 

1

 

 (Lansman et al., 1986; Friel and Tsien,
1989; Yue and Marban, 1990; Kuo and Hess, 1993).
These elementary facts, well-known to the channel
community, contributed mightily to the swift and wide-
spread acceptance of the chemical-kinetic view of per-
meation. The PNP2 analysis proceeds as though these
facts do not exist, and it accordingly fails to explain the
most basic hallmark of calcium channel permeation.
This incorrect prediction of a Ca

 

2

 

1

 

-independent con-
ductance at physiological concentrations illustrates
how badly a continuum theory that uses the mean-field
assumption and ignores coordination chemistry can
falter.

 

(4) Chemical kinetics preserves the basics.

 

As for the weak-
nesses of the chemical-kinetic view, they are certainly
prominent and well-appreciated (Cooper et al., 1985;
Levitt, 1986; Dani and Levitt, 1990). It is impossible to
predict a priori what the absolute values of the rate
constants should be or how to relate rate constants to
transition-state free energies. Likewise, the use of Eyring-
like exponential voltage dependence to the rate con-
stants is theoretically unjustified and always leads to in-
correct I–V curve shapes. And physical space inside of
channels is in fact continuous, not a lattice of sites.

But so what? Most channel researchers don’t really
care about predicting absolute values of currents, just
as enzymologists don’t feel the need to calculate the 

 

k

 

cat

 

of an ATPase from quantum mechanics; it’s the pat-
terns of permeation behavior that count, not the abso-
lute rates. As for the precise shapes of open-channel
I–V curves, this is not a particularly compelling issue
in channel physiology; the examples of unusual I–V
shapes encountered in biologically meaningful con-
texts are invariably due not to intrinsic ionic diffusion
properties, but rather to specific block (on discrete
binding sites) by exogenous molecules (e.g., poly-
amine-induced inward rectification in 

 

K

 

ir

 

 channels, or
Mg

 

2

 

1

 

-induced outward rectification by NMDA-receptor
channels). And chemical kineticists don’t believe that
ions leap over tens of angstroms of pore length in a sin-
gle bound; we do posit, however, in analogy to chemical
reaction mechanisms, that sojourns on binding sites
represent the preponderance of time the ion spends
within the pore, and thus define the important rate-
determining steps of ion permeation.

Finally, there is a particularly compelling reason not
to reject chemical kinetics in spite of its formal flaws:
when used with an understanding of its limitations, it
works. Its track record is excellent. It is primarily by
chemical-kinetic analysis of ionic permeation over the
past two decades that we have achieved physical pic-
tures of ion channel proteins in the complete absence
of direct structural information. It was chemical-kinetic
analysis that told us that channels are built as axially
symmetric structures with discrete selectivity filters and
ion-binding sites at which ions are largely dehydrated,
with narrow regions where ions and water lie in single
file, with wide vestibules where drugs bind, and with en-
zymologically unprecedented regions where multiple
ions bind simultaneously in close proximity. All of these
features, which underpin the mechanisms by which ion
channels achieve their paradoxical combination of se-
lectivity and high transport rate, have now been ob-
served directly in the first structure of a selective chan-
nel protein.

 

Original version received 4 February 1999 and accepted version received 9 April 1999.
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