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ABSTRACT The dark-adapted current-voltage (I-V) curve of a ventral pho-
toreceptor cell of Limulus, measured by a voltage-clamp technique, has a high
slope-resistance region more negative than resting voltage, a lower slope-
resistance region between resting voltage and zero, and a negative slope-
resistance region more positive than 0 v. With illumination, we find no unique
voltage at which there is no light-induced current. At the termination of illu-
mination, the I-V curve changes quickly, then recovers very slowly to a dark-
adapted configuration. The voltage-clamp currents during and after illumina-
tion can be interpreted to arise from two separate processes. One process (fast)
changes quickly with change in illumination, has a reversal potential at +20
mv, and has an I-V curve with positive slope resistance at all voltages. These
properties are consistent with a light-induced change in membrane conductance
to sodium ions. The other process (slow) changes slowly with changes in illu-
mination, generates light-activated current at +20 my, and has an I-V curve
with a large region of negative slope resistance. The mechanism of this process
cannot as yet be identified.

INTRODUCTION

Photoreceptor cells in many arthropods respond to light with a change in
membrane voltage, the receptor potential; the amplitude of this receptor
potential is graded with the intensity of the light (Hartline et al., 1952; Tomita
1956; Naka, 1961; Eguchi, 1965; Fulpius and Baumann, 1969). In the eyes of
two such arthropods (the barnacle, Balanus sp. and the ventral rudimentary
eye of Limulus), the photoreceptor cells are large enough to be impaled with
more than one microelectrode; this has allowed these cells to be studied using
voltage-clamp and current-clamp techniques. Thus, in both systems, it is
possible to measure the current-voltage (I-V) relations of the cell membrane
over a wide range of membrane voltages, and to study the changes in the I-V
relations produced by light and by replacement or addition of ions (or drugs)
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to the external bath. By such experiments, Brown et al. (1970), working with
the barnacle eye, and two groups (Smith et al., 1968 and Millecchia and
Mauro, 1969 a, b) studying the Limulus ventral eye, have sought to elucidate
the membrane mechanisms by which receptor potentials are produced.

In the barnacle photoreceptor, Brown et al. (1970) have shown that: (a)
there is a reversal potential for the light response (b); the reversal potential
changes with changes in the concentration of external sodium; (c) the steady-
state I-V curve of the light-activated process has a positive slope at all volt-
ages; and (d) the instantaneous I-V curves of the light-activated process are
linear and intersect a unique reversal potential, independent of holding volt-
age. To account for these data, Brown et al. (1970) proposed that light initiates
a conductance increase, primarily to sodium ions, which allows the sodium
ions to flow down their concentration gradient into the cell; this influx of net
positive charge depolarizes the membrane.

Similarly, Millecchia and Mauro (1969 a, b) have argued that a conduct-
ance increase mechanism produces the receptor potential in Limulus ventral
photoreceptors. They found that the reversal potential for the light-induced
current, measured by a voltage-clamp technique, changes with the concentra-
tion of external Na+. They furthermore showed that the I-V curve of the
light-activated process, measured up to 2.5 sec after the onset of the light, had
a positive slope at all voltages studied. They proposed that a change of mem-
brane conductance to sodium ions produces the receptor potential in the
ventral eye photoreceptors.

In contrast, Smith, Stell, and Brown (1968) presented evidence which indi-
cated that the I-V curve of the light-activated process has a region of negative
slope resistance. Partially on the basis of this evidence, they argued against a
permeability increase mechanism. Instead they proposed that a light-modu-
lated electrogenic pump generates the receptor potential.

We have found that the above difference in the data between the two studies
on Limulus ventral eye photoreceptors arises almost entirely from differences in
experimental protocols. Furthermore, we report a new observation: there is a
slow change in the I-V curves in the dark as the cell dark-adapts after exposure
to a bright light. We argue that the process underlying this slow change of the
I-V curve is fundamentally different from a faster process, which occurs rap-
idly with changes in light intensity. We suggest that the data (ours, as well as
those of Smith et al., 1968 and Millecchia and Mauro, 1969 b) can best be in-
terpreted in terms of two light-induced processes, the faster of these two
processes being best described by a conductance increase model. A prelim-
inary report of some of our data has appeared (Lisman and Brown, 1970).

METHODS

Glass micropipettes filled with 3 M KC1 were used for both current-passing and
voltage-measuring electrodes. The electrode resistances were between 7 and 15 MD,
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measured in sea water. We used field effect transistor (F.E.T.) input, capacitance
compensated, unity gain preamplifiers which had a settling time of less than 20 gsec.
The circuit of the voltage clamp was similar to those described by others (Millecchia
and Mauro, 1969 b). The feedback amplifier used in the voltage clamp was a Tek-
tronix 132 power amplifier driven by a Tektronix 1A7 (Tektronix, Inc., Beaverton,
Ore.). Using this voltage clamp, the time required to clamp the membrane to a
steady voltage was 3 msec or less. Current was measured with a current-to-voltage
transducer built with an Analog Devices 501 F.E.T. operational amplifier (Analog
Devices Inc., Cambridge, Mass.). The voltage signal representing the clamping
current was smoothed with a single-stage RC filter. The time constant of this filter
was 0.5-5 msec; the larger values for the time constant were used only with very
slowly changing command voltages. The command potentials were triangular voltages
(from a Wavetek 111 waveform generator, Wavetek, San Diego, Calif.) or voltage
pulses (from a Tektronix 161 pulse generator). I-V curves were made directly on an
oscilloscope by using the horizontal axis for membrane voltage and the vertical axis
for clamp current.

RESULTS

We can routinely find cells having highly nonlinear current-voltage (I-V)
curves in the dark-adapted state, as described by Smith, Stell, and Brown
(1968). Fig. 1 A shows the I-V relations made by the current-clamp technique
in which ramps of current are applied to the cell. Resting potential is typically

-45 to - 60 mv in cells impaled with two microelectrodes. Near resting poten-
tial, the I-V curve has a region of changing slope resistance; at 10 mv more
negative than resting potential, the slope resistance is 8-30 MRi, while at 10
mv more positive than resting potential, the slope resistance is 1-4 MUg. Near
zero voltage, there is a second region of changing slope resistance. As the
amplitude of depolarizing current is increased, the membrane voltage be-
comes unstable and rapidly shifts from near zero to a large inside positive
potential (+ 30 to+ 80 mv). If the depolarizing current is then decreased, the
voltage decreases proportionally. As the current is decreased still further, the
voltage again becomes unstable and rapidly shifts down toward 0 v. There is
thus a region on the I-V curve just positive of 0 v in which it is impossible to
stabilize the voltage using the current-clamp technique. This region appears
as a region of negative slope resistance when studied with the voltage-clamp
technique.

I-V Curves by Voltage Clamp in the Dark-Adapted State

The I-V curve obtained by voltage clamp of a dark-adapted cell is shown in
Fig. I B. We used a triangular wave as the command voltage ("ramp clamp").
Fig. 1 C shows the superposition of the voltage- and current-clamp curves for
the same cell. The two curves are identical except in the "unstable" region



J. E. LISMAN AND J. E. BROWN Photoreceptor Cells of Limulus Eye

~B~~~B

v

soMN

FIGURE 2

V

C 

20L
50
rM

low ~~~V

FIGURE I FIGURE 3

FIGURE 1. (A), I-V curve of a dark-adapted Limulus ventral eye photoreceptor cell
made with current-clamp technique. There is a region of changing slope resistance
around resting potential (-50 my). In a voltage range just positive to 0 v there is a
region of instability in which it is impossible to maintain the voltage with the current-
clamp technique. Also notice the spikelike potential near resting voltage evoked upon
the release of hyperpolarizing current. (B), I-V curve for the same dark-adapted cell
made with voltage-clamp technique. The region of instability seen in (A) is here a region
of negative slope resistance. Command voltage was a rising ramp with dv/dt = + 10
mv/sec. (C), (A) and (B) superposed for comparison. The curves are nearly identical
except in region of "instability" seen in (A).
FIGURE 2. I-V curve of a dark-adapted cell made with voltage-clamp technique..
Voltage was slowly retraced in the region of negative slope resistance (trace thickened).
Ramp rate was +8 mv/sec.
FIGURE 3. Voltage clamp I-V curves from a dark-adapted cell made with triangular
command voltages with different dv/dt. Where the voltage became more positive than
zero, the I-V curve made with the faster of the two ramps (100 mv/sec) has a much
smaller negative resistance region. This curve does have a small negative resistance
region near resting potential arising from the electrically excitable, spikelike event
evoked by the rapid positive-going ramp voltage.
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where the ramp clamp shows negative slope resistance on an upgoing (or
downgoing) ramp.

This negative resistance region is part of the steady-state I-V curve of the
cell. This is shown in Fig. 2, in which the trace thickening in the negative
resistance region indicates where the command voltage was halted and then
retraced.

The shape of the I-V relation varied with ramp rate (dv/dt) as is evident in
Fig. 3. At rates faster than 80 mv/sec, the I-V relation has little, if any,
negative slope resistance for voltages more positive than zero. For steady-
state measurements, we felt that a ramp rate of 8 mv/sec was operationally
reasonable because slowing the ramp rate still further seemed to have no
significant effect on the shape of the I-V relation. Even at 8 mv/sec, however,
the upgoing and downgoing ramps showed hysteresis for voltages between 0
and -40 mv. In order to eliminate this hysteresis, we had to use very slow
ramps (1 mv/sec) which required several minutes for the tracing of one I-V
relation.

The current-voltage relation of a cell can also be constructed from the
values of current measured when step changes in membrane voltage are
made by a series of rectangular command-voltage pulses. Fig. 4 A shows the
current as a function of time for several amplitudes of voltage pulses. The
holding potential was the resting potential of the cell. Fig. 4 B shows the
reconstruction of the I-V relation for the three sets of points taken 0.15, 1.0,
and 5 sec after the onset of the command-voltage pulse. The three curves
superimpose at all points more negative than -20 mv. At voltages more
positive than -20 mv, the 0.15 sec curve is approximately the linear exten-
sion of the less positive region of the curve. The 1.0 sec curve steepens and
becomes vertical in a voltage range on the positive side of zero, whereas in the
same range the 5 sec curve has a region of negative slope resistance.

The negative resistance region of the I-V curve can be measured with the
pulse-clamp technique in a different way. If holding potential is placed at
0 v, and stepwise command-voltage pulses are used, the negative resistance
region can be determined. With holding voltage at 0 v, no large surge of
current is needed to clamp the voltage, at least for small excursions. The
results of such an experiment are seen in Fig. 4 C superimposed on a ramp-
clamp I-V curve.

In many penetrations of cells in the ventral eye, the I-V relations measured
do not correspond to those shown in Figs. 1-4. They do not have the high
resistance region in the voltage range more negative than resting potential
and have little, if any, negative resistance region for voltages more positive
than zero; usually such cells are relatively insensitive to light. Rarely, these
cells may have large resting potentials and sensitivities to light comparable to
those of cells having highly nonlinear I-V curves. Nevertheless, we feel that
such cells with relatively (low resistance) linear I-V curves are damaged cells.
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Occasionally, we have seen the transition of the I-V relation of a penetrated
cell from a highly nonlinear curve to a relatively linear one, but we have never
observed the opposite.

Action of Light on the Voltage-Clamp I-V Curves

Fig. 5 A shows two I-V curves, one made in the dark-adapted eye, the other
in the steady-state light (to be referred to as dark-adapted and light). We use

FIGuRE 4. (A) Examples of clamping currents required for voltage damping a dark-
adapted cell to different amplitude command-voltage pulses. The holding voltage was
maintained at resting potential. The value of each command-voltage pulse is given
below the corresponding current trace. (B) Clamp current as a function of clamping
potential at three times after onset of the command-voltage pulse (0.15 sec, stars; 1.0
sec, open circles; 5 sec, closed circles). The three curves superpose at voltages below
-20 my. At more positive voltages, the 150 msec curve is an approximately linear ex-
tension of the curve at lower voltages. The I sec curve has a region of very high resist-
ance for voltages more positive than 0 v, whereas the 5 sec curve has negative slope
resistance for such voltages. (C) Similarity of I-V curve for a dark-adapted cell made
by voltage clamp using a +8 mv/sec ramp and 2.5-sec pulses as command voltages.
For the pulse-command voltages, holding voltage was kept at 0 v. At this holding volt-
age, even with short command pulses, the steady-state I-V curve of the dark-adapted
cell could be determined. The X's and circles were measured on two successive series
of trials. Currents were measured at the end of the 2.5-sec command-voltage pulses.

the word "dark-adapted" to mean that the shape of the I-V curves no longer
changes with increasing time in the dark. This condition is not necessarily
the same as that implied by the usual definition of dark-adapted, which refers
to a state of maximum sensitivity to light. In ventral eye photoreceptors, the
time necessary to reach the dark-adapted state after an illumination seems
to be the same by either definition within a factor of two. By "steady-state
light" we mean that the light pulse is sufficiently long such that the light-
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FIGURE 5. (A) I-V curves made in steady-state light (light), marked L, and made
in the dark-adapted state (dark-adapted), marked D. In a voltage region just positive
to resting potential the light curve has a higher slope resistance than the dark-adapted
curve. (B) The difference curve constructed by subtracting the dark-adapted curve
from the light curve. There is a region of negative slope resistance in a voltage region
more positive than resting potential. The curve is the sum of the currents (for each
voltage) graphed in Figs. 6 B and 7 B.
FIGURE 6. (A) I-V curves made in the dark, 10 sec after termination of light (dark
after), marked D10, and made in the dark-adapted state (dark-adapted), marked D,.
The dark after curve has higher slope resistance than the dark-adapted curve between
-50 and +5 my. At voltages below -50 mv the curves superpose to within 2 na.
(B) The difference curve constructed by subtracting the dark-adapted curve from the
dark after curve. It has negative slope resistance from -50 to -10 mv.
FIGURE 7. (A) I-V curves made in steady-state light (light), marked L, and made
10 sec after termination of light (dark after), marked D10. The light curve has the same
or lower slope resistance than the dark after curve at all voltages. The two curves cross
at about +25 my. (B) The difference curve constructed by subtracting the dark after
curve from light curves. It has positive slope at all voltages and reversal potential at
about +25 my.

initiated current has come to a fixed value and that successive I-V curves do
not differ from each other.

As reported by Millecchia and Mauro (1969 a), we confirm that the action
of light produces a depolarization graded with light intensity (for example in
Fig. 5 A, 15 mv for a light five log units above threshold). The light I-V
curve has a greater slope resistance than the dark-adapted curve in a region
just positive to resting potential. This observation confirms a similar finding
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made by Smith, Stell, and Brown (1968) using a current-clamp technique.
For membrane voltage more positive than zero, the light curve has a lower
slope resistance than the dark-adapted curve; extrapolations of the two
curves cross at about +40 my. The I-V curve in the dark, made 10 sec after
turning off the light (the dark after curve), has a shape different from that in
the dark-adapted state. For comparison, we show the two figures together in
Fig. 6 A. Below resting potential, the two curves approximately superpose. In
a large voltage range above resting potential, the dark after curve has a
greater slope resistance than the dark-adapted curve. In a period 5-10 min
after illumination is removed, the shape of the I-V curve returns gradually
to that of the dark-adapted state; the time required for this return depends
on the intensity of the preceding illumination. During this recovery, there is
little, if any, change in the membrane potential. The primary decay of the
depolarizing receptor potential occurs in less than a second after the light is
turned off. This is followed by a small residual depolarization of only a few
millivolts which decays to resting voltage within 2 min.

We have recorded a noticeable hyperpolarization immediately subsequent
to the end of illumination from ventral eye photoreceptor impaled with one
microelectrode (similar to that recorded from lateral eye retinular cells;
Benolken, 1961). With the cell impaled with two micropipettes, as in this
voltage-clamp study, we measured an after hyperpolarization only rarely.

To examine more easily the change between the I-V curves made at two
different times, one can graph the differences between the two curves. Such
a graph ("difference curve") is constructed by subtracting the current in one
curve from the current in the other, at each voltage. The subtracting itself is
model independent: the difference (AI) indicates a change in the net current
flowing through the membrane, but in no way presupposes whether the
pathway for this current is active or passive, nor does it assume any mecha-
nism underlying changes in the current pathways.

To reexamine the effects of light on the I-V relations of the ventral eye
photoreceptors, we can divide the transition from the steady-state light to
the dark-adapted state into two periods: (a) from steady-state light to 10 sec
after the light is turned off (the time at which the dark after curve is taken),
(b) from 10 sec after the end of illumination to the dark-adapted state.

Fig. 7 B shows the change in the I-V curve during the first period. This
difference curve was constructed by subtracting the dark after curve from the
light curve. The slope conductance is either zero or positive at all voltages
and there is a reversal potential (Al = 0) at about +25 mv. At voltages
more positive than reversal potential, the slope conductance is considerably
greater than for voltages more negative than reversal potential.

Fig. 6 B shows the change in I-V curve during the second period. This
difference curve was constructed by subtracting the dark after curve from
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the dark-adapted curve. At voltages below resting potential AI is approxi-
mately zero. At voltages above resting potential, the curve has a negative
slope over a large voltage range. From cell to cell there is a marked variability
of the positive voltage at which this curve begins to have positive slope, but
the voltage is always greater than -10 myv. At some voltage significantly
more positive, e.g. at about +50 mv, the difference curve crosses the zero
current axis. Investigation of this region of the curve is difficult because the
voltage must be made so positive that it causes partial membrane breakdown,
as evidenced by the fact that the I-V curves constructed with upgoing, then
downgoing ramps no longer coincide.

Figs. 6 B and 7 B, taken together, indicate that the light produces two
distinctively different types of change in the I-V curves. These two types have
been separated by their differing time-courses, as is further described below.

The time resolution of the technique of making I-V curves with ramps is
limited by the duration of a single command ramp (usually 15 sec). Better
temporal resolution can be achieved by recording the current necessary to
hold the transmembrane potential at a fixed value before, during, and after
the illumination. A set of such current traces, taken at different holding
potentials, defines the I-V relation as a function of time.

To generate these current traces, the following procedure was used. The
cell was clamped to a given potential for over a minute. The command pulse
had a greatly slowed rise time. When the current necessary to clamp the cell
to a given potential became nearly steady, the light was turned on for 30
sec. About 30 sec after the light was turned off, the voltage was brought back
to its resting value. This sequence of manipulations was repeated once every
3 min and thus there was only partial dark-adaptation between stimuli.

Fig. 8 shows a set of current traces for a ventral eye photoreceptor measured
by this procedure. When the cell is clamped to -80 mv, the time-course of
the light-induced current is similar to the time-course of the depolarizing
response to light when the cell is not voltage clamped. There is an initial
transient upon illumination, a plateau, and a fast decay of the maintained
component back to resting level when the light is turned off. When the cell is
clamped to a voltage just positive to resting potential, an additional com-
ponent appears: a slow decay of current back towards the dark-adapted level
after the light is turned off. At clamping voltages of about + 20 mv, the rapid
changes of clamping current elicited by the onset and termination of the light
become very small, leaving only a relatively slow change in current at the
onset of light and an even slower decay in current after the termination of
the light. When the cell is clamped to a still more positive potential, the fast
transients at the onset and removal of illumination reverse in sign, but the
slow components do not.
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The difference in current between any two times can be determined directly
from data such as that seen in Fig. 8 for several values of holding voltage.
We picked two times, one just before and the other just after the transient
which occurred when the light was turned off. We measured the change in
current between the two times for each current trace and plotted this data in
Fig. 9 (triangles). The shape of the curve is similar to that for the light minus
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FIGURE 8. Examples of clamping current before, during, and after 30-sec light pulses
at holding voltages marked beside each trace. A schematic interpretation of these cur-
rents as the sum of two processes is shown in Fig. 11.
FIGURE 9. The change in current during the fast transient following the termination
of light at different clamping voltages (triangles). The curve has positive slope at all
voltages. The change in current during the first 25 sec of recovery after the termina-
tion of the light versus clamping voltage is shown by the circles. The curve has negative
slope from -60 to +40 my. Both curves are constructed from data like that shown in
Fig. 8.
FIGURE 10. Light-induced current measured at different holding voltages (marked
in the center column). Resting voltage was -62 my. The responses on the left were
elicited by 2.5-sec flashes separated by 7.5 sec of darkness (i.e., 1 flash/10 sec). Reversal
voltage was about + 13 my. The response on the right was measured at a holding voltage
of + 15 my after allowing a 3 min interval of darkness; there is a prominent, slow com-
ponent which was not reversed in sign. The fast component of light-induced current
is always found to be larger after dark-adaptation.
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dark after difference curves but always has positive slope conductance. With
greater time resolution, this rapid change in clamp current can be seen to
occur in less than 200 msec.

The change in I-V relation in the first 30 sec after the transient at the
termination of light can also be constructed from data such as that in Fig. 8.
Such an I-V curve is shown in Fig. 9 (circles). It has a shape similar to the
dark after minus dark-adapted curves. That is, it has a region of negative
slope between resting voltage and 0 v and very small values of AI for voltages
more negative than resting voltage.

Millecchia and Mauro (1969 b) reported that there was a unique positive
voltage (about +20 mv) at which the light-induced current changed sign. In
their pulse-clamp experiments, they gave repetitive flashes of 2.5 sec duration
every 10 sec (personal communication). We have replicated their result
(Fig. 10). We gave 2.5-sec flashes every 10 sec; using resting potential of the
cell as holding voltage, we clamped every fourth response to a command-
voltage pulse with a slowed rising edge. We slowed the rise time of the
command-voltage pulse with a two-stage RC low-pass filter. This procedure
avoided eliciting the large, slowly decaying surge of positive current seen
when fast-rising command-voltage pulses more positive than 0 v are used
(Fig. 4 A and Millecchia and Mauro, 1969 b).

In Fig. 10, we see that, when the cell is kept light-adapted with repetitive
flashes, well-defined reversal voltage can be measured. However, we often
find that there is a small biphasic current at the onset of illumination, even
with the cell clamped at reversal voltage. If we interrupt the repetitive
flashes for 3 min and then measure the light-induced current at a voltage
slightly positive to reversal voltage determined for the responses to repetitive
flashes, we find, as in Fig. 8, that there is an additional component to the
light response (Fig. 10), which has not reversed in sign.

DISCUSSION

Models with One Light-Induced Process

Millecchia and Mauro (1969 b) have proposed that the light-induced changes
in the I-V curves of the ventral eye can be explained solely on the basis of a
conductance change model in which the equivalent electromotive force (emf)
for the light-activated path is independent of light, voltage, and time. A con-
sequence of this hypothesis is the existence of a unique "reversal potential."
If the membrane is clamped to this unique voltage there should be no light-
activated current. Fig. 8 shows that for 30-sec light flashes, there is no voltage
at which there is no light-induced current. Also, in Fig. 10, we see that for
short flashes of light there is no voltage at which there is no light-induced
current, if the cell is allowed to dark-adapt between flashes. We thus con-
clude that the hypothesis of a single light-induced process involving changes
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of ionic conductances in series with a fixed, equivalent emf fails to explain
our data.

Another simple, conductance change model can be made as follows: the
membrane conductances to more than one ion change in the light. Each ionic
conductance change (Agi) is in series with an emf equal to the equilibrium
voltage for its ion (Ei); these pathways, one for each ion, are electrically in
parallel. An equivalent single conductance change (GL) in series with an
equivalent emf (EL) can be calculated for this circuit by Kirchhoff's Laws:

GL = E>jg~ and E = E gi 'E

In two cases, our data contravene this model: (a) if only one ion is involved
then EL = Ei or (b) if the voltage, light, and time dependencies of the
Agj's are such that EL remains constant, then a unique reversal voltage would
be predicted. If the Ag's have differing functional dependencies on voltage,
light, or time, then both GL and EL will change during the light response.
We refer to such a system as having more than one "process."

Model with Two Light-Induced Processes

Figs. 6 and 7 show that in the transition from the illuminated steady state
to the dark-adapted state, the membrane undergoes two very different types
of changes in its I-V curve. When a long light pulse is terminated, the mem-
brane potential returns quickly to a value within a few millivolts of the voltage
preceding the light pulse. Fig. 7 B shows the change in the I-V curve during
this transition; the difference curve has either zero slope or positive slope at all
voltages and a reversal potential at +20 mv. Perhaps our most important
observation is that the I-V curve taken 15 sec after the light is turned off
differs greatly from the I-V curve taken 5 min after the light is turned off.
Fig. 6 B shows the difference curve representing the change in the I-V curve
which occurs in the dark as the cell dark-adapts. This curve has a negative
slope from -50 to - 10 my. There are thus two types of changes in the I-V
curve during the transition from the illuminated state to the dark-adapted
state; these have been separated here on the basis of their time-courses. One
type of change occurs within the first 15 sec after the light is turned off; the
other occurs during a prolonged recovery period after the light is terminated.
The pulse-clamp data gives a more accurate measure of the kinetics of the
faster type of I-V curve change. Fig. 8 shows that there is a very fast change
in current when the light is turned off. With greater time resolution, the fast
change is seen to occur in less than 200 msec. Fig. 9 (triangles) shows the
voltage dependence of the fast change in current immediately following the
termination of light, taken from the data, part of which is shown in Fig. 8.
This curve is equivalent to a difference curve, and is similar in some aspects
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of its shape to the light minus dark after difference curve. Also, in both Fig.
9 (circles) and a light minus dark after difference curve such as in Fig. 6 B,
there is both a region of negative slope resistance between resting voltage
and 0 v and a region of very small AI for voltages more negative than resting
voltage. In addition, curves measured in both ways tend to bend back toward
zero at very positive voltages. Typically, the extrapolations of the curves
cross zero at voltages more positive than +50 my.

Using Fig. 8, it is also possible to examine the change in the I-V curve
during the transition from the dark-adapted state to the illuminated steady
state. Fig. 8 shows that, at the onset of the light, there is a fast change of
current at every voltage except at +20 my; this is the same voltage at which
there is no fast change of current following the termination of light. This
indicates that the process underlying the I-V curve change (with reversal
potential at +20 my) occurs rapidly at both the onset and the termination of
light. If indeed this process has a reversal potential at + 20 my independent of
time, then the current trace at +20 my clamping potential indicates the
kinetics of the slower type of I-V curve change. The magnitude of the devia-
tion of the current from the value in the dark-adapted state is a qualitative
measure of the activation of the underlying process. The trace shows that the
buildup of this process is itself slow, though not nearly so slow as the decay.

We propose that the simplest representation of these data has two light-
induced membrane processes. One process, which we dall the fast process, has
the following properties.

(a) it turns on and off rapidly with the onset and termination of the light;
(b) it has a reversal potential at about +20 my; and
(c) its I-V curve has positive slope resistance at all voltages.
The other process we call the slow process. The distinguishing properties

of the slow process are:
(a) it turns on slowly and turns off even more slowly with the onset and
termination of the light;
(b) its I-V curve has negative slope resistance over much of the voltage
range; and
(c) it accounts for less than 2 na of light-activated current at voltages more
negative than resting potential.
We thus interpret each trace in Fig. 8 as the summation of the currents

from two different processes as indicated diagramatically in Fig. 11.
In the above discussion, we use the word "process" to signify any mecha-

nism capable of influencing the net flow of charged particles across the cell
membrane. A list of such processes would include conductance changes,
changes in the net current of electrogenic pumps, changes in concentration,
pressure, or osmotic gradients, etc.

It should be pointed out that, at least in principle, our data could be
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described by a single process model, in which some noncurrent-carrying
agent could modify the voltage dependence of a single process. Such a single
process could not, however, be a conductance change. That this is so can be
seen from Figs. 6 B and 7 B; the slow and fast changes have different reversal
potentials. But the reversal potential of a single process conductance-change
mechanism cannot be modified without changing an ionic concentration; by
our definition, such a change in concentration would itself be a second process.

In our measurments of the slow process, both long-duration clamping
pulses and long-duration illumination periods were used. Under such condi-
tions, it might be argued that the failure to find a unique value for reversal
potential occurred because the equilibrium potential of some ion (or ions)

FAST PROCESS SLOW PROCESS SUM OF BOTH
PROCESSES

+ A.-v> -- *35 mv

+ =

-3S

CURRENT 

TIIE

FIGURE 1 . A schematic drawing of our interpretation of the current traces in Fig.
8 as the sum of the fast and slow processes.

had been changed significantly. If the concentration gradient of the ion (or
ions) which carries membrane current during the light response were chang-
ing, the reversal potential for the light response would also be changing. If
this were true, then the rapid change in light-induced current at the end of
a long-duration stimulus would be expected to have a reversal potential
which depended on the duration of the flash. Also, the rapid changes in
current at the beginning and the end of the flash would be expected to have
different reversal potentials. To the contrary, we find that the reversal
potential is the same for the fast components of the light-induced current at
both the onset and removal of the stimulus, and is independent of the duration
of illumination (up to our longest flash). We conclude that the slow process
is not simply a change in the equilibrium potential of a single ion whose light-
induced influx generates the depolarizing receptor potential.
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Millecchia and Mauro (1969 b) state that the extracellular concentration
of no ion other than Na+ contributes to the emf for the fast changes of light-
induced current. If we accept the hypothesis that the fast process is a con-
ductance increase to the sodium ion (whose equilibrium potential is close to
+20 my), it is unlikely that the entry of additional sodium ions during the
light response obligatorily preceeds the appearance of the slow process. Fig. 8
shows that when the membrane is clamped to +42 mv, the fast component
of the light-induced current is outward across the membrane. Nevertheless,
the slow component of the light-induced current is present, in the inward
direction. Hence, in terms of the Na+-conductance-increase hypothesis, the
slow process can be induced despite the outward flow of sodium ions.

Alternatively, it is possible that some proportion of the light-induced
current is carried by a second ionic species whose Nernst equilibrium potential
is more positive than +42 mv. We cannot eliminate the possibility that a
small influx of the second ion obligatorily preceeds the generation of the slow
process.

The I-V Curves of the Two Processes

In systems with two simultaneously active processes (as for instance the Na+
and K+ conductances of squid), it is possible to describe the time-dependent
I-V curve of each process, provided that it is possible to study at least one of
the processes in isolation. Since we have not been able to do this for ventral
eye photoreceptors, it is impossible to determine unambiguously the I-V
curve of either of our postulated processes.

If, however, we assume that there is negligible change of the slow process
during the 200 msec transient after the light is turned off, then we can assert
that Fig. 9 (triangles) represents the I-V curve of the fast process. Since the
fast process has positive slope at all voltages, the slow process must account for all
of the negative slope in the dark after minus dark-adapted difference curve
and thus must itself have negative slope from -50 to +0 mv.

Although the I-V curve of the slow process does have a large region of
negative slope, this does not necessarily indicate that it arises from a con-
ductance-decrease mechanism. At least several of the other kinds of processes
(e.g. electrogenic ion pumps, changes in ionic concentration) possibly could
produce such an I-V curve with a region of negative slope. Furthermore, it is
possible that more than one process contributes to the phenomenon that we
have called the slow process.

Further Properties of the Fast Process

The fast process appears to be primarily responsible for the observed voltage
response elicited by light. Its time-course correlates with the voltage response,
and its positive reversal potential and positive slope conductance indicate
that it can provide the driving force for a depolarizing voltage change.
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It appears likely that Millecchia and Mauro (1969 b), in their study of the
light-activated currents, were studying what we call the fast process, in
relative isolation. In their pulse-clamp experiments, they gave light stimuli
of 2.5 sec duration, once every 10 sec (personal communication). This inter-
stimulus interval is short in comparison to the time constant of the slow process
recovery. They were thus comparing clamping currents during light stimula-
tion with clamping currents in the dark, characteristic of a light-adapted cell.
Hence, their curves for the light-activated process are similar to our steady-
state light minus dark after difference curve but are very different from the
comparisons of illuminated steady state and dark-adapted state made by
Smith, Stell, and Brown (1968).

Millecchia and Mauro propose that the mechanism underlying these rapid,
light-activated currents (i.e., our fast process) is a conductance change,
primarily to sodium ions. At the present, we feel that this is the best hypothesis
for the mechanism underlying the fast process.

Further Properties of the Slow Process

During the recovery following illumination there is little, if any, after-
potential despite the large slope resistance increase observed in the I-V rela-
tion. This means that the slow process does not provide the driving force for
a voltage change. This does not mean that changes in the slow process can
have no effect on the magnitude of the light-induced voltage responses. For
example, let us accept the hypothesis that the rapid changes in the light
response result primarily from a light-activated increase in membrane
conductance to sodium ions; the driving force on the sodium ions (ENa)
remains fixed (Millecchia and Mauro, 1969 a, b). Thus, light induces an
inward flow of current carried by sodium ions. The amplitude of the rapid
voltage changes will depend on the size of the effective load resistance through
which the light-induced current flows out of the cell. The slow process acts
as if it increases the effective load resistance of the cell. Hence a given size of
light-induced Na+ conductance increase will produce relatively more voltage
change in the presence of the slow process than in its absence.

For example, in Fig. 7, the slow process would affect the amplitude of the
steady phase of the (unclamped) receptor potential by as much as 50%. If
there were no slow process, the light-induced current of the fast process
(about 5 na) would cause a voltage drop across the dark-adapted I-V curve
(D in Fig. 6 A) of about + 12 myv. When the dark I-V curve has been changed
by the slow process (see D1, in Fig. 6 A), the same 5 na of fast process current
causes a voltage drop of about +20 my.

Since the slow process decays with a time-course comparable in length to
that of the dark-adaptation of the sensitivity to light, it is at least possible that
the two may be related. At present we have no evidence on this correlation.
It is clear that the slow process itself cannot produce a decrease in the sensitiv-
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ity to light necessary to account for the decreased amplitude of response to a

fixed size stimulus when the cell is light-adapted. On the contrary, the increase

in effective load resistance of the membrane involved in the slow process

would tend to augment the light response, as argued above.

Current-Voltage Curves

Our I-V curves of dark-adapted ventral eye photoreceptors confirm the

findings of Smith, Stell, and Brown (1968), obtained by a current-clamp

technique. As shown in Fig. 1, the current-voltage curves made with current

ramps (2.5 na/sec), voltage ramps (5 mv/sec), and voltage pulses (for times

greater than 5 sec after the voltage step) are mutually consistent. We feel that

the absence of a negative resistance region in Millecchia and Mauro's (1969

a) curves is due to the fact that their so called "steady-state" measurements

made 2.5 sec after the voltage step were not truly steady state. At 2.5 sec

after the onset of a voltage pulse (with holding voltage at resting potential),

the currents are still changing.
The negative resistance region (more positive than 0 v) of the dark-adapted

I-V curve does not underlie any regenerative event which occurs in the normal

(unclamped) response of the cell. The only time the membrane voltage would

become sufficiently positive is during the transient phase of the receptor

potential. The transient phase has a duration only as great as 0.5 sec, whereas

the negative resistance takes several seconds to develop after the membrane

voltage has been made more positive (Fig. 4 B). Therefore there is no effective

negative resistance (more positive than zero) during the transient phase of the

receptor potential.
In comparing the I-V curves of the cell membrane taken when dark-

adapted with those taken when stimulated by light, Smith, Stell, and Brown

(1968) found that, for voltages just positive to resting potential, the slope

resistance of the I-V curve taken in the light was greater than in the dark.

Fig. 5 confirms their finding. On this evidence, Smith, Stell, and Brown

discounted a conductance-increase mechanism. Hagiwara (personal com-

munication) has since pointed out that, to the contrary, the I-V curve of a

conductance increase pathway can have a region of negative slope resistance.

Thus a light-activated conductance pathway having this property could

account for the slope resistance increase in the light observed by Smith,

Stell, and Brown.
Considering our new data, the results of Smith, Stell, and Brown (1968)

can be explained more simply in terms of a two-process model. They com-

pared the steady-state curve in the light to the dark-adapted curve. Thus, we

conclude that they were studying the sum o(f both the fast and the slow

processes. Since in a region just above resting potential the slope resistance

increase due to the slow process is greater than the slope resistance decrease
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due to the fast process, the net effect of light, in the steady state, is to produce
the slope resistance increase actually observed.
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